
XSHARP : XBASE AND .NET

TO THE MAX

Southwest Fox 2019 – Phoenix AZ
Fabrice Foray

fabrice@xsharp.eu

Overview

➢ FoxPro Dialect

➢ Class Definition

➢ DBF Console App

➢ .NET Extensions to xBase

➢ Type Check Expression, Var/Local Implied, Dynamic

➢ Const, Default, Nullable Type access, Yield

➢ Checked/UnChecked/Using/Scope

➢ Lock/Fixed/UnSafe

➢ Switch Statements

➢ Try/Catch/Finally

➢ Anonymous & Lambda Expression

➢ Extensions

➢ Extension Methods

➢ Generics

➢ LINQ

➢ Async / Await

FoxPro Dialect

FoxPro Dialect

 Class Definition Sample

 DEFINE CLASS / ENDDEFINE

 USE / SCAN / APPEND

 Standard FoxPro Commands

Memory and Vars

Memory and Vars

 Type Check

 IS / ASTYPE

 VAR / LOCAL IMPLIED

 Compile-Time resolution

 DYNAMIC

 A little bit like USUALs…

Memory and Vars

 DEFAULT

 oPerson:FirstName DEFAULT "First"
◼ Set a default value if the left element is NULL

 ?

oEmptyPerson?:FirstName
◼ Conditional Access, no crash even if oEmptyPerson is NULL

 CONST / INITONLY
◼ Change the way Fields can be set and modified

◼ Let’s see a Sample

Yield

 Yield

 Any enumerator

 ForEach or LINQ

 Let’s see a Sample

Statement Blocks

BEGIN

 BEGIN CHECKED

 The checked keyword is used to explicitly enable

overflow checking for integral-type arithmetic

operations and conversions.

 BEGIN UNCHECKED

 The unchecked keyword can be used to prevent

overflow checking.

BEGIN

 BEGIN USING

 Provides a convenient syntax that ensures the correct

use of IDisposable objects.

 The using statement calls the Dispose method, and it

also causes the object itself to go out of scope as soon

as Dispose is called. Within the using block, the object is

read-only and cannot be modified or reassigned.

BEGIN

 BEGIN SCOPE

 Define a block statement

 All defined LOCALs in that block, only exist in that

block

 Let’s see a Sample

BEGIN

 BEGIN FIXED

 statement prevents the garbage collector from

relocating a movable variable

 sets a pointer to a managed variable and "pins" that

variable during the execution of the statement.

BEGIN

 BEGIN LOCK

 Marks a statement block as a critical section

 Ensures that another thread does not enter that block.

◼ If so, it will wait, until the object is released at END

 More to come with Async

SWITCH

 SWITCH … CASE

 DO CASE replacement

◼ Except that the expression is only evaluated once

 More like Switch/Case in C#, C++

◼ No fall-through

◼ So no Break needed

 Ok, let’s see

Try Catch

 Try Catch Finally

 Open a statement block, which specify handlers for

different exceptions.

 And, optionally, an exit statement block whatever the

reason of the exit

 Let’s see a Sample

Anonymous & Lambda

Anonymous Methods

 Delegate … reminder

 It is a Reference type, like a Method signature

DELEGATE DoubleDelegate(d AS REAL8) AS REAL8

 Now, DoubleDelegate is a Type

◼ LOCAL namedMethod AS DoubleDelegate

 If MultiplyBy2 is a Function with the right prototype

◼ namedMethod := MultiplyBy2

 And you can use the DELEGATE for a Function call

◼ namedMethod(8.0)

Lambda Expression

 So, and Anonymously ?

 Define the DELEGATE

 Define the reference holder

 Write that code, a bit like a CodeBlock

 Very usefull with in List<T> for example

Extensions

Extension Methods

 Enable you to "add" methods to existing types

without creating a new derived type.

 Static Class

 Add Static Method

 The first parameter specifies which type the method

operates on, and the parameter is preceded by the

SELF modifier.

Generics

 Generics

 Usage

◼ List<String>

 Definition

◼ MyArray<T>

 Constraints

◼ Struct Only Value Type

◼ Class Only Reference Type

◼ New() parameter-less constructor

 Let’s go for a Demo !

LINQ

 LINQ

 Language-Integrated Query
◼ Definition

 The full LINQ feature set will be supported by X#:
◼ FROM

◼ LET

◼ WHERE

◼ JOIN

◼ ORDER BY

◼ EQUALS

◼ INTO

 A sample is better than a long talk….

Async / Await

Async

 Async

 Potentially blocking operation ?

◼ Web Access (HttpClient, …)

◼ File Access (StreamWriter, XMLReader, …)

◼ Media manipulation (BitmapEncoder, MediaCapture, …)

 How to ?

◼ Threads !

◼ BackgroundWorkers

Async

 Async

 How to ?

◼ ASYNC keyword in the method signature

◼ By convention, ends with an "Async" suffix.

◼ The return type is a Task, or Void

 Await

 The ASYNC method can't continue past that point until
the process is complete.

 Control returns immediately to the caller of the async
method.

THANKS FOR YOUR

ATTENTION…☺

Southwest Fox 2019 – Phoenix AZ
Fabrice Foray

fabrice@xsharp.eu

