
© 2015- 2024 XSharp BV

XSharp

Cahors (2.20.0.3)

XSharp

© 2015- 2024 XSharp BV

111

Table of Contents

Foreword 0

Part I X# Documentation 12

... 151 Getting Started with X#

...16Dialects

...19Core

...20All Non Core dialects

...21Visual Objects

...21Vulcan

...22Xbase++

...22FoxPro

...23Harbour

...24Bring Your Own Runtime (BYOR)

...25Known Issues

...26Installation

...29Redistributing X#

...32New language features

...34Anonymous Methods

...35Anonymous Types

...37ASTYPE

...37ASYNC - AWAIT

...38BEGIN CHECKED

...39BEGIN FIXED

...40BEGIN UNCHECKED

...40BEGIN UNSAFE

...40BEGIN USING

...41Collection Initializers

...43Conditional Access Expression

...44Creating Generic Classes

...46DEFAULT Expressions

...47EVENT (Add and Remove)

...50Expression IS Type

...51Initializers

...53Interpolated Strings

...54LINQ Query Expressions

...56NOP

...57Object Initializers

...58SWITCH

...59USING

...60VAR

...61Xbase++ class declarations

...63YIELD

...65Licensing

...66XSharp Open Softw are License

...70Apache 2

...74BSD

...76Acknowledgements

... 772 Version History

... 2473 Migrating apps from VO to X#

...248Example 1: The VO Explorer Example

...255Example 2: The VOPAD Example

...259Example 3: The Pizza Example

...261Example 4: Ole Automation - Excel

Contents

© 2015- 2024 XSharp BV

2

...266Example 5: OCX - The Email Client Example

... 2724 The X# Runtime

...275XSharp.Core

...276XSharp.Data

...277XSharp.RT

...278XSharp.RT.Debugger.DLL

...279XSharp.VO

...280XSharp.XPP

...281XSharp.VFP

...282XSharp.VFP.UI

...283XSharp.Macrocompiler

...284XSharp.Macrocompiler.Full.DLL

...285XSharp.RDD

...286Installation in the GAC

...287Who is who in the X# team

...288XBase Types

...289Array Of Type

...290Array Type

...290CodeBlock

...292Date Type

...293Binary Type

...293Currency Type

...294Float Type

...294Logic Ttype

...294PSZ Type

...295Symbol Type

...295Usual Type

...299Workarea Events

...302Dialect (in)compatibilities

...302VO

...302Vulcan.NET

...302Xbase++

...303FoxPro

...303Harbour

...304Subsystems of the X# Runtime

...305Combining X# Runtime and Vulcan Runtime

... 3065 X# Scripting

... 3116 Using X# in Visual Studio

...312Project System

...312Solution

...314Build Configurations

...316Projects

..317Project Properties

..317Application

..319Language

..322Dialect

..324Build

..326Build Events

..327Debug

..328Resources

..329Settings

..330References

..330.Net

..331COM

..332Project

...332Project Items

..333Source code Items

XSharp

© 2015- 2024 XSharp BV

333

..333Forms

..333Other Item types

..333Native Resources

..333Managed Resources

..333Settings

...334Source Code Editor

...334Text Editor Options

..336General Options

..336Scroll Bars

..337Tabs

..337Formatting

..337Generator

..338Indentation

..339Intellisense

..339Options

..340Settings Completion

...340Keyw ord Coloring

...340Highlighting Errors

...341Regions

...341Blocks

...342Parameter Tips

...342Quick Info

...343Code Completion

...344Editor combo boxes

...344Goto definition

...345Peek definition

...345Inactive conditional regions

...345Brace matching

...346Highlight Identif iers

...346Highlight Keyw ords

...347Indenting code

...347Snippets

...348.EditorConfig f iles

...350Debugger

...350Toolbar and Menu

...351Globals Window

...352Publics and Privates Window

...352Workareas w indow

...353Settings Window

...354Other editors

...355Templates

...355Project Templates

...358Item Templates

...362VOXporter

...363XPorter

...364VFPXporter

...373UDC Tester

... 3747 X# Programming guide

...375Classes and Structures

...380Codeblock, Lambda and Anonymous Method Expressions

...383Exceptions and Exception Handling

...385Memory Variables

...390Modifiers

...390Access/Visibility modif iers

...392Class hierarchy modif iers

...397STATIC modif ier

...400ASYNC/AWAIT

...400Other modif iers

Contents

© 2015- 2024 XSharp BV

4

...403Namespaces

...406Types

...407Tuples

...411XML Documentation Comments

...412Strong Typing

...413Runtime Scripting

...414Calling conventions

... 4168 X# Language Reference

...417Keywords

...428Types

...428Simple (Native) Types

..429BYTE

..429CHAR

..429DECIMAL

..429DWORD

..429DYNAMIC

..430INT

..430INT64

..430LOGIC

..430OBJECT

..431PTR

..431REAL4

..431REAL8

..431SBYTE

..431SHORT

..432STRING

..432UINT64

..432VOID

..432WORD

...432xBase Specif ic Types

..433ARRAY

..433ARRAY (FoxPro)

..434BINARY

..434CODEBLOCK

..436CURRENCY

..436DATE

..437FLOAT

..437PSZ

..437SYMBOL

..438USUAL

...439User defined Types

...440Literals

...440Char Literals

...441String Literals

...442Date Literals

...442Logic Literals

...443Null Literals

...443Numeric Literals

..444Integer Literals

..444Floating point Literals

...445Symbol Literals

...445Escape codes

...446Binary Literals

...447Commands and Statements

...448Identif iers

...449Blocks and Namespaces

..449BEGIN (UN)CHECKED

..450BEGIN FIXED

XSharp

© 2015- 2024 XSharp BV

555

..451BEGIN LOCK

..452BEGIN NAMESPACE

..454BEGIN SCOPE

..455BEGIN SEQUENCE

..457BEGIN UNSAFE

..458BEGIN USING

..459LOCAL FUNCTION

..461LOCAL PROCEDURE

..463USING

...465Comment

..465Comments

...466Concurrency Control

..466COMMIT Command

..467SET EXCLUSIVE Command

..468UNLOCK Command

...469Database

..471APPEND BLANK Command

..472APPEND FROM ARRAY Command

..473APPEND FROM Command

..476APPEND FROM Command (FoxPro)

..480AVERAGE Command

..482CLEAR ALL Command

..482CLOSE Command

..483CONTINUE Command

..485COPY STRUCTURE Command

..486COPY STRUCTURE EXTENDED Command

..488COPY TO ARRAY Command

..490COPY TO Command

..494COPY TO Command (FoxPro)

..498COUNT Command

..500CREATE Command

..501CREATE FROM Command

..504DELETE Command

..506GATHER Command

..508GO Command

..509JOIN Command

..511LOCATE Command

..514PACK Command

..515RECALL Command

..516REPLACE Command

..519SCATTER Command

..520SELECT Command

..522SET DELETED Command

..523SET DRIVER Command

..524SET FILTER Command

..525SET MEMOBLOCK Command

..526SET OPTIMIZE Command

..527SET RELATION Command

..529SKIP Command

..531SORT Command

..533SUM Command

..534TOTAL Command

..537UPDATE Command

..539USE Command

..542ZAP Command

...543Date and Time

..543SET CENTURY Command

..544SET DATE Command

Contents

© 2015- 2024 XSharp BV

6

..544SET DATE FORMAT Command

..545SET EPOCH Command

...546Entity Declaration

..547_DLL Statement

..549CLASS Members

..549ACCESS Statement

..555ASSIGN Statement

..561CONSTRUCTOR Statement

..562DECLARE METHOD Statement

..562DESTRUCTOR Statement

..563EVENT Statement

..565METHOD Statement

..572OPERATOR Statement

..574PROPERTY Statement

..576CLASS Statement (All dialects)

..579Instance Variables

..580Other Classmembers

..581CLASS Statement (FoxPro dialect)

..582Properties and Fields

..583IMPLEMENTS clause

..583ADD OBJECT Clause

..584COMMAttrib Clause

..585FUNCTION and PROCEDURE

..585CLASS Statement (Xbase++ dialect)

..587Fields

..588METHOD Declarations

..590METHOD Implementation

..592DEFINE Statement

..593DELEGATE Statement

..595ENUM Statement

..598FUNCTION Statement

..605GLOBAL Statement

..607INTERFACE Statement

..608LOCAL FUNCTION Statement

..610LOCAL PROCEDURE Statement

..612PROCEDURE Statement

..616STRUCTURE Statement

..619UNION Statement

..621VOSTRUCT Statement

...628Environment

..628SET ANSI Command

..629SET CENTURY Command

..629SET DATE Command

..630SET DATE FORMAT Command

..631SET DECIMALS Command

..632SET DEFAULT Command

..632SET DIGITFIXED Command

..633SET DIGITS Command

..634SET DRIVER Command

..634SET EPOCH Command

..635SET EXACT Command

..636SET FIXED Command

..636SET PATH Command

...637File

..637COPY FILE Command

..639DELETE FILE Command

..640DIR Command

..641ERASE Command

XSharp

© 2015- 2024 XSharp BV

777

..642RENAME Command

..643SET DEFAULT Command

..644SET PATH Command

...644Index/Order

..645DELETE TAG Command

..646FIND Command

..647INDEX Command

..652REINDEX Command

..653SEEK Command

..655SET DESCENDING Command

..656SET INDEX Command

..658SET ORDER Command

..660SET SCOPE Command

..661SET SCOPEBOTTOM Command

..661SET SCOPETOP Command

..662SET SOFTSEEK Command

..663SET UNIQUE Command

...664International

..664SET COLLATION Command

..664SET INTERNATIONAL Command

...665Macros

..665& Command

...665Memory Variable

..666CLEAR MEMORY Command

..666DECLARE / DIMENSION Statement

..667MEMVAR Statement

..668PARAMETERS Statement

..669PRIVATE statement

..672PUBLIC Statement

..675RELEASE Command

..676RESTORE Command

..678SAVE Command

..679STORE Command

...681Numeric

..681SET DECIMALS Command

..682SET DIGITFIXED Command

..682SET DIGITS Command

..683SET FIXED Command

...684Program Control

..684#ifdef Statement

..685#ifndef Statement

..687ASYNC .. AWAIT

..688BEGIN SEQUENCE Statement

..692BREAK statement

..693CANCEL Command

..694DEFAULT Command

..694DO CASE Statement

..695DO Statement

..697DO WHILE Statement

..699EXIT Statement

..699EXTERNAL Command

..700FOR Statement

..703FOREACH Statement

..704IF Statement

..705LOOP Statement

..706NOP Statement

..707QUIT Command

..707REPEAT UNTIL Statement

Contents

© 2015- 2024 XSharp BV

8

..710RETURN Statement

..711RUN Command

..712SWITCH Statement

..714THROW Statement

..715TRY CATCH Statement

..719WITH command

..719YIELD Statement

...720Terminal Window

..721?|?? Statement

..722\|\\ Statement

..724ACCEPT Command

..725CLEAR SCREEN Command

..726SET ALTERNATE Command

..727SET COLOR Command

..728SET CONSOLE Command

..729SET TEXTMERGE Command

..731TEXT Command

..732TEXT Command (Core)

..733TEXT Command (Non-Core)

..735TEXT Command (FoxPro)

..739WAIT Command

...740Variable Declaration

..741FIELD Statement

..742LOCAL Statement

..747LPARAMETERS Statement

..748STATIC Statement

..750STACKALLOC

..751VAR Statement

...752Expressions

...753Bound Expressions

...754Primary Expressions

...755Codeblocks

...756Lamda Expressions

...758LINQ Expressions

...759Initializers

...760Compiler Macros

...762Pseudo Functions

...765Operators

...765Binary

...766Assignment operators

...767Logical

...767Bitw ise

...768Relational

...770Shift

...770Unary

...771Workarea

...771IIF Operator

...772SizeOf Operator

...774TypeOf operator

...775NameOf Operator

...776X# Preprocessor Directives

...776#command

...778#define

...780#else

...780#endif

...780#endtext

...782#if

...785#ifdef

XSharp

© 2015- 2024 XSharp BV

999

...786#ifndef

...786#include

...787#line

...787#pragma options

...789#pragma w arning(s)

...790#region - #endregion

...791#stdout

...792#text

...795#translate

...797#undef

...797Match Markers

...799Result Markers

... 8029 X# Compiler Options

...803Command-line Building With xsc.exe

...805X# Compiler Options By Category

...811X# Compiler Options Listed Alphabetically

...815@

...817-additionalf ile

...817-addmodule

...818-allow dot

...819-allow oldstyleassignments

...819-analyzer, -a

...819-appconfig

...821-ast

...821-az

...823-baseaddress

...823-checked

...824-checksumalgorithm

...825-codepage

...825-cs

...826-debug

...828-define

...829-delaysign

...830-dialect

...831-doc

...832-enforceoverride

...832-enforceself

...833-errorendlocation

...833-errorreport

...834-filealign

...835-fovf

...835-fox1

...836-fox2

...837-fullpaths

...837-help, /?

...837-highentropyva

...838-i

...839-initlocals

...840-ins

...841-keycontainer

...842-keyfile

...843-langversion

...843-lb

...844-lexonly

...845-lib

...846-link

...848-linkresource

...850-main

Contents

© 2015- 2024 XSharp BV

10

...851-memvar

...851-modernsyntax

...852-moduleassemblyname

...854-modulename:<string>

...854-namedargs

...855-noconfig

...857-noinit

...857-nologo

...858-nostddefs

...858-nostdlib

...859-now arn

...859-now in32manifest

...860-ns

...862-optimize

...863-out

...864-ovf

...864-parallel

...864-parseonly

...865-pathmap

...865-pdb

...866-platform

...867-ppo

...868-preferreduilang

...869-recurse

...870-reference

...872-refonly

...873-refout

...874-resource

...875-ruleset

...875-shared

...876-show defs

...876-show includes

...877-snk

...877-stddefs

...877-subsystemversion

...879-target

...880-touchedfiles

...880-undeclared

...881-unsafe

...881-usenativeversion

...883-utf8output

...884-vo1

...884-vo10

...885-vo11

...887-vo12

...887-vo13

...889-vo14

...890-vo15

...891-vo16

...892-vo17

...894-vo2

...896-vo3

...898-vo4

...900-vo5

...901-vo6

...903-vo7

...905-vo8

...908-vo9

XSharp

© 2015- 2024 XSharp BV

111111

...909-w

...909-w arn

...910-w arnaserror

...911-w in32icon

...912-w in32manifest

...914-w in32res

...915-w x

...915-xpp1

... 91610 X# Compiler Errors and Warnings

... 91711 X# Tips and Tricks

...918Installer Command Line options

...922UnInstaller Command Line options

...923Building XSharp apps with Visual Studio and/or MsBuild

...931Catching runtime errors at startup

...934Compiler magic in the startup code

...937Special classes and code generated by the compiler

Part II X# Examples 946

... 9481 Anonymous Method Expressions

... 9492 Anonymous Types

... 9523 ASYNC Example

... 9544 BEGIN UNSAFE Example

... 9555 BEGIN USING Example

... 9566 CHECKED Example

... 9577 EVENT Example

... 9598 Expression Examples

... 9619 FIXED Example

... 96210 GENERICs Example

... 96411 Lamda Expressions

... 96512 LINQ Example

... 96813 NOP Example

... 96914 SWITCH Example

... 97015 Typed Enums

... 97116 USING Example

... 97217 VAR Example

... 97318 Vulcan Runtime (BYOR)

... 97819 YIELD Example

Index 979

Part

I

13 XSharp

© 2015- 2024 XSharp BV

1 X# Documentation

Welcome to X# (XSharp) Cahors (2.20.0.3)

Click here for the version history
Click here for the list of known issues
X# is an open source development language for .NET, based on the xBase language.

It comes in different flavors, such as Core, Visual Objects, Vulcan.NET, xBase++,
Harbour, Foxpro and more.
The current version of X# supports the Core dialect as well as the VO, Vulcan and
Harbour dialect

At this moment X# supports the following Xbase dialects:

Dialect Syntax Classes Functions

Core Complete Complete Complete

Visual Objects Complete Complete Complete

Vulcan Complete Complete Complete

14X# Documentation

© 2015- 2024 XSharp BV

Xbase++ Complete Partially. Partially

(Visual) FoxPro Partially. Partially. Partially.

(X)Harbour Partially. Partially. Partially.

For more info about the dialects see the dialects topic in this documentation

This documentation is still under development. Some sections in the documentation are
incomplete.

15 XSharp

© 2015- 2024 XSharp BV

1.1 Getting Started with X#

At this moment X# supports the following Xbase dialects:

Dialect Syntax Classes Functions

Core Complete Complete Complete

Visual Objects Complete Complete Complete

Vulcan Complete Complete Complete

Xbase++ Complete Partially. Partially

(Visual) FoxPro Partially. Partially. Partially.

(X)Harbour Partially. Partially. Partially.

For more info about the dialects see the dialects topic in this documentation

Click here for the version history
Click here for the list of known issues

16X# Documentation

© 2015- 2024 XSharp BV

1.1.1 Dialects

The X# compiler can run in different dialects. The table below shows the differences
between these dialects.
You can use the /dialect compiler option to select the dialect that you want to use.
The Core dialect is default. All dialects apart from the Core dialect require a reference to
the XSharp runtime DLLs

Feature Core VO Vulcan Harbou
r

Xbase+
+ 14

FoxPro

4 Letter abbreviations of
keywords
(FUNC, WHIL etc).

- Yes 11 - Yes 11 Follow
the
conventi
ons of
Xbase+
+

Yes 11

&& as single line
comment character
(alternative syntax for //)

- Yes - Yes Yes Yes

* at beginning of line as
comment character

Yes Yes Yes Yes Yes Yes

ALIAS (->) operator - Yes Yes Yes Yes Yes

AND, NOT, OR, XOR as
alternatives for
.AND., .NOT. etc

- - - - - Yes

ARRAY type, Including
Array literals &
NULL_ARRAY, including
missing elements

- Yes Yes Yes Yes Yes

BREAK statement - Yes Yes Yes Yes Yes

BEGIN SEQUENCE ..
RECOVER .. END
SEQUENCE

- Yes Yes Yes Yes Yes

CLIPPER calling
convention (requires
USUAL support)

- Yes Yes Yes Yes Yes

CODEBLOCK type - Yes Yes Yes Yes Yes

DATE type, including
NULL_DATE

- Yes Yes Yes Yes Yes

DATE and DateTime
literals

Yes Yes Yes Yes Yes Yes

DEFINE statement with
optional type clause

Yes Yes Yes Yes Yes Yes

17 XSharp

© 2015- 2024 XSharp BV

Feature Core VO Vulcan Harbou
r

Xbase+
+ 14

FoxPro

FIELD statement, and
recognition of Field
names in stead of locals
or instance variables

- Yes Yes Yes Yes Yes

FLOAT type, including
Float literals & the /vo14
compiler option

- Yes Yes Yes Yes Yes

FOR .. ENDFOR as
alternative for FOR ..
NEXT

- - - - Yes Yes

FOR EACH as
alternative for FOREACH

- - - - - Yes

GLOBAL statement Yes Yes Yes Yes Yes Yes

IIF() expression and
the /vo10 compiler
option

Yes 7 Yes 7 Yes 7 Yes Yes Yes

Late binding - Yes
(with /lb
+)

Yes
(with /lb
+)

Yes Yes Yes

LPARAMETERS
statement

- - - - - Yes

MACRO compiler - 13 Yes Yes Yes Yes Yes

MEMVAR, PUBLIC,
PRIVATE,
PARAMETERS
statement , including
undeclared variables 14

- Yes - Yes Yes Yes

PSZ Type, including
NULL_PSZ and (pseudo)
PSZ conversion
functions (String2Psz(),
Cast2Psz()

- Yes Yes Yes Yes Yes

PSZ Indexer n/a 1 based 0 based 1 based 1 based 1 based

NULL_STRING Yes 9 Yes 9 Yes Yes Yes Yes

SYMBOL type, including
Symbol literals &
NULL_SYMBOL

- Yes Yes Yes Yes Yes

Statements before the
first entity in a source file

- - - - - Yes

18X# Documentation

© 2015- 2024 XSharp BV

Feature Core VO Vulcan Harbou
r

Xbase+
+ 14

FoxPro

USUAL type, including
NIL literal (1,2)

- Yes Yes Yes Yes Yes 15

TEXT Command - - - - - Yes

Special features Yes Yes Yes

VOSTRUCT and AS/IS
syntax (10)

- Yes Yes - - -

UNION and AS/IS syntax
(10)

- Yes Yes - - -

Untyped Literal Arrays - Yes 8 Yes 8 Yes Yes Yes

Missing types allowed - Yes 3 Yes 3 Yes Yes Yes

Missing arguments in
function/method calls
MyFunc(1,,2)

- Yes Yes Yes Yes Yes

Pseudo functions Yes Yes Yes

 PCount(),
_GetMParam(),
_GetFParam(), _Args()

- Yes 4 Yes 4 Yes 4 Yes 4 Yes 4

 SLen() - Yes 5 Yes 5 Yes 5 Yes 5 Yes 5

_Chr() - Yes Yes Yes Yes Yes

 AltD() - Yes 6 Yes 6 Yes 6 Yes 6 Yes 6

 PCall, PCallNative - Yes Yes Yes Yes Yes

 CCall, CCallNative - Yes Yes Yes Yes Yes

Other information

Generated Function
class name

Function
s
X$<Mod
uleNam
e>$Fun
ctions
for static
function
s and
globals

<AssemblyName>.Functions (DLLs)
<AssemblyName>.Exe.Functions
(EXEs)
<AssemblyName>.Exe.$<ModuleName
>$.Functions
for static functions and globals

1. Requires VulcanRT.DLL or XSharp.VO.DLL
2. Requires VulcanRTFuncs.DLL or XSharp.VO.DLL
3. Missing types get translated to USUAL. With the new /vo15 compiler option you can tell

the compiler that you do not want to allow missing types
4. Only supported inside functions and methods with Clipper Calling convention

19 XSharp

© 2015- 2024 XSharp BV

5. The Vulcan runtime does not have a SLen() function. The compiler translates this to
accessing the Length property of the string

6. This gets translated to
IF System.Diagnostics.Debugger.Attached

System.Diagnostics.Debugger.Break()
ENDIF

7. In the core dialect each of the expressions is cast to OBJECT. In the other dialects the
expression is cast to USUAL.

8. Untyped literal arrays in the VO/Vulcan dialect are translated to the VO Array type:
{"aa", "bb", "cc"}
Typed literal arrays are prefixed with <Type> like this:
<STRING>{"aa", "bb", "cc"}
This becomes a literal string array

9. With the /vo2 compiler option NULL_STRING is compiled to an empty string.
Otherwise to a NULL.

10.The VOSTRUCT and UNION can be replaced with a standard .NET structure. For
Union you need to use the [StructLayout(LayoutKind.Explicit)] attribute on the structure
and the [FieldOffSet()] attribute on each field to explicitly define the location of the
fields.

11.Only for VO compatible keywords, not for keywords introduced in Vulcan or XSharp.
12.The true and false expressions for an IIF() are optional in Harbour and Xbase++
13.The macro compiler is not supported. However when you use the RDD system in the

Core dialect then the index expression will still use the macro compiler and a reference
to the XSharp.RT.DLL is needed for the support of the macro compiler.

14.This requires the XSharp runtime.
15.In FoxPro NIL is not allowed and redefined to FALSE.

1.1.1.1 Core

The compiler and runtime have the following "special" behavior when compiling for the
"Core" dialect.

Compiler

· Does NOT allows 4 letter abbreviations of keywords

· Allows the DOT ('.') operator to call Instance methods

· Single quotes are used for Character literals

· String Comparisons are mapped to the String.Compare() method in the .Net runtime

· The String "=" operator is not supported

· The String "-" operator is not supported

· Anything that requires runtime support, such as the X# specific types (DATE, ARRAY,
SYMBOL, FLOAT and USUAL) and dynamic memory variables is not supported

· Supports the use of '@' to retrieve the address of a variable. This may also be used for
REF variables if the compiler option -vo7 is used.

· The '=' operator may be used for assigns but will generate a warning when used.

· The compiler generated functions class is called
Functions for normal functions and globals
X$<ModuleName>$Functions for static functions and globals

· Procedures cannot return values

· Does not allow skipping arguments in method calls.

20X# Documentation

© 2015- 2024 XSharp BV

Runtime

· The Core dialect does not require a runtime. However you can still link to XSharp.Core
and XSharp.RDD and call methods and functions in these assemblies.

1.1.1.2 All Non Core dialects

The compiler and runtime have the following "special" behavior when compiling for any or
the non-core dialects

Compiler

· Allows "garbage" after keywords such as NEXT, ENDDO etc.

· Does not allows the DOT ('.') operator to call Instance methods

· Requires a reference to the XSharp.Core and XSharp.RT DLLs

· String Comparisons are mapped to a function in the XSharp runtime

· NULL_STRING is compiled into either "" or NULL depending on the compiler option -vo2

· Supports literal symbols (#SomeName)

· The String "=" operator is mapped to a function in the XSharp runtime

· The X# specific types such as DATE, ARRAY, SYMBOL, FLOAT and USUAL are not
supported, but required a reference to the runtime

· Adds support for Dynamic Memory Variables and Undeclared variables

· Single quotes are used for String literals (except in Vulcan). Character literals must be
prefixed with a c, like this: cChar := c'A'

· Allow the use of ASend() to call methods for each element inside a X# array.

· The '=' operator may be used for assigns but will generate a warning when used.

· Adds support for BEGIN SEQUENCE .. END SEQUENCE

· Adds support for the ALIAS (->) operator

· Adds support for the FIELD statement

· Adds support for the Macro compiler and &(variable) syntax

· Adds support for the ARRAY OF <type> syntax

· The compiler generated functions class is called
<AssemblyName>.Functions (DLLs) for functions and globals
<AssemblyName>.Exe.Functions (EXEs) for functions and globals
<AssemblyName>.Exe.$<ModuleName>$.Functions for static functions and

globals
· The compiler adds several attributes (defined in XSharp.Core) to describe the default

namespace and compiler version
· The compiler generates code for EXE files that set several properties in the

Runtimestate to match compiler options and the dialect of the main app.
· Procedures cannot return values

· Adds support for untyped variables and return values

· Adds support for untyped function and method parameters (the so-called Clipper calling
convention)

· Adds support for late bound code (requires the -lb compiler option)

· Adds support for INIT and EXIT procedures

· Adds support for Codeblocks (untyped Lambda expressions with an array of USUAL
parameters and a USUAL return value)

· Allows skipping arguments in method calls. Skipped arguments are assumed to be NIL

21 XSharp

© 2015- 2024 XSharp BV

Runtime

· The default RDD all except the FoxPro dialect is DBFNTX

1.1.1.3 Visual Objects

This dialect shares the features of "All Non Core Dialects"
The compiler and runtime have the following "special" behavior when compiling for the
"Visual Objects" dialect.

Compiler

· Allows 4 letter abbreviations of some older keywords

· Allows "&&" as same line comment characters, just like "//"

· When a reference to XSharp.VO is added then certain functions that are VO specific are
enabled, such as RtRegString()

· Supports the use of '@' to retrieve the address of a variable. This may also be used for
REF variables if the compiler option -vo7 is used.

· The preprocessor adds a define __VO__ with a value of TRUE

· Adds the VOSTRUCT and UNION entity types

· Uses the _WINBOOL type for logical values inside VOSTRUCT and UNION entities

· The indexer on PSZ types start with element 1

Runtime

· When running in Ansi more (SetAnsi(TRUE), which is the default) then the DBF header
for DBFNTX gets the Ansi bit set

1.1.1.4 Vulcan

This dialect shares the features of "All Non Core Dialects"
The compiler and runtime have the following "special" behavior when compiling for the
"Vulcan" dialect.

Compiler

· Does NOT allows 4 letter abbreviations of keywords

· Does NOT support Memory variables

· Does NOT allow && as same line comment characters (&& means .AND. in Vulcan)

· Single quotes are used for Character literals

· Supports the use of '@' to retrieve the address of a variable. This may also be used for
REF variables if the compiler option -vo7 is used.

· NULL_STRING is compiled into either "" or NULL depending on the compiler option -vo2

· The preprocessor adds a define __VULCAN__ with a value of TRUE

· Adds the VOSTRUCT and UNION entity types

· Uses the _WINBOOL type for logical values inside VOSTRUCT and UNION entities

· The indexer on PSZ types start with element 0

22X# Documentation

© 2015- 2024 XSharp BV

Runtime

· When running in Ansi more (SetAnsi(TRUE), which is the default) then the DBF header
for DBFNTX gets the Ansi bit set

· The NoMethod() method gets an extra 1st parameter that contains the name of the
method that was called.

1.1.1.5 Xbase++

This dialect shares the features of "All Non Core Dialects"
The compiler and runtime have the following "special" behavior when compiling for the
"Xbase++" dialect.

Compiler

· Allows 4 letter abbreviations of those keywords where this is also supported in Xbase++

· Allows "&&" as same line comment characters, just like "//"

· The '@' operator is only used to pass variables by reference.

· The preprocessor adds a define __XPP__ with a value of TRUE

· Allows ENDFOR instead of NEXT

· Adds the Xbase++ specific CLASS syntax to define classes

· The entry point to the code is the main() function or main() procedure.

Runtime

· FieldGet() and FieldPut() will not throw an error when writing to non existing field
Positions

· If you use the index operator on a usual which contains a string then you will be receive
the 1 based substring of the value.

1.1.1.6 FoxPro

This dialect shares the features of "All Non Core Dialects"
The compiler and runtime have the following "special" behavior when compiling for the
"FoxPro" dialect.

Compiler

· Allows 4 letter abbreviations of some older keywords

· Allows "&&" as same line comment characters, just like "//"

· Allows the DOT ('.') operator to call Instance methods

· The '@' operator is only used to pass variables by reference.

· Allows ENDFOR instead of NEXT and FOR EACH instead of FOREACH

· The '=' operator will NOT generate a warning when used as assignment operator

· Adds several keywords such as THIS (as alias for SELF)

· Adds support for CursorName.FieldName syntax

· Adds support for M.VariableName syntax

· Adds the DIMENSION statement syntax

· Adds the LPARAMETERS statement

23 XSharp

© 2015- 2024 XSharp BV

· Adds the TEXT .. ENDTEXT statement

· Adds the \\ and \\\ statement

· Adds the "= <Expression>" command

· Adds the FoxPro specific DEFINE CLASS syntax to define classes, including the use of
FUNCTION and PROCEDURE to define methods inside a class and the use of the
_ACCESS and _ASSIGN suffixes on the names of these functions and procedures to
declare access/assign methods

· Procedures may return values and are therefore just like Functions

· Allows code before the first entity in a source file. This will be compiled into a function
with the same name as the PRG file

· Adds support for the DoDefault() pseudo function

· When compiled with /fox1 then the compiler assumes that all classes inherit from the
Custom class and will generate special code when declaring classes with the DEFINE
CLASS syntax.

· The NIL keyword in FoxPro has the property 'unitialized' but a value of FALSE.

Runtime

· The default RDD in the FoxPro dialect is DBFVFP

· The MemoWrit() function adds an extra Ẑ character to the end of file. MemoRead()
removes this character when it finds it.

· The DBF() function returns the full name of the file

· The _MRelease() function does not clear the memory variables but completely releases
them

· New memory variables are always filled with a value of FALSE

· When comparing an initialized USUAL value with an unitialized value then in the FoxPro
dialect an error will be generated.
The other dialects will simply return FALSE.

1.1.1.7 Harbour

This dialect shares the features of "All Non Core Dialects"
The compiler and runtime have the following "special" behavior when compiling for the
"Harbour" dialect.

Compiler

· Allows 4 letter abbreviations of some older keywords

· The '@' operator is only used to pass variables by reference.

· Allows IIF() expressions with a missing element, for example
IIF(someCondition,DoSomething(),). The compiler will insert a NIL for a missing entry.

Runtime

24X# Documentation

© 2015- 2024 XSharp BV

1.1.2 Bring Your Own Runtime (BYOR)

The X# Runtime is now available. There is no need anymore to compile against
the Vulcan Runtime !
For now we still support the Vulcan runtime, but that support may be dropped in a
future build of X#.

VO and Vulcan support is available in this build of XSharp through what we call the Bring
Your Own Runtime principle.

If you own a license of Vulcan, you can copy the DLLs that you find in the <Vulcan.NET
BaseFolder>\Redist\4.0 folder to a folder that is inside your solution.
Then add references to the DLLs that you need in your project.

DLLs you MUST add if you compile for the VO/Vulcan dialect with the Vulcan
runtime:

· VulcanRT.DLL

· VulcanRTFuncs.DLL

These 2 files are NEVER added to your Vulcan projects, Vulcan adds a reference to these
DLLs automatically. XSharp does not do that, so you should add them yourself.

DLLs that you MAY want to add, depending on what you are using in your
application:

· VulcanVOSystemClasses.dll

· VulcanVORDDClasses.dll

· VulcanVOGUIClasses.dll

· VulcanVOInternetClasses.dll

· VulcanVOSQLClasses.dll

· VulcanVOConsoleClasses.dll

· VulcanVOWin32APILibrary.dll

DLLs that you normally do NOT add to your project (these are handled
automatically by the Vulcan Runtime)

· VulcanRDD.DLL

· VulcanMacroCompiler.DLL

· VulcanDBFCDX.dll

· VulcanDBFFPT.dll

25 XSharp

© 2015- 2024 XSharp BV

1.1.3 Known Issues

Below is the complete (but short) list of things that are not supported yet or are known
problems in the current build of X#.

Compiler

· Some parser errors need improvements, compiler errors may be cryptic every
now and then

· Sometimes you may see a "Include file not found" error, where the file DOES exist.
This seems to be a side effect of the codepage that was used to save the include
files.
When you save the file as UTF8 (File Advanced Save Options in Visual Studio)
then this problem almost always disappears.

Visual Studio

· New features in the Debugger, such as a window for Globals and RDD Workareas

RDD System

· Query Optimization (Rushmore) is not supported yet

Runtime
· Some runtime functions are not supported yet.

26X# Documentation

© 2015- 2024 XSharp BV

1.1.4 Installation

When you install XSharp you will find the following folders on your machine.

Folder Setup
compon
ent

Contents

C:\Program Files (x86)\XSharp Main Main installation folder

Assemblies Main The runtime assemblies that are
selectable in the Add Reference dialog
inside Visual Studio.
Please note that this is a subset of the
folders in the Redist Folder. For
deploying your apps please use the files
in the Redist folder. In a future version
this folder may contain so called
reference assemblies (assemblies with
only meta data and no code).

Bin main The command line compiler, the Script
interpreter and Vulcan XPorter

Debug main Debug versions of the runtime DLLs and
SDK DLLs (FOX only)

Extension main The components that must be installed
inside Visual Studio for the X# project
system and Language support.
If you want to reinstall the project
systems you should run the
deployvs<num>.cmd files in the Uninst
folder. These files were created at install
time and match your specific
configuration of Visual Studio versions.

Help main The PDF, CHM help files and the Visual
Studio help

Images main Some images

Include main XSharpDefs.xh and other header files
needed by X#

MsBuild main The MsBuild integration for XsProj files

NetCore31 main A version of the X# compiler and script
engine for .Net Core 3.1 (FOX only)

ProjectSystem main VSIX files to install the project system
and debugger inside Visual Studio.
Only use these when the X# support
team tells you to do so.

Redist main Files that you may want to include with
your application compiled with X#.

27 XSharp

© 2015- 2024 XSharp BV

Templates main Contains the templates for the VO
Compatible editors for Windows, Servers
and Menus

Tools main Tools that are used during installation,

Uninst main The uninstaller and some cmd files
generated during installation to register
your X# Extension inside Visual Studio.
It also contains cmd files created at
install time to help generating native
images for the X# compiler.
The cmd files with the number 1-6 are
used to install into different versions of
Visual Studio.

VOXPorter main The VOXPorter

XIDE xIde The XIDE installer

<Global Assembly Cache> main\ga
c

X# runtime files will be installed in the
GAC when this component is selected

<Global Assembly
Cache>\NativeImages

main\ng
en

The X# compiler files will be precompiled
when the option "Optimize performance
by generating native images" is selected

<Common
Documents\XSharp\Examples

main\ex
amples

The X# examples will be installed in the
common documents folder when this
option is selected

Visual Studio folders main\vs.
.

X# will be integrated into Visual Studio
when this is selected

Visual Studio 2017 and/or
2019
Assuming you have installed (one
of) these in the default location:
c:\Program Files (x86)\Microsoft
Visual
Studio\<number>\<Version>
then X# will be in the subfolder
· Common7\IDE\Extensions\XSha

rp

main\vs
1 ..
main\vs
6

· <number> is 2017 or 2019.

· <Version> can be one of Professinal,
Community, Enterprise or Buildtools.
There can be more that one edition of
VS2017/VS2019 on your machine. The
installer will show all instances that are
detected.

Visual Studio 2022
Assuming you have installed VS
2022 in the default location:
c:\Program Files\Microsoft Visual
Studio\2022\<Version>
then X# will be in the subfolder
· Common7\IDE\Extensions\XSha

rp

main\vs
1 ..
main\vs
6

· <Version> can be one of Professinal,
Community, Enterprise or Buildtools.
There can be more that one edition of
VS2017/VS2019 on your machine. The
installer will show all instances that are
detected.

Registry main
main\scr

28X# Documentation

© 2015- 2024 XSharp BV

The installer will also write some
changes to the registry:
· HKLM\Software\XSharp

· HKLM\Software\Microsoft\.NETF
ramework\v4.0.30319\Assembly
FoldersEx\XSharp

· HKCR\.ppo

· HKCR\.prg

· HKCR\.prgx

· HKCR\.vh

· HKCR\.xh

· HKCR\.xs

· HKCR\.xsproj

· HKCR\XSharpScript

· HKCR\XSharp.headerfile

· HKCR\XSharp.ppofile

· HKCR\XSharp.sourcefile

ipt

Environment variables
The installer creates / modifies the
following environment variables
XSHARPPATH
XSHARPMSBUILDDIR

See the topic Building XSharp apps with Visual Studio and/or MsBuild for a description
how the various registry settings and folders are involved with the build process with
MsBuild and Visual Studio.

29 XSharp

© 2015- 2024 XSharp BV

1.1.5 Redistributing X#

You are allowed to distribute the following XSharp DLLs with your projects:
You are also allowed to distribute the PDB files that come with these DLLs.
These PDB files may help in locating the line numbers where an error occurs.
These files can be found in the <Program Files>\XSharp\Redist folder on your machine.

XSharp.Runtime

Name Needed for

XSharp.CodeAnalysis.dll Full macro compiler & Scripting

XSharp.Core.dll All dialects

XSharp.Data.dll All dialects

XSharp.MacroCompiler.dll Macro compiler

XSharp.MacroCompiler.Full.dll Full Macro compiler

XSharp.RT.dll All dialects

XSharp.RT.Debugger.dll All dialects

XSharp.RDD.dll All dialects

XSharp.Scripting.dll Full Macro compiler & Scripting

XSharp.VFP.dll FoxPro dialect

XSharp.VFP.UI.dll FoxPro dialect

XSharp.VO.dll VO and Vulcan dialect

XSharp.XPP.dll Xbase++ Dialect

30X# Documentation

© 2015- 2024 XSharp BV

VO Compatible SDK

Name

VOConsoleClasses.dll

VORDDClasses.dll

VOSQLClasses.dll

VOGUIClasses.dll

VOReportClasses.dll

VOSystemClasses.dll

VOWin32APILibrary.dll

Strongly Typed version of the VO SDK

Name

XSharp.VOConsoleClasses.dll

XSharp.VOGUIClasses.dll

XSharp.VORDDClasses.dll

XSharp.VOSQLClasses.dll

XSharp.VOSystemClasses.dll

The following files are needed by VOGUIClasses.dll when you use the DataBrowser or
Splitwindow

Name

CATO3CNT.DLL

CATO3DAT.DLL

CATO3MSK.DLL

CATO3NBR.DLL

CATO3SBR.DLL

CATO3TBR.DLL

CATO3TIM.DLL

CATO3SPL.DLL

MSVCRT.DLL

31 XSharp

© 2015- 2024 XSharp BV

The following file is needed for image support in VOGUIClasses.DLL

CAPAINT.DLL

XSharp Scripting

Name

Xsi.exe

XSharp.Scripting.dll

XSharp.CodeAnalysis.dll

These scripting files can all be found in the <Program Files>\XSharp\Bin folder

Support files

Name

Microsoft.DiaSymReader.Native.amd64.dll

Microsoft.DiaSymReader.Native.x86.dll

System.*.dll

These support files can all be found in the <Program Files>\XSharp\Bin folder

32X# Documentation

© 2015- 2024 XSharp BV

1.1.6 New language features

Below is a list of some of the most visible new language features in the Core language of
X#, compared to Visual Objects and Vulcan.
As you can see many new keywords were introduced, but these are positional: they will
also be recognized as Identifiers on other places, so there is very little chance that you will
have to make changes to avoid naming conflicts.

FEATURE Description

DEFINE <id> :=
<Expression>

The VO Define is back again in X#. It will be compiled into a
constant of the Globals class, the same class in which all
Functions and Methods are implemented. The biggest
advantage of a DEFINE over the preprocessor DEFINEs in
Vulcan.NET is that there is no longer a chance that a DEFINE
with the same name as a Method, Property or Variable will
lead to incomprehensible compiler errors.

USING STATIC <Name> The STATIC modifier for USING (note that the # sign is no
longer needed) allows you to name a static class. When you
do so you can then use the methods of this class as
functions. For example:
 USING STATIC System.Console
 FUNCTION Start as VOID
 WriteLine("X# is cool!")
 RETURN

BEGIN USING <Var>
 <Statements>
END [USING]

The USING block allows you to control the lifetime of a
variable. If <Var> has a destructor then it will be automatically
destructed once the block has finished

SWITCH <Expression>
CASE <Const>
<Statements>
CASE <Const2>
CASE <Const3>
<Statements>
OTHERWISE
<Statements>
END [SWITCH]

The SWITCH statement generates a more efficient jump
structure than the DO CASE command. Also the expression
is only evaluated once.

BEGIN UNSAFE
<Statements>
END [UNSAFE]

Allows unsafe code in the context of this block , regardless of
the compiler setting for the project as a whole.

BEGIN CHECKED
<Statements>
END [CHECKED]
Also allowed as
expression
x := CHECKED(y)

The statements inside the block will have checked
conversions, regardless of the compiler setting for the project
as a whole.

BEGIN UNCHECKED
<Statements>
END [UNCHECKED]

The statements inside the block will have unchecked
conversions, regardless of the compiler setting for the project
as a whole.

33 XSharp

© 2015- 2024 XSharp BV

FEATURE Description

Also allowed as
expression
x := UNCHECKED(y)

VAR <Identifier> :=
<Expression>

This is a synonym for LOCAL IMPLIED

CLASS <Id> <
<ParamName> >
WHERE
<TypeConstraints>
<Classmembers>
END [CLASS]

Creating Generic classes is now supported in X#, with all the
features that C# also has For example
 CLASS MyList<T> WHERE T IS CLASS
 ..
 END CLASS
or
 CLASS MyList<T> WHERE T IS ICustomer, NEW()
 ..
 END CLASS

ASYNC - AWAIT The ASYNC AWAIT infratructure is fully available inside X#

<Expression> IS <Type> Allows to check an expression for a type. Can be used in
stead of IsInstanceOf() and will perform better

Conditional Access
Operator ?:
 <Expression> ?
<Expression>

Conditional access for properties, methods etc. For example
 nCount := MyList?:Count
This translates to something like:
 VAR temp := MyList
 IF temp != NULL
 nCount := temp:Count
 ENDIF
The expression on the Left hand side of the Questionmark
will be evaluated only once !

<Expression> DEFAULT
<Expression>

The default operator allows you to inline a check for NULL:
 lResult := Foo() DEFAULT Bar()
This translates to the same as
 lResult := Foo()
 IF lResult == NULL
 lResult := Bar()
 ENDIF
Foo() will be evaluated only once. And only when the result is
NULL then Bar() will be evaluated.

y := CHECKED(x) Tells the compiler to generate code that checks for overflow

y := UNCHECKED(x) Tells the compiler to generate code that does NOT check for
overflow

LINQ Query expressions
are now supported:
VAR CustQuery = FROM
Cust in Customers ;
 WHERE Cust.City =
"Athens" ;
 ORDER BY

The full LINQ feature set will be supported by X#:
FROM LET WHERE JOIN ORDER BY EQUALS INTO

34X# Documentation

© 2015- 2024 XSharp BV

FEATURE Description

Cust.Zipcode Select
Cust

YIELD RETURN <Value> Can be used in a method declared as Enumerator of a type.
This will instruct the compiler to automatically generate a
class that implemented an enumerator and return to the
calling code directly on the YIELD RETURN line. The next
time the Iterator is called the code will remember where the
code was the previous time it was executed and will continue
on the next statement after the YIELD RETURN line.

1.1.6.1 Anonymous Methods

An example of an Anonymous Method Expression (AME) (note the DELEGATE keyword):
Note that the body of the that you can have :
1. A single Expression
2. An Expression List
3. A statement List
The first 2 require the expression(s) to be on the same line as the opening Curly { . Of
course you can use the statement continuation character ; to tell the compiler that you
have spread the statement over more than one line.
The last one requires the statements in the list to be on separate lines and the closing
Curly } must also be on a separate line. This is shown in the example below.

USING System.Windows.Forms
FUNCTION Start() AS VOID
 TestAnonymous()
 RETURN

FUNCTION TestAnonymous() AS VOID
 LOCAL oForm AS Form
 oForm := Form{}
 oForm:Text := "Click me to activate the anonymous method"
 oForm:Click += DELEGATE(o AS System.Object, e AS
System.EventArgs) {
 System.Windows.Forms.MessageBox.Show("Click 1!")

 System.Windows.Forms.MessageBox.Show("Click 2!")

 }
 oForm:ShowDialog()
 RETURN

35 XSharp

© 2015- 2024 XSharp BV

1.1.6.2 Anonymous Types

Anonymous types provide a convenient way to encapsulate a set of read-only properties
into a single object without having to explicitly define a type first.
The type name is generated by the compiler and is not available at the source code level.
The type of each property is inferred by the compiler.

The syntax for an anonymous class is :

VAR o := CLASS { Name := "test", Value := "something" }

In LINQ this may lead to:

VAR result := from c in db.Customers where c.Orders.Count > 0 ;
 select CLASS{ ID := C.CustomerID, Name := C.CustomerName,
OrderCount := C.Orders.Count}

In this case the object will have the properties ID, Name and OrderCount (all explicitely
given)

If you select named properties from another object you can omit the <Name> := part. In
that case the compiler will simply use the same name:

VAR result := from c in db.Customers where c.Orders.Count > 0 ;
 select CLASS{ C.CustomerID, C.CustomerName, OrderCount :=
C.Orders.Count}

In this case the anonymous class will have the properties CustomerID, CustomerName
(inherited from C) and OrderCount (explicitely given)

Anonymous types contain one or more public read-only properties. No other kinds of class
members, such as methods or events, are valid.
The expression that is used to initialize a property cannot be null, an anonymous function,
or a pointer type.

The most common scenario is to initialize an anonymous type with properties from
another type. In the following example, assume that a class exists that is named Product.
Class Product includes Color and Price properties, together with other properties that you
are not interested in. Variable products is a collection of Product objects. The anonymous
type declaration starts with the new keyword. The declaration initializes a new type that
uses only two properties from Product. This causes a smaller amount of data to be
returned in the query.

If you do not specify member names in the anonymous type, the compiler gives the
anonymous type members the same name as the property being used to initialize them.
You must provide a name for a property that is being initialized with an expression, as

36X# Documentation

© 2015- 2024 XSharp BV

shown in the previous example. In the following example, the names of the properties of
the anonymous type are Color and Price.

var productQuery := ;
 from prod in products ;
 select CLASS { prod:Color, prod:Price }

foreach var v in productQuery
 Console.WriteLine("Color={0}, Price={1}", v:Color, v:Price)
next

Typically, when you use an anonymous type to initialize a variable, you declare the
variable as an implicitly typed local variable by using var. The type name cannot be
specified in the variable declaration because only the compiler has access to the
underlying name of the anonymous type.

Remarks

Anonymous types are class types that derive directly from object, and that cannot be cast
to any type except object. The compiler provides a name for each anonymous type,
although your application cannot access it. From the perspective of the common language
runtime (CLR), an anonymous type is no different from any other reference type.

If two or more anonymous object initializers in an assembly specify a sequence of
properties that are in the same order and that have the same names and types, the
compiler treats the objects as instances of the same type. They share the same compiler-
generated type information.

You cannot declare a field, a property, an event, or the return type of a method as having
an anonymous type. Similarly, you cannot declare a formal parameter of a method,
property, constructor, or indexer as having an anonymous type. To pass an anonymous
type, or a collection that contains anonymous types, as an argument to a method, you can
declare the parameter as type object. However, doing this defeats the purpose of strong
typing. If you must store query results or pass them outside the method boundary,
consider using an ordinary named struct or class instead of an anonymous type.

Because the Equals and GetHashCode methods on anonymous types are defined in
terms of the Equals and GetHashCode methods of the properties, two instances of the
same anonymous type are equal only if all their properties are equal.

37 XSharp

© 2015- 2024 XSharp BV

1.1.6.3 ASTYPE

We have added a new keyword that allows you to cast a value to a type with type, just like
the C# "as" keyword:

 FUNCTION Test (oVar as ParentClass)
 LOCAL oChild := oVar ASTYPE ChildClass
 IF (oChild != NULL_OBJECT)
 DoSomething()
 ENDIF

1.1.6.4 ASYNC - AWAIT

//
// This example shows that you can call an async task and wait for
it to finish
// The result of the async task (in this case the size of the file
that has been downloaded)
// will be come available when the task has finished
// The calling code (The Start()) function will not have to wait
until the async task has
// finished. That is why the line "2....." will be printed before
the results from TestClass.DoTest()
// The sample also shows an event and displays the thread id's.
You can see that the DownloadFileTaskAsync() method
// starts multiple threads to download the web document in
multiple pieces.

USING System
USING System.Threading.Tasks

FUNCTION Start() AS VOID
 ? "1. calling long process"
 TestClass.DoTest()
 ? "2. this should be printed while processing"
 Console.ReadKey()

CLASS TestClass
 STATIC PROTECT oLock AS OBJECT // To make sure we
synchronize the writing to the screen
 STATIC CONSTRUCTOR
 oLock := OBJECT{}

 ASYNC STATIC METHOD DoTest() AS VOID
 LOCAL Size AS INT64
 Size := AWAIT LoooongProcess()

38X# Documentation

© 2015- 2024 XSharp BV

 ? "3. returned from long process"
 ? Size, " Bytes downloaded"

 ASYNC STATIC METHOD LoooongProcess() AS Task<INT64>
 VAR WebClient := System.Net.WebClient{}
 VAR FileName := System.IO.Path.GetTempPath()+"temp.txt"
 webClient:DownloadProgressChanged += OnDownloadProgress
 webClient:Credentials :=
System.Net.CredentialCache.DefaultNetworkCredentials
 AWAIT
webClient:DownloadFileTaskAsync("http://www.xsharp.info/index.php"
, FileName)
 VAR dirInfo :=
System.IO.DirectoryInfo{System.IO.Path.GetTempPath()}
 VAR Files := dirInfo:GetFiles("temp.txt")
 IF Files:Length > 0
 System.IO.File.Delete(FileName)
 RETURN Files[1]:Length
 ENDIF
 RETURN 0

 STATIC METHOD OnDownloadProgress (sender AS OBJECT, e AS
System.Net.DownloadProgressChangedEventArgs) AS VOID
 BEGIN LOCK oLock
 ? String.Format("{0,3} % Size: {1,8:N0} Thread {2}",
100*e:BytesReceived / e:TotalBytesToReceive , e:BytesReceived, ;
 System.Threading.Thread.CurrentThread:ManagedThreadId)
 END LOCK
 RETURN

END CLASS

1.1.6.5 BEGIN CHECKED

FUNCTION Start() AS VOID
 LOCAL d AS DWORD
 LOCAL n AS INT

 d := UInt32.MaxValue
 ? "Initial value of d:", d

 BEGIN UNCHECKED
 // arithmetic operations inside an UNCHECKED block will not
produce
 // overflow exceptions on arithmetic conversions and

39 XSharp

© 2015- 2024 XSharp BV

operations,
 // no matter if overflow checking is enabled application-
wide or not
 n := (INT)d
 ? "Value of n after conversion:", n
 d ++
 ? "Value of d after increasing it:", d
 END UNCHECKED

 d := UInt32.MaxValue
 BEGIN CHECKED
 // arithmetic operations inside a CHECKED block always do
 // overflow checking and throw exceptions if overflow is
detected
 TRY
 n := (INT)d
 d ++
 CATCH e AS Exception
 ? "Exception thrown in CHECKED operation:", e:Message
 END TRY
 END CHECKED
 Console.ReadLine()
RETURN

1.1.6.6 BEGIN FIXED

The new FIXED modifier and BEGIN FIXED .. END FIXED keywords allow you to tell the
.Net runtime that you do not want a variable to be moved by the Garbage collector.

UNSAFE FUNCTION Start AS VOID
 VAR s := "SDRS"
 BEGIN FIXED LOCAL p := s AS CHAR PTR
 VAR i := 0
 WHILE p[i] != 0
 p[i++]++
 END
 END FIXED
 Console.WriteLine(s)
 Console.Read()
 RETURN

As you can see the BEGIN FIXED statement requires a local variable declaration. The
contents of this local (in the example above a CHAR PTR) will be excluded from garbage
collection inside the block.

Please note:
The FIXED keyword and the example above should be used with extreme care. Strings in
.Net are immutable. You normally should not manipulate strings this way !

40X# Documentation

© 2015- 2024 XSharp BV

1.1.6.7 BEGIN UNCHECKED

FUNCTION Start() AS VOID
 LOCAL d AS DWORD
 LOCAL n AS INT

 d := UInt32.MaxValue
 ? "Initial value of d:", d

 BEGIN UNCHECKED
 // arithmetic operations inside an UNCHECKED block will not
produce
 // overflow exceptions on arithmetic conversions and
operations,
 // no matter if overflow checking is enabled application-
wide or not
 n := (INT)d
 ? "Value of n after conversion:", n
 d ++
 ? "Value of d after increasing it:", d
 END UNCHECKED

 d := UInt32.MaxValue
 BEGIN CHECKED
 // arithmetic operations inside a CHECKED block always do
 // overflow checking and throw exceptions if overflow is
detected
 TRY
 n := (INT)d
 d ++
 CATCH e AS Exception
 ? "Exception thrown in CHECKED operation:", e:Message
 END TRY
 END CHECKED
 Console.ReadLine()
RETURN

1.1.6.8 BEGIN UNSAFE

Enter topic text here.

1.1.6.9 BEGIN USING

//
// XSharp allows you to not only use the using statement to link
to namespaces
// You can also link to a static class and call the methods in

41 XSharp

© 2015- 2024 XSharp BV

this class as if they are functions.
// The functions WriteLine and ReadKey() in the following code are
actually resolved as System.Console.WriteLine()
// and System.Console.ReadKey()
// Finally there is also the BEGIN USING .. END USING construct
which controls the lifetime of a variable
// At the end of the block the Variable will be automatically
disposed.
USING System
USING STATIC System.Console

FUNCTION Start() AS VOID
 WriteLine("Before Using Block")
 WriteLine("------------------")
 BEGIN USING VAR oTest := Test{}
 oTest:DoSomething()
 END USING
 WriteLine("------------------")
 WriteLine("After Using Block")
 ReadKey()

CLASS Test IMPLEMENTS IDisposable
 CONSTRUCTOR()
 Console.WriteLine("Test:Constructor()")

 METHOD DoSomething() AS VOID
 Console.WriteLine("Test:DoSomething()")

 METHOD Dispose() AS VOID
 Console.WriteLine("Test:Dispose()")

END CLASS

1.1.6.10 Collection Initializers

Collection initializers allow you to fill a collection with a list of values.
In the background the compiler will generate code that calls the Add method of the
collection.
The example below creates a list of Integers, Strings and Persons.

USING System
USING System.Collections.Generic
USING System.Linq
USING System.Text

42X# Documentation

© 2015- 2024 XSharp BV

 FUNCTION Start() AS VOID
 LOCAL oList AS List<Int>
 // The next line creates the collection and adds 5 elements
 // Note the double curly braces:
 // The first pair calls the default constructor of the
List<> Class
 // The second pair of curly braces surrounds the list of
values
 Console.WriteLine("Collection Initializers")
 oList := List<Int>{} {1,2,3,4,5}
 FOREACH VAR i IN oLIst
 Console.WriteLine(i)
 NEXT
 VAR oCompass := List<String>{}{"North", "East", "South",
"West"}
 FOREACH VAR sDirection in oCompass
 Console.WriteLine(sDirection)
 NEXT
 Console.ReadLine()
 // Now an example of an Object Initializer
 // Note that the object has no constructor
 // We are assigning the values directly to the properties
 // This will only work if there are public properties
 // Again there are double curly braces:
 // The first pair calls the default constructor of the
Person class
 // The second pair of curly braces surrounds the list of
name-value pairs

 Console.WriteLine("Object Initializer")
 VAR oPerson := Person{}{FirstName := "John", LastName :=
"Smith"}
 ? oPerson:Name
 Console.ReadLine()
 // Combine the two
 Var oPeople := List<Person> {} {;
 Person{}{FirstName := "John",
LastName := "Smith"}, ;
 Person{}{FirstName := "Jane",
LastName := "Doe"} ;
 }
 Console.WriteLine("Collection and Object Initializers")

 FOREACH var oP in oPeople
 Console.WriteLine(oP:Name)
 NEXT
 Console.ReadLine()
 RETURN

43 XSharp

© 2015- 2024 XSharp BV

PUBLIC CLASS Person
 PROPERTY FirstName AS STRING AUTO
 PROPERTY LastName AS STRING AUTO
 PROPERTY Name AS STRING GET FirstName+" "+LastName
END CLASS

1.1.6.11 Conditional Access Expression

//
// This example shows various new expression formats
//
using System.Collections.Generic

Function Start() as void
 VAR oNone := Person{"No", "Parent"}

 FOREACH VAR oValue in GetList()
 if oValue IS STRING // Value IS Type
 ? (String) oValue
 ELSEIF oValue IS INT
 ? (Int) oValue
 ELSEIF oValue IS DateTime
 ? (DateTime) oValue
 ELSEIF oValue IS Person
 LOCAL oPerson as Person
 oPerson := (Person) oValue
 ? oPerson:FirstName, oPerson:LastName
 // Value DEFAULT Value2 . When Value IS NULL then Value2
will be used
 oPerson := oPerson:Parent DEFAULT oNone
 ? "Parent: ", oPerson:FirstName, oPerson:LastName
 ENDIF
 NEXT
 LOCAL oEmptyPerson as Person
 LOCAL sName as STRING
 oEmptyPerson := GetAPerson()
 sName := oEmptyPerson?:FirstName // Conditional
Access: This will not crash, even when Person is a NULL_OBJECT
 ? sName DEFAULT "None"
 Console.ReadLine()
 RETURN

FUNCTION GetList() AS List<OBJECT>
 VAR aList := List<OBJECT>{}

44X# Documentation

© 2015- 2024 XSharp BV

 aList:Add(DateTime.Now)
 aList:Add("abcdefg")
 aList:Add(123456)
 VAR oPerson := Person{"John", "Doe"}
 aList:Add(oPerson)
 VAR oChild := Person{"Jane", "Doe"}
 oChild:Parent := oPerson
 aList:Add(oChild)
 RETURN aList

CLASS Person
 EXPORT FirstName AS STRING
 EXPORT LastName as STRING
 EXPORT Parent as Person
 CONSTRUCTOR(First as STRING, Last as STRING)
 FirstName := First
 LastName := Last

END CLASS

FUNCTION GetAPerson() as Person
 RETURN NULL_OBJECT

1.1.6.12 Creating Generic Classes

Stack Example
This example shows that we can now create generic classes with X# !
In the Stack class the T parameter will be replaced with a type at compile time.

/*
Stack Example - Written by Robert van der Hulst
This example shows that we can now create generic classes with X#
!
Note: Compile with the /AZ option
*/

USING System.Collections.Generic
USING STATIC System.Console

FUNCTION Start AS VOID
 LOCAL oStack AS Stack<INT>
 LOCAL i AS LONG
 TRY
 oStack := Stack<INT>{25}
 WriteLine("Created a stack with {0} items",oStack:Capacity)
 WriteLine("Pushing 10 items")

45 XSharp

© 2015- 2024 XSharp BV

 FOR I := 1 TO 10
 oStack:Push(i)
 NEXT
 WriteLine("Popping the stack until it is empty")
 i := 0
 WHILE oStack:Size > 0
 i += 1
 WriteLine(oStack:Pop())
 END
 WriteLine("{0} Items popped from the stack",i)
 WriteLine("Press Enter")
 ReadLine()
 WriteLine("The next line pops from an empty stack and throws an
exception")
 ReadLine()
 WriteLine(oStack:Pop())
 CATCH e AS Exception
 WriteLine("An exception was catched: {0}", e:Message)
 END TRY
 WriteLine("Press Enter to Exit")
 ReadLine()
 RETURN

CLASS Stack<T> WHERE T IS STRUCT, NEW()
 PROTECT _Items AS T[]
 PROTECT _Size AS INT
 PROTECT _Capacity AS INT
 PROPERTY Size AS INT GET _Size
 PROPERTY Capacity AS INT GET _Capacity

 CONSTRUCTOR()
 SELF(100)

 CONSTRUCTOR(nCapacity AS INT)
 _Capacity := nCapacity
 _Items := T[]{nCapacity}
 _Size := 0
 RETURN

 PUBLIC METHOD Push(item AS T) AS VOID
 IF _Size >= _Capacity
 THROW StackOverFlowException{}
 ENDIF
 _Items[_Size] := item
 _Size++
 RETURN

 PUBLIC METHOD Pop() AS T

46X# Documentation

© 2015- 2024 XSharp BV

 _Size--
 IF _Size >= 0
 RETURN _Items[_Size]
 ELSE
 _Size := 0
 THROW Exception{"Cannot pop from an empty stack"}
 ENDIF
END CLASS

1.1.6.13 DEFAULT Expressions

//
// This example shows various new expression formats
//
using System.Collections.Generic

Function Start() as void
 VAR oNone := Person{"No", "Parent"}

 FOREACH VAR oValue in GetList()
 if oValue IS STRING // Value IS Type
 ? (String) oValue
 ELSEIF oValue IS INT
 ? (Int) oValue
 ELSEIF oValue IS DateTime
 ? (DateTime) oValue
 ELSEIF oValue IS Person
 LOCAL oPerson as Person
 oPerson := (Person) oValue
 ? oPerson:FirstName, oPerson:LastName
 // Value DEFAULT Value2 . When Value IS NULL then Value2
will be used
 oPerson := oPerson:Parent DEFAULT oNone
 ? "Parent: ", oPerson:FirstName, oPerson:LastName
 ENDIF
 NEXT
 LOCAL oEmptyPerson as Person
 LOCAL sName as STRING
 oEmptyPerson := GetAPerson()
 sName := oEmptyPerson?:FirstName // Conditional
Access: This will not crash, even when Person is a NULL_OBJECT
 ? sName DEFAULT "None"
 Console.ReadLine()
 RETURN

47 XSharp

© 2015- 2024 XSharp BV

FUNCTION GetList() AS List<OBJECT>
 VAR aList := List<OBJECT>{}
 aList:Add(DateTime.Now)
 aList:Add("abcdefg")
 aList:Add(123456)
 VAR oPerson := Person{"John", "Doe"}
 aList:Add(oPerson)
 VAR oChild := Person{"Jane", "Doe"}
 oChild:Parent := oPerson
 aList:Add(oChild)
 RETURN aList

CLASS Person
 EXPORT FirstName AS STRING
 EXPORT LastName as STRING
 EXPORT Parent as Person
 CONSTRUCTOR(First as STRING, Last as STRING)
 FirstName := First
 LastName := Last

END CLASS

FUNCTION GetAPerson() as Person
 RETURN NULL_OBJECT

1.1.6.14 EVENT (Add and Remove)

XSharp now supports an extended Event syntax. Both a single line syntax is supported as
a multi line:

Old style syntax

[Attributes] [Modifiers] EVENT [<ExplicitInterface>.] <Id> AS
<Type> // Old Style

Single Line syntax with explicit expressions

[Attributes] [Modifiers] EVENT [<ExplicitInterface>.] <Id> AS
<Type> [ADD <ExpressionList] [REMOVE <ExpressionList] //
Single Line

48X# Documentation

© 2015- 2024 XSharp BV

Multi line syntax with explicit expressions

[Attributes] [Modifiers] EVENT [<ExplicitInterface>.] <Id> AS
<Type> // Multi line

ADD
 <Statements>
END [ADD]
REMOVE
 <Statements>
END [REMOVE]
END [EVENT]

Example

USING System.Collections.Generic
FUNCTION Start AS VOID
 LOCAL e AS EventsExample
 e := EventsExample{}
 e:Event1 += TestClass.DelegateMethod
 e:Event1 += TestClass.DelegateMethod
 e:Event1 -= TestClass.DelegateMethod // added 2, removed 1,
should be called once
 e:Event2 += TestClass.DelegateMethod
 e:Event2 += TestClass.DelegateMethod
 e:Event2 -= TestClass.DelegateMethod // added 2, removed 1,
should be called once
 e:Event3 += TestClass.DelegateMethod
 e:RaiseEvent1("This is a test through a multi line event
definition")
 e:RaiseEvent2("This is a test through a single line event
definition")
 e:RaiseEvent3("This is a test through an old style event
definition")
 Console.WriteLine("Press a Key")
 Console.ReadLine()

DELEGATE EventHandler (s AS STRING) AS VOID

CLASS TestClass
 STATIC METHOD DelegateMethod(s AS STRING) AS VOID
 Console.WriteLine(s)

49 XSharp

© 2015- 2024 XSharp BV

END CLASS

CLASS EventsExample
 PRIVATE eventsTable AS Dictionary<STRING, System.Delegate>
 PRIVATE CONST sEvent1 := "Event1" AS STRING
 PRIVATE CONST sEvent2 := "Event2" AS STRING
 CONSTRUCTOR()
 eventsTable := Dictionary<STRING, System.Delegate>{}
 eventsTable:Add(sEvent1,NULL_OBJECT)
 eventsTable:Add(sEvent2,NULL_OBJECT)

 // Multiline definition
 EVENT Event1 AS EventHandler
 ADD
 BEGIN LOCK eventsTable
 eventsTable[sEvent1] := ((EventHandler)
eventsTable[sEvent1]) + value
 END LOCK
 Console.WriteLine(__ENTITY__ + " "+value:ToString())
 END
 REMOVE
 BEGIN LOCK eventsTable
 eventsTable[sEvent1] := ((EventHandler)
eventsTable[sEvent1]) - value
 END LOCK
 Console.WriteLine(__ENTITY__+ " "+value:ToString())
 END
 END EVENT

 // Single Line defintion on multilpe lines with semi colons,
for better reading !
 EVENT Event2 AS EventHandler ;
 ADD eventsTable[sEvent2] := ((EventHandler)
eventsTable[sEvent2]) + value ;
 REMOVE eventsTable[sEvent2] := ((EventHandler)
eventsTable[sEvent2]) - value

 // Old style definition
 EVENT Event3 AS EventHandler

 METHOD RaiseEvent1(s AS STRING) AS VOID
 VAR handler := (EventHandler) eventsTable[sEvent1]
 IF handler != NULL
 handler(s)
 ENDIF

50X# Documentation

© 2015- 2024 XSharp BV

 METHOD RaiseEvent2(s AS STRING) AS VOID
 VAR handler := (EventHandler) eventsTable[sEvent2]
 IF handler != NULL
 handler(s)
 ENDIF

 METHOD RaiseEvent3(s AS STRING) AS VOID
 IF SELF:Event3 != NULL
 Event3(s)
 ENDIF
END CLASS

1.1.6.15 Expression IS Type

//
// This example shows various new expression formats
//
using System.Collections.Generic

Function Start() as void
 VAR oNone := Person{"No", "Parent"}

 FOREACH VAR oValue in GetList()
 if oValue IS STRING // Value IS Type
 ? (String) oValue
 ELSEIF oValue IS INT
 ? (Int) oValue
 ELSEIF oValue IS DateTime
 ? (DateTime) oValue
 ELSEIF oValue IS Person
 LOCAL oPerson as Person
 oPerson := (Person) oValue
 ? oPerson:FirstName, oPerson:LastName
 // Value DEFAULT Value2 . When Value IS NULL then Value2
will be used
 oPerson := oPerson:Parent DEFAULT oNone
 ? "Parent: ", oPerson:FirstName, oPerson:LastName
 ENDIF
 NEXT
 LOCAL oEmptyPerson as Person
 LOCAL sName as STRING
 oEmptyPerson := GetAPerson()
 sName := oEmptyPerson?:FirstName // Conditional
Access: This will not crash, even when Person is a NULL_OBJECT
 ? sName DEFAULT "None"

51 XSharp

© 2015- 2024 XSharp BV

 Console.ReadLine()
 RETURN

FUNCTION GetList() AS List<OBJECT>
 VAR aList := List<OBJECT>{}
 aList:Add(DateTime.Now)
 aList:Add("abcdefg")
 aList:Add(123456)
 VAR oPerson := Person{"John", "Doe"}
 aList:Add(oPerson)
 VAR oChild := Person{"Jane", "Doe"}
 oChild:Parent := oPerson
 aList:Add(oChild)
 RETURN aList

CLASS Person
 EXPORT FirstName AS STRING
 EXPORT LastName as STRING
 EXPORT Parent as Person
 CONSTRUCTOR(First as STRING, Last as STRING)
 FirstName := First
 LastName := Last

END CLASS

FUNCTION GetAPerson() as Person
 RETURN NULL_OBJECT

1.1.6.16 Initializers

USING System
USING System.Collections.Generic
USING System.Linq
USING System.Text

 FUNCTION Start() AS VOID
 LOCAL oList AS List<Int>
 // The next line creates the collection and adds 5 elements
 // Note the double curly braces:
 // The first pair calls the default constructor of the
List<> Class
 // The second pair of curly braces surrounds the list of
values
 Console.WriteLine("Collection Initializers")
 oList := List<Int>{} {1,2,3,4,5}

52X# Documentation

© 2015- 2024 XSharp BV

 FOREACH VAR i IN oLIst
 Console.WriteLine(i)
 NEXT
 VAR oCompass := List<String>{}{"North", "East", "South",
"West"}
 FOREACH VAR sDirection in oCompass
 Console.WriteLine(sDirection)
 NEXT
 Console.ReadLine()
 // Now an example of an Object Initializer
 // Note that the object has no constructor
 // We are assigning the values directly to the properties
 // This will only work if there are public properties
 // Again there are double curly braces:
 // The first pair calls the default constructor of the
Person class
 // The second pair of curly braces surrounds the list of
name-value pairs

 Console.WriteLine("Object Initializer")
 VAR oPerson := Person{}{FirstName := "John", LastName :=
"Smith"}
 ? oPerson:Name
 Console.ReadLine()
 // Combine the two
 Var oPeople := List<Person> {} {;
 Person{}{FirstName := "John",
LastName := "Smith"}, ;
 Person{}{FirstName := "Jane",
LastName := "Doe"} ;
 }
 Console.WriteLine("Collection and Object Initializers")

 FOREACH var oP in oPeople
 Console.WriteLine(oP:Name)
 NEXT
 Console.ReadLine()
 RETURN

PUBLIC CLASS Person
 PROPERTY FirstName AS STRING AUTO
 PROPERTY LastName AS STRING AUTO
 PROPERTY Name AS STRING GET FirstName+" "+LastName
END CLASS

53 XSharp

© 2015- 2024 XSharp BV

1.1.6.17 Interpolated Strings

Interpolated strings is a feature that allows you to embed local variables, instance
variables or other expressions inside literal strings.
X# supports two kinds of interpolated strings:

1. Normal Interpolated strings: i"...."

This works like a normal X# string but with an embedded expression:

FUNCTION Start AS VOID
 LOCAL Who AS STRING
 Who := "World"
 Console.Writeline(i"Hello {Who}")
 Console.Read()
 RETURN

2. Extended Interpolated strings: ie"..." and ei"...."

This is a combination of an interpolated string and an extended string. In the example
below the \t will be replaced with a tab character.

 FUNCTION Start AS VOID
 LOCAL Who AS STRING
 Who := "World"
 Console.Writeline(ie"Hello\t{Who}")
 Console.Read()
 RETURN

Notes

The expression parsing inside the interpolated strings recognizes:
· SELF:

· Local variables, Member variables and Properties with SELF: prefix and without this
prefix

· Other expressions must be in C# syntax for now, using the dot (.) operator as send
operator.

The expression elements inside the string can use formatting notation just like the
String.Format() notation. For example:

54X# Documentation

© 2015- 2024 XSharp BV

FUNCTION Start AS VOID
 LOCAL i AS INT
 i := 42
 Console.Writeline(i"Hello {i:x}") // i is printed in hex
notation, so Hello 2a
 Console.Read()
 RETURN

1.1.6.18 LINQ Query Expressions

The following example shows a couple of LINQ Queries in X#

//references:
//System.dll
//System.Core.dll
//System.Linq.dll
USING System.Collections.Generic
USING System.Linq
USING STATIC System.Console

FUNCTION Start AS VOID
 VAR oDev := GetDevelopers()
 VAR oC := GetCountries()
 VAR oAll := FROM D IN oDev ;
 JOIN C IN oC ON D:Country EQUALS C:Name
;
 ORDERBY D:LastName ;
 SELECT CLASS {D:Name, D:Country,
C:Region} // Anonymous class !
 // The type of oAll is
IOrderedEnumerable<<>f__AnonymousType0<Developer,Country>>
 // We prefer the VAR keyword!

 VAR oGreek := FROM Developer IN oDev ;
 WHERE Developer:Country == "Greece" ;
 ORDERBY Developer:LastName DESCENDING ;
 SELECT Developer
 // The type of oGreek is IOrderedEnumerable<Developer>
 // We prefer the VAR keyword!

 VAR oCount := FROM Developer IN oDev ;
 GROUP Developer BY Developer:Country INTO NewGroup ;
 ORDERBY NewGroup:Key SELECT NewGroup
 // The type of oCount is
IOrderedEnumerable<<IGrouping<string,Developer>>
 // We prefer the VAR keyword!

55 XSharp

© 2015- 2024 XSharp BV

 WriteLine(e"X# does LINQ!\n")
 WriteLine(e"All X# developers (country+lastname order)\n")
 FOREACH VAR oDeveloper IN oAll
 WriteLine("{0} in {1}, {2}",oDeveloper:Name,
oDeveloper:Country, oDeveloper:Region)
 NEXT

 WriteLine(e"\nGreek X# Developers (descending lastname)\n")
 FOREACH oDeveloper AS Developer IN oGreek
 WriteLine(oDeveloper:Name)
 NEXT

 WriteLine(e"\nDevelopers grouped per country\n")

 FOREACH VAR country IN oCount
 WriteLine(i"{country.Key}, {country.Count()} developer(s)")
 FOREACH VAR oDeveloper IN country
 WriteLine(" " + oDeveloper:Name)
 NEXT
 NEXT
 WriteLine("Enter to continue")
 ReadLine()
 RETURN

FUNCTION GetDevelopers AS IList<Developer>
 // This function uses a collection initializer for the List of
Developers
 // and Object initializers for the Developer Objects
 VAR oList := List<Developer>{} { ;
 Developer{}{ FirstName := "Chris",
LastName := "Pyrgas", Country := "Greece"},;
 Developer{}{ FirstName := "Robert",
LastName := "van der Hulst", Country := "The Netherlands"},;
 Developer{}{ FirstName := "Fabrice",
LastName := "Foray", Country := "France"},;
 Developer{}{ FirstName := "Nikos",
LastName := "Kokkalis", Country := "Greece"} ;
 }
 RETURN oList

FUNCTION GetCountries AS IList<Country>
 // This function uses a collection initializer for the List of
Counties
 // and Object initializers for the Country Objects
 VAR oList := List<Country>{}{ ;
 Country{} {Name := "Greece", Region

56X# Documentation

© 2015- 2024 XSharp BV

:= "South East Europe"},;
 Country{} {Name := "France", Region
:= "West Europe"},;
 Country{} {Name := "The Netherlands",
Region := "North West Europe"} ;
 }
 RETURN oList

CLASS Developer
 PROPERTY Name AS STRING GET FirstName + " " + LastName
 PROPERTY FirstName AS STRING AUTO
 PROPERTY LastName AS STRING AUTO
 PROPERTY Country AS STRING AUTO
END CLASS

CLASS Country
 PROPERTY Name AS STRING AUTO
 PROPERTY Region AS STRING AUTO
END CLASS

1.1.6.19 NOP

The NOP keyword allows you to define a line of code that does nothing but satisfies the
compiler, so it will not complain about missing code.

// The NOP keyword is an empty statement.
// This tells the compiler that there is no code missing !
FUNCTION Start() AS VOID
LOCAL i as LONG
FOR i := 1 to 10
 IF I % 2 == 0
 Console.WriteLine(i)
 ELSE
 NOP // Nothing happens here. This tells the compiler
that there is no code missing !
 ENDIF
NEXT
RETURN

57 XSharp

© 2015- 2024 XSharp BV

1.1.6.20 Object Initializers

Object Initializers allow you to instantiate an object and assign values to its properties in
one line of code.
The example below uses object initializers to set the FirstName and LastName property of
the Person object

USING System
USING System.Collections.Generic
USING System.Linq
USING System.Text

 FUNCTION Start() AS VOID
 LOCAL oList AS List<Int>
 // The next line creates the collection and adds 5 elements
 // Note the double curly braces:
 // The first pair calls the default constructor of the
List<> Class
 // The second pair of curly braces surrounds the list of
values
 Console.WriteLine("Collection Initializers")
 oList := List<Int>{} {1,2,3,4,5}
 FOREACH VAR i IN oLIst
 Console.WriteLine(i)
 NEXT
 VAR oCompass := List<String>{}{"North", "East", "South",
"West"}
 FOREACH VAR sDirection in oCompass
 Console.WriteLine(sDirection)
 NEXT
 Console.ReadLine()
 // Now an example of an Object Initializer
 // Note that the object has no constructor
 // We are assigning the values directly to the properties
 // This will only work if there are public properties
 // Again there are double curly braces:
 // The first pair calls the default constructor of the
Person class
 // The second pair of curly braces surrounds the list of
name-value pairs

 Console.WriteLine("Object Initializer")
 VAR oPerson := Person{}{FirstName := "John", LastName :=
"Smith"}
 ? oPerson:Name
 Console.ReadLine()
 // Combine the two
 Var oPeople := List<Person> {} {;

58X# Documentation

© 2015- 2024 XSharp BV

 Person{}{FirstName := "John",
LastName := "Smith"}, ;
 Person{}{FirstName := "Jane",
LastName := "Doe"} ;
 }
 Console.WriteLine("Collection and Object Initializers")

 FOREACH var oP in oPeople
 Console.WriteLine(oP:Name)
 NEXT
 Console.ReadLine()
 RETURN

PUBLIC CLASS Person
 PROPERTY FirstName AS STRING AUTO
 PROPERTY LastName AS STRING AUTO
 PROPERTY Name AS STRING GET FirstName+" "+LastName
END CLASS

1.1.6.21 SWITCH

//
// The SWITCH statement is a replacement for the DO CASE statement
// The biggest difference is that the expression (in this case
sDeveloper) is only evaluated once.
// which will have a performance benefit over the DO CASE
statement
// Empty statement lists for a CASE are allowed. In that case the
labels share the code (see CHRIS and NIKOS below)
//
// Please note that EXIT statements inside a switch are not
allowed, however RETURN, LOOP and THROW are allowed.
using System.Collections.Generic

Function Start() as void
 FOREACH VAR sDeveloper in GetDevelopers()
 SWITCH sDeveloper:ToUpper()
 CASE "FABRICE"
 ? sDeveloper, "France"
 CASE "CHRIS"
 CASE "NIKOS"
 ? sDeveloper, "Greece"
 CASE "ROBERT"
 ? sDeveloper, "The Netherlands"
 OTHERWISE

59 XSharp

© 2015- 2024 XSharp BV

 ? sDeveloper, "Earth"
 END SWITCH
 NEXT
 Console.ReadKey()
 RETURN

FUNCTION GetDevelopers as List<String>
VAR aList := List<String>{}
aList:AddRange(<string>{ "Chris", "Fabrice", "Nikos", "Robert",
"YourName" })
RETURN aList

1.1.6.22 USING

//
// XSharp allows you to not only use the using statement to link
to namespaces
// You can also link to a static class and call the methods in
this class as if they are functions.
// The functions WriteLine and ReadKey() in the following code are
actually resolved as System.Console.WriteLine()
// and System.Console.ReadKey()
// Finally there is also the BEGIN USING .. END USING construct
which controls the lifetime of a variable
// At the end of the block the Variable will be automatically
disposed.
USING System
USING STATIC System.Console

FUNCTION Start() AS VOID
 WriteLine("Before Using Block")
 WriteLine("------------------")
 BEGIN USING VAR oTest := Test{}
 oTest:DoSomething()
 END USING
 WriteLine("------------------")
 WriteLine("After Using Block")
 ReadKey()

CLASS Test IMPLEMENTS IDisposable
 CONSTRUCTOR()
 Console.WriteLine("Test:Constructor()")

60X# Documentation

© 2015- 2024 XSharp BV

 METHOD DoSomething() AS VOID
 Console.WriteLine("Test:DoSomething()")

 METHOD Dispose() AS VOID
 Console.WriteLine("Test:Dispose()")

END CLASS

1.1.6.23 VAR

//
// The VAR keyword has been added to the language because in many
situations
// the result of an expression will be directly assigned to a
local, and the expression
// will already describe the type of the variable
// VAR is a synonym for LOCAL IMPLIED
using System.Collections.Generic

FUNCTION Start AS VOID
// In the next line the compiler "knows" that today is a DateTime
VAR today := System.DateTime.Now
? today

// In the next line the compiler "knows" that text is a String
VAR text := Convert.ToString(123)
? text

// In the next line the compiler "knows" that s is a string
FOREACH VAR s in GetList()
 ? s
NEXT

Console.ReadLine()

RETURN

FUNCTION GetList AS List<String>
VAR aList := List<String>{}
aList:Add("abc")
aList:Add("def")
aList:Add("ghi")
return aList

61 XSharp

© 2015- 2024 XSharp BV

1.1.6.24 Xbase++ class declarations

As of build 2.0.0.8 X# also support Xbase++ style class declarations. Of course we have
added strong typing to the language definition to make the code run faster.
Full documentation will be included in one of the next builds.
The code below shows the Xbase++ support in action

CLASS Developer
 class var list as array // class vars are like static
variables.
 class VAR nextid as int
 class var random as Random
PROTECTED:
 VAR id as int NOSAVE // the Nosave clause will mark
the field with the [NonSerialized] attribute
EXPORTED:
 VAR FirstName as string
 VAR LastName as string
 VAR Country as string
 // The inline prefix in the next line is needed when declaring
a method inside the class .. endclass block.
 INLINE METHOD initClass() // The Xbase++ equivalent of the
Static constructor
 list := {}
 nextid := 1
 random := Random{}
 RETURN

 INLINE METHOD Init(cFirst as string , cLast as string, cCountry
as string) // Init is the constructor
 // you can use :: instead of SELF:
 ::FirstName := cFirst
 ::LastName := cLast
 ::Country := cCountry
 ::id := nextid
 nextid += 1
 aadd(list, SELF)
 RETURN

 INLINE Method SayHello() as STRING
 if ::Age < 40
 RETURN "Hello, I am " + ::FirstName+ " from "+::Country
 else
 RETURN "Hello, I am mr " + ::LastName+ " from
"+::Country+" but you can call me "+::FirstName
 endif

 INLINE METHOD FullName() as string

62X# Documentation

© 2015- 2024 XSharp BV

 RETURN ::FirstName + " " + ::LastName

 INLINE METHOD Fire() as logic
 local nPos as dword
 nPos := Ascan(list, SELF)
 if nPos > 0
 aDel(list, nPos)
 ASize(list, aLen(list)-1)
 return true
 endif
 return false
 // the next block contains forward declarations. The methods
has to be declared below the class .. endclass block

 // SYNC method makes sure that only one thread can run this
code at the same time
 SYNC METHOD LivesIn
 // ACCESS indicates a PROPERTY GET
 // ASSIGN indicates a PROPERTY SET
 ACCESS CLASS METHOD Length as dword
 ACCESS METHOD Age as int
ENDCLASS

// This is the implementation of LivesIn. SYNC does not have to be
repeated here
METHOD LivesIn(cCountry as string) as logic
 return lower(::Country) == lower(cCountry)

// This is the implementation of the AGE Property. ACCESS does not
have to be repeated here
METHOD Age() as int
 local nAge as int
 nAge := random:@@Next(25,60)
 return nAge

// This is the implementation of the Length Property. ACCESS does
not have to be repeated. CLASS however must be specified.
CLASS METHOD Length as dwor
 return ALen(list)

// the entry point is Main() like in Xbase++
function Main(a) as int
 local oDeveloper as Developer
 local aDevs := {} as array
 local i as int
 if PCount() > 0
 ? "Parameters"
 for i := 1 to PCount()

63 XSharp

© 2015- 2024 XSharp BV

 ? _GetFParam(i)
 next
 endif
 // create a new object with Xbase++ Syntax. Developer{} would
have worked as well.
 aadd(aDevs, Developer():New("Chris", "Pyrgas", "Greece"))
 aadd(aDevs, Developer():New("Nikos", "Kokkalis","Greece"))
 aadd(aDevs, Developer():New("Fabrice", "Foray","France"))
 aadd(aDevs, Developer():New("Robert", "van der Hulst","The
Netherlands"))
 ? "# of devs before", Developer.Length
 for i := 1 to alen(aDevs)
 oDeveloper := aDevs[i]
 ? "Fields", oDeveloper:FirstName, oDeveloper:LastName,
oDeveloper:Country
 ? "FullName",oDeveloper:FullName()
 ? oDeveloper:SayHello()
 ? "Greece ?", oDeveloper:LivesIn("Greece")
 ? "Fired", oDeveloper:Fire()
 ? "# of devs after firing", oDeveloper:FirstName,
Developer.Length
 next
 _wait()
RETURN PCount()

1.1.6.25 YIELD

using System.Collections.Generic

// The Yield return statement allows you to create code that
returns a
// collection of values without having to create the collection in
memory first.
// The compiler will create code that "remembers" where you were
inside the
// loop and returns to that spot.
FUNCTION Start AS VOID
 FOREACH nYear AS INT IN GetAllLeapYears(1896, 2040)
 ? "Year", nYear, "is a leap year."
 NEXT
 Console.ReadLine()
RETURN

FUNCTION GetAllLeapYears(nMin AS INT, nMax AS INT) AS

64X# Documentation

© 2015- 2024 XSharp BV

IEnumerable<INT>
 FOR LOCAL nYear := nMin AS INT UPTO nMax
 IF nYear % 4 == 0 .and. (nYear % 100 != 0 .or. nYear % 400
== 0)
 YIELD RETURN nYear
 END IF
 IF nYear == 2012
 YIELD EXIT // Exit the loop
 ENDIF
 NEXT

65 XSharp

© 2015- 2024 XSharp BV

1.1.7 Licensing

XSharp is FREE Software. Of course that does not mean that you can do with it whatever
you want. We have set a couple of rules that determine what you can and cannot do with
our software, so our software is released under a license.
In an ideal world we would have published all of our source code and binaries under a very
open license agreement, such as the Apache License, just like how the Roslyn code is
published.
However the reality is that there are people on this world that would like to take our source
code and binaries and release this with minimal changes under their own name.
To prevent that from happening we have been forced to set some limitations to how you
can use our product.
For any "normal" developer that uses XSharp to develop applications for end users this
should present no problems.
The simplified version of the limitations means that :
· You can only redistribute the 'runtime' components that are listed in the documentation.

You can not redistribute our compiler. However when needed, you can ask your
customer to download our compiler from this website

· You (when you are a FOX subscriber) have access to the compiler source code and
may change and rebuild the compiler for internal use inside your company. However you
are not allowed to publish or redistribute the (changed) compiler to your customers

We are convinced that you will find our license agreements fair and easy to work with.
If you have any questions about the licenses, please contact us at info@xsharp.eu

Component & Name Short summary of the license

The compiler binaries and runtime
binaries
XSharp Open Software License
Agreement 1.0

This can be downloaded for free from our website.
All you have to do is to create an account on this
website.
· You can download the components from our

website
· You can use the components for free both for

commercial and personal use
· You can only deploy the runtime components to

your customers
· OEM Licensing of the compiler binaries is only

allowed when you have a separate agreement with
XSharp BV

The source code to the runtime,
visual studio integration and tools
Apache License version 2.0

Everybody can access this public source code in
our public repository on GitHub
· You can download the source from our GitHub

project
· You can make adjustments to the source code

both for internal use and also to redistribute the
changed runtime binaries to your customers

· If you have a contribution that you want to see
included in a future version of XSharp you can
send us a pull request on GitHub

· XSharp BV decides which changes will be
included in the main branch and which not.

mailto:info@xsharp.eu
https://github.com/X-Sharp/XSharpPublic

66X# Documentation

© 2015- 2024 XSharp BV

The Roslyn part of the Compiler
Source code
Apache License version 2.0

This license applies to the Roslyn code that we have
used and that you can also find on GitHub

The Antlr part of the Compiler
Source code
Antlr BSD License

This license applies to the Antlr 4 source code that
we have used and that you can find on GitHub

1.1.7.1 XSharp Open Software License

The X# Compiler binaries and runtime binaries are licensed under the XSharp Open
Software License Agreement. The full text of this license is:

XSHARP OPEN SOFTWARE LICENSE AGREEMENT

Version effective date: Sept 15, 2015

Preamble:

The use of the Software is unsupported and is for personal or
commercial use. Support is available from XSharp under a separate
agreement, see Part 3.c.
For redistribution of the Software, you will require an OEM license,
see part 4.b. For more information on support options or
redistribution (e.g. OEM Licensing) please contact XSharp.
This license establishes the terms under which the Software may be
used, copied, modified, distributed and/or redistributed. The intent
of this license is that XSharp maintains control over the
development and distribution of the Software, while allowing its use
it in a variety of ways. If the terms of this license do not permit
your proposed usage or if you require clarification regarding your
intended use of the Software, please contact info@xsharp.eu

XSharp BV. ("XSharp") is willing to license the software only upon
the condition that you accept all of the terms contained in this
software license agreement. Please read the terms carefully. By
clicking on "yes, accept" or by installing the software, you will
indicate your agreement with them. If you are entering into this
agreement on behalf of a company or other legal entity, your
acceptance represents that you have the authority to bind such
entity to these terms, in which case "you" or "your" shall refer to
your entity. If you do not agree with these terms, or if you do not
have the authority to bind your entity, then XSharp is unwilling to
license the software, and you should not install the software.

1. Parties.

The parties to this Agreement are you, the licensee ("You") and
XSharp. If You are not acting on behalf of yourself as an
individual, then "You" means your company or organization. A company
or organization shall in either case mean a single business entity,
and shall not include its affiliates or wholly owned subsidiaries.

https://github.com/dotnet/roslyn
https://github.com/antlr/antlr4

67 XSharp

© 2015- 2024 XSharp BV

2. The software.

The accompanying materials including, but not limited to, binary
executables, documentation, images, and scripts, which are
distributed by XSharp, and derivatives of that collection and/or
those files are referred to herein as the "Software".

3. License Grant for the Software.

a. You are granted worldwide, perpetual, paid up, royalty free,
non-exclusive rights to install and use the Software subject to the
terms and conditions contained herein.

b. You may: (i) copy the Software for archival purposes, (ii) copy
the Software for personal use purposes, (iii) use, copy, and
distribute the Software solely for your organization's internal use
and or business operation purposes including copying the Software to
other workstations inside Your organization. Any copy must contain
the original Software's proprietary notices in unaltered form.

c. No Other Software and Services. XSharp will not provide you
with any other software or services (including any support or
maintenance services) relating to the Software, except to the extent
that such software and services, if any, are required and provided
pursuant to an applicable maintenance and support agreement.

4. Restrictions.

a. XSharp encourages you to promote use of the Software. However,
this agreement does not grant permission to use the trade names,
trademarks, service marks, or product names of XSharp, except as
required for reasonable and customary use in describing the origin
of the Software. In particular, you cannot use any of these marks in
any way that might state or imply that XSharp endorses Your work, or
might state or imply that You created the Software covered by this
Agreement. Except as expressly provided herein, you may not:

i. modify or translate the Software;

ii. reverse engineer, decompile, or disassemble the Software,
except to the extent this restriction is expressly prohibited by
applicable law;

iii. create derivative works based on the Software;

iv. merge the Software with another product;

v. copy the Software; or

vi. remove or obscure any proprietary rights notices or labels on
the Software.

b. You may not distribute the Software via OEM Distribution (as

68X# Documentation

© 2015- 2024 XSharp BV

defined below) without entering into a separate OEM Distribution
Agreement with XSharp. "OEM Distribution" means permitting others
outside Your organization to use the Software, distribution and/or
use of the Software as either a bundled add-on to, or embedded
component of, another application, with such application being made
available to its users as, but not limited to, an on-premises
application, a hosted application, a Software-as-a-Service offering
or a subscription service for which the distributor of the
application receives a license fee or any form of direct or indirect
compensation. Except as expressly provided herein, you may not:

i. permit others outside Your organization to use the Software,

ii. redistribute:
 1. the Software as a whole whether as a wrapped application or
on a stand-alone basis, or
 2. parts of the Software to create a language distribution, or
 3. the XSharp components with Your Wrapped Application.

The exception to this rule are the components of the software that
are explicitly listed in the documentation as “redistributable
files”. These files are also copied by the installation process of
the Software into to a separate folder with the name “Redist” under
the Software’s installation folder.

c. You are excluded from the foregoing restrictions in paragraph
4b if You are using the Software for non-commercial purposes as
determined by XSharp at its sole discretion, or if You are using the
Software solely for Your organization’s internal use and or internal
business operation purposes on non-production servers (e.g.
development and or testing).

5. Ownership.

XSharp and its suppliers own the Software and all intellectual
property rights embodied therein, including copyrights and valuable
trade secrets embodied in the Software's design and coding
methodology. The Software is protected by the copyright laws from
The Netherlands and international treaty provisions. This Agreement
provides You only a limited use license, and no ownership of any
intellectual property.

6. Infringement Indemnification.

You shall defend or settle, at Your expense, any action brought
against XSharp based upon the claim that any modifications to the
Software or combination of the Software with products infringes or
violates any third party right; provided, however, that: (i) XSharp
shall notify Licensee promptly in writing of any such claim; (ii)
XSharp shall not enter into any settlement or compromise any such
claim without Your prior written consent; (iii) You shall have sole
control of any such action and settlement negotiations; and (iv)
XSharp shall provide You with commercially reasonable information

69 XSharp

© 2015- 2024 XSharp BV

and assistance, at Your request and expense, necessary to settle or
defend such claim. You agree to pay all damages and costs finally
awarded against XSharp attributable to such claim.

7. Limited Warranty.

Neither XSharp nor any of its suppliers or resellers makes any
warranty of any kind, express or implied, and XSharp and its
suppliers specifically disclaim the implied warranties of title,
non-infringement, merchantability, fitness for a particular purpose,
system integration, and data accuracy. There is no warranty or
guarantee that the operation of the software will be uninterrupted,
error-free, or virus-free, or that the software will meet any
particular criteria of performance, quality, accuracy, purpose, or
need. You assume the entire risk of selection, installation, and use
of the software. This disclaimer of warranty constitutes an
essential part of this agreement. No use of the software is
authorized hereunder except under this disclaimer.

8. Local Law.

If implied warranties may not be disclaimed under applicable law,
then any implied warranties are limited in duration to the period
required by applicable law. Some jurisdictions do not allow
limitations on how long an implied warranty may last, so the above
limitations may not apply to You. This warranty gives you specific
rights, and You may have other rights which vary from jurisdiction
to jurisdiction.

9. Limitation of Liability.

Independent of the forgoing provisions, in no event and under no
legal theory, including without limitation, tort, contract, or
strict products liability, shall XSharp or any of its suppliers be
liable to you or any other person for any indirect, special,
incidental, or consequential damages of any kind, including without
limitation, damages for loss of goodwill, work stoppage, computer
malfunction, or any other kind of commercial damage, even if XSharp
has been advised of the possibility of such damages. This limitation
shall not apply to liability for death or personal injury to the
extent prohibited by applicable law. In no event shall XSharp's
liability for damages for any cause whatsoever, and regardless of
the form of action, exceed in the aggregate the amount of the
purchase price paid for the software license.

10. Export Controls.

You agree to comply with all export laws and restrictions and
regulations of The Netherlands, The European Union or foreign
agencies or authorities, and not to export or re-export the Software
or any direct product thereof in violation of any such restrictions,
laws or regulations, or without all necessary approvals. As
applicable, each party shall obtain and bear all expenses relating

70X# Documentation

© 2015- 2024 XSharp BV

to any necessary licenses and/or exemptions with respect to its own
export of the Software from The Netherlands or the European Union.

11. Severability.

If any provision of this Agreement is declared invalid or
unenforceable, such provision shall be deemed modified to the extent
necessary and possible to render it valid and enforceable. In any
event, the unenforceability or invalidity of any provision shall not
affect any other provision of this Agreement, and this Agreement
shall continue in full force and effect, and be construed and
enforced, as if such provision had not been included, or had been
modified as above provided, as the case may be.

12. Jurisdiction and Venue.

This Agreement is governed by the applicable laws of The
Netherlands.

13. Assignment.

Except as expressly provided herein neither this Agreement nor any
rights granted hereunder, nor the use of any of the Software may be
assigned, or otherwise transferred, in whole or in part, by
Licensee, without the prior written consent of XSharp. XSharp may
assign this Agreement in the event of a merger or sale of all or
substantially all of the stock of assets of XSharp without the
consent of Licensee. Any attempted assignment will be void and of no
effect unless permitted by the foregoing. This Agreement shall inure
to the benefit of the parties permitted successors and assigns.

1.1.7.2 Apache 2

Both the source code to the public elements of X# and to Roslyn are published under the
Apache 2.0 license.
You can find the public source code on Github in the XSharpPublic repository :
https://github.com/X-Sharp/XSharpPublic
The full text of this license is:

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by

https://github.com/X-Sharp/XSharpPublic

71 XSharp

© 2015- 2024 XSharp BV

 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

72X# Documentation

© 2015- 2024 XSharp BV

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside

73 XSharp

© 2015- 2024 XSharp BV

 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,

74X# Documentation

© 2015- 2024 XSharp BV

 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

 END OF TERMS AND CONDITIONS

 APPENDIX: How to apply the Apache License to your work.

 To apply the Apache License to your work, attach the following
 boilerplate notice, with the fields enclosed by brackets "[]"
 replaced with your own identifying information. (Don't include
 the brackets!) The text should be enclosed in the appropriate
 comment syntax for the file format. We also recommend that a
 file or class name and description of purpose be included on the
 same "printed page" as the copyright notice for easier
 identification within third-party archives.

 Copyright [yyyy] [name of copyright owner]

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied.
 See the License for the specific language governing permissions and
 limitations under the License.

1.1.7.3 BSD

The Antlr source that we have used in our product is published under the BSD license.
The full text of this license is:

[The "BSD license"]
Copyright (c) 2015 Terence Parr, Sam Harwell
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

 1. Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
 2. Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.
 3. The name of the author may not be used to endorse or promote
products
 derived from this software without specific prior written permission.

75 XSharp

© 2015- 2024 XSharp BV

THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

76X# Documentation

© 2015- 2024 XSharp BV

1.1.8 Acknowledgements

We could not have done this project without (source code) contributions from others.
Below is a list of the contributions that we used for our compiler and Visual Studio
integration

Name Description

Roslyn The X# compiler is based on the open source project Roslyn,
which contains the source to the Microsoft VB and C#
compilers.
Our project would have been impossible with this source.
We are very grateful that Microsoft has moved this project to
the open source. (github.com/dotnet/roslyn)
The source code to Roslyn is published under the Apache
License, version 2

Antlr The X# compiler uses Antlr 4 as parser generator to generate
the front end of the compiler. We would like to thank Terence
Parr and Sam Harwell for their excellent work.
The source code to Antlr is published under the BSD
License. (www.antlr.org)

Wix (votive) The project system for Wix (Votive). We have been inspired
by some of the code in this system. We would like to thank
Rob Mensching and the other authors of this project system.
(wixtoolset.org/)

Nemerle The project system for Nemerle. We have been inspired by
some of the solutions in their project system. We would like
to thank the authors of Nemerle for showing us how to solve
certain problems. (www.nemerle.org)

F# project system The visual F# project system (www.fsharp.org)

Help and Manual Our documentation is written with the excellent tool "Help and
Manual" from Alexander Halser (www.helpandmanual.com)

Sandcastle Help File
Builder

The documentation for the runtime is generated with a
special version of the Sandcastle Help File Builder product.
(github.com/EWSoftware/SHFB)

Paul Piko For his Hybrid classes that allow to mix VO GUI with
Windows Forms

JB Evain We are using his Mono.Cecil library inside our project system
to collect type information for external types

The SQLite team We are using their SQLite database inside our project
system

Karl-Heinz Rauscher
(Germany)
António Lopes (Portugal)

Have contributed functions for the FoxPro library.

http://github.com/dotnet/roslyn
http://www.antlr.org
http://wixtoolset.org/
http://www.nemerle.org
http://www.fsharp.org
http://www.helpandmanual.com
https://github.com/EWSoftware/SHFB

77 XSharp

© 2015- 2024 XSharp BV

1.2 Version History

Note: When an item has a matching GitHub ticket then the ticket number is behind the
item in parentheses prefixed with #. You can find these tickets by going to:
https://github.com/X-Sharp/XSharpPublic/issues/nnn where nnn is the ticket number.
If you find an issue in X# we recommend that you report it on GitHub. You will be notified of
the progress on the work on your issue.

Changes in 2.20.0.3

Compiler

Bug fixes

· Fixed problem with the USE command with an AGAIN clause in the FoxPro dialect
(#235)

· Fixed problem with calling typed array constructors with named parameters when
compiling with the /namedargs compiler option enabled (#1430)

· Fixed inconsistency with the INSTANCE keyword and the use inside the class (#1432)

· Fixed problem with the REPLACE UDC that could prevent the use of a variable named
"replace" (#1443)

· Fixed problem with the /vo9 (handle missing RETURN statements) compiler option with
ACCESSes in PARTIAL classes (#1450)

· Fixed problem with the Lexer recognizing line continuation characters inside a string in
the FoxPro dialect (#1453)

· Fixed problem with the memvar pragma option (#1454)

· Fixed a problem with the /xpp compiler option. (#1243, #1458)

· Fixed a problem with accessing Hidden class members in a method from the class
where the member was defined, when the object involved was untyped.(#1335, #1457)

· Fixed an internal compiler error with a line of code containing a single comma (#1462)

· Fixed a problem with the USE command when the filename was specified as a
bracketed string (#1468)

New Features

· You can now use the NULL() and DEFAULT() expression to initialize any variable with a
default value. This is the equivalent of the default keyword in C#.

· We have added a new compiler option /modernsyntax (#1394). This disables certain
legacy features:
o && for line comments
o * at the start of a line for a comment line
o Bracketed strings
o Parenthesized expression lists (thus makes it easier to recognize tuples)

· Added support for IS NULL and IS NOT NULL pattern (#1422)

· Added support for file wide FIELD statements in the Harbour dialect (#1436)

78X# Documentation

© 2015- 2024 XSharp BV

Runtime

Bug fixes

· Fixed runtime error in Transform() with PTR argument (#1428)

· Fixed problem with several String runtime functions throwing a runtime error when
passed a PSZ argument (#1429)

· Fixed problem with OrdKeyVal() and ADS/ADT files in the ADS RDD (#1434)

· Fixed incompatibilities with various xBase dialects with creating and using orders with
long names (#1438)

· Fixed VO incompatibility in OrderKeyNo() with the ADS RDD when the setting
Ax_SetExactKeyPos() is TRUE (#1444)

· Fixed a problem in the macro compiler with passing more than 2 arguments by
reference (#1445)

· Fixed problem with DBSetIndex() seting the record pointer at eof (#1448)

· Fixed problem reading fields from OEM dbfs (#1449)

New Features

· Implemented the DBFMEMO driver (#604)

· Implemented the DBFBLOB driver (#605)

· Added missing SetColor() function overload with no parameters (#1440)

· This version includes the new XSharp.VFP.UI.DLL that is used by forms exported from
Visual FoxPro with the VFP Exporter.

Visual Studio integration

Bug fixes

· Fixed a problem with "Jump to File" command in VS 2019 (#1146)

· Fixed problem with "Go to definition" not working for local function (#1415)

· Fixed problem with the Class navigation box showing the wrong current entry in some
cases (#1426)

· Fixed problem with setting the "enable named arguments" project option (#1431)

· Fixed problem with the code generator for types in external assemblies not generating
parameters for Indexed properties (#1442)

· Fixed problem with the VODBServer editor not saving access/assigns and other entities
of the [DBSERVER] section in CAVOFED.TPL (#1452)

· Fixed problem with loading supplemental files provided in the cavowed.inf file for the VO
Window Editor with absolute or relative paths (#1470)

· Fixed a problem in the VS2022 Debugger when different DLLs contained the same
namespace with different case.

· Fixed a problem where the entity parser inside the editor did not correctly determine the
end of an entity that contains a local function or procedure

· Fixed a problem where the entity parser inside the editor would choke on a param token
at the start of the line when the /memvars compiler option was NOT enabled.

79 XSharp

© 2015- 2024 XSharp BV

New features

· We have added a menu entry to the Help menu for the Chinese version of the
documentation.

VOXporter

Bug fixes

· Fixed problem with incorrectly converting attributes to string literals (#1404)

New Features

· It is now possible to define special TEXTBLOCK entities in the VO code in any module
with name "VXP-TOP" or "{VOXP:TOP}" and VOXporter will automatically insert the
contents of the textblock in the beginning of the exported X# .prg file for the module. This
is particularly helpful for specifying top level commands like #using statements (#1425)

VFPXporter

· This version of X# includes the VFP Exporter. This tool takes a Visual FoxPro project file
and converts that into aVisual Studio solution

XIDE

· Added option when trying to debug a 32/64bit app in the wrong XIDE version, to
automatically open the alternative version

· Fixed coloring of several positional keywords in the editor

· Improved editor support for TEXT...END TEXT

· Added editor support for the NOT NULL code pattern

· Added project support for the compiler options /namedargs, /initlocals, /modernsyntax
and /allowoldstyleassignments

· Now pressing the SHIFT key on startup, resets the layout of the IDE to default positions
(and does not save it on exit)

· Added menu command View->Save Current Layout

· Fixed a problem with toggling case (CTR+U) of text selected in a column selection

· Fixed several issues with incorrectly identifying a line with identifiers like PROC or
FUNC as entity definitions

Documentation

Bug fixes

· Fixed typo in the /namedargs compiler option topic

New Features

· We have added several chapters about modifiers.

· We have added a (partially) translated help file in (Simplified) Chinese

80X# Documentation

© 2015- 2024 XSharp BV

Changes in 2.19.0.2

Compiler

Bug fixes

· Now the compiler properly reports an error when duplicate field names are defined in a
type (#1385)

· Fixed problem with defining multiple type constraints in a generic type (#1389)

· Fixed problem with global MEMVARs hiding local variables or parameters with the same
name (#1294)

· Bogus compiler error messages with not found type (#1396)

· Fixed compiler crash with missing reference to XSharp.VFP in the FoxPro dialect
(#1405)

· Fixed problem with /initlocals compiler option incorrectly also initializing class fields
(#1408)

· Fixed a problem in the preprocessor where an extended match symbol would not
properly match an expression that started with a string literal

New features

· We added support for dimensioning (FoxPro) class properties, such as in

DIMENSION this.Field(10)

· We have added support for FOREACH AWAIT, like in the following example. (Works in
.Net Core, .Net 5 and later)

FOREACH AWAIT VAR data IN GenerateNumbersAsync(number)
 SELF:oListView1:Items:Add(data)
 NEXT

· We have added support for "Coalescing Member Access, such as in the following
example where FirstName and LastName are both properties of the oPerson object:

? oPerson:(FirstName+" "+LastName)

· The WITH command now also recognizes the AS DataType clause

· XBase++ Class declarations now also allow “END CLASS” as closing token.

· Now the compiler reports an error when attempting to convert from Lambda Expression
to usual (#1343)

· We have added support for TUPLE datatypes. This includes declaring local variables,
parameters, return value etc.
We also support decomposition of a tuple return value into multiple locals. See the
TUPLE help topic for more information.

81 XSharp

© 2015- 2024 XSharp BV

Runtime

Bug fixes

· Fixed problem calling DoEvents() from the macro compiler (#872)

· Fixed problem with __Mem2StringRaw() (undocumented) function (#1302)

· Fixed problem opening DBFCDX index file with incorrect collation information in the
header #1360

· Fixed problem with OrdSetFocus() resetting the current order when called without
arguments (#1362)

· Fixed problems with some index files after a DBPack() (#1367)

· Fixed problem with Deleted() returning TRUE on a table with all records deleted (#1370)

· Fixed problem with opening and writing to a file with FWrite() etc functions when opened
in exclusive and write only mode (#1382)

· Fixed several problems (VO incompatibilities) with the SplitPath() function (#1384)

· Now when there is no codepage found in a dbf header, then the DOS codepage from
the RuntimeState is used and no longer the hardcoded codepage 437 (#1386)

· Replaced the Dictionary<,> class used in some areas of the runtime with
ConcurrentDictionary<,> to avoid issues in multi threaded apps (#1391)

· Fixed problem with NoIVarget when using IDynamicProperties (FoxPro dialect) (#1401)

· Fixed problem with Hex2C() giving different results with lower case letters than with
upper case.
Note that this bug existed also in VO, so now the behavior of Hex2C() with lower case
hex letters in X# with is different to VO (#1402)

· Accessing properties on a closed DbServer object that was opened with the Advantage
RDD could cause problems in the debugger. The DbServer class now returns empty
values when the server is closed.

New features

· Implemented CREATE CURSOR command [FoxPro] (#247). Also implemented
CREATE TABLE and ALTER TABLE (FoxPro dialect)

· Implemented INSERT INTO commands (FoxPro dialect for inserting variables from
values, arrays, objects and memory variables. INSERT INTO from a SQL query does
not work yet. (FoxPro dialect)

· Implemented new FoxPro-compatible version of Str() function in XSharp.VFP (#386)

· Now an error is thrown when opening an index file fails (#1358)

· Added AscA() function and made Asc() dependent on the SetAnsi() setting in the
runtime (#1376)

Header files

Bug fixes

· Implemented several missing commands (#1407)

· Fixed typo in the SET DECIMALS TO command (#1406)

· Added missing clauses NAME and MEMVAR for the GATHER command (FoxPro)
(#1409)

82X# Documentation

© 2015- 2024 XSharp BV

· Updated several commands to make some tokens optional and more compatible to
various dialects (#1410, #1412)

· Fixed various incompatibilities with COMMIT command in various dialects (#1411)

Visual Studio Integration

Bug fixes

· Fixed problem with looking up public static field in type referenced by static using
(#1307)

· Fixed intellisense problem with locals defined inside block statements (#1345)

· Fixed problem with intellisense incorrectly resolving type specified in code with full name
to another from the usings list (#1363)

· Fixed problem with member completion incorrectly showing static methods after typing
a colon (#1379)

· Fixed editor freezing with specific code (#1380)

· Fixed problem with Class Navigation bar not showing the method name in certain cases
(#1381)

New features

· Added support for IEnumerable and DataTable Debugger visualizers (#1373).
Please note that when browsing X# arrays the results in the visualizer are really ugly
because the visualizer ignores attributes to hide properties and fields for our USUAL
class.

· Adjusted the Globals, Workareas etc debugger windows to respect the global theme
selected in VS (#1375). Also added status panel to the Workarea window, so you can
see the workarea status or field names/values

· Added intellisense support for locals declared with USING VAR or USING (LOCAL)
IMPLIED (#1390)

· Now the intellisense database uses an SQLite package that has ARM support, so the it
will work also on a Mac and other platforms (#1397)

VOXporter

Fixes

· Fixed problem with VOXporter incorrectly modifying previously commented code with
{VOXP:UNC} tags (#1404)

Documentation

Bug Fixes

· The documentation of functions in the runtime help was describing functions
incorrectly.
For example the topic title for the "Left" function was "Functions.Left Method" This has
been changed to "Left Function"

· The "SingleLineEdit" class in the documentation was called "Real4LineEdit". This has
been fixed.

83 XSharp

© 2015- 2024 XSharp BV

New Features

· We have added additional documentation to the X# Programming guide about several
subjects.

Changes in 2.18.0.4

Compiler

Bug fixes

· Fixed some preprocessor issues with XBase++ related commands (#1213, #1288,
#1337)

· Fixed problem with implicit access to static class members (XBase++ dialect) (#1215)

· Fixed a parser error with the DIMENSION command (VFP dialect) (#1267)

· Fixed preprocessor problem with UDCs in code spanning in multiple lines (#1298)

· Now each "unused variable" warning is reported at the exact location of a variable
definition, instread of always at the first one (#1310)

· Fixed bogus "unreachable code" warning in the SET RELATION command (#1312)

· Fixed a problem in generating XML documentation for the compiler generated
<Module>.$AppInit and <Module>.$AppExit methods (#1316)

· Fixed problem with accessing hidden fields of another object (XBase++ dialect) (#1335)

· Fixed problem with calling parent methods with an explicit class indication (Xbase++
dialect) (#1338)

· Fixed problem with incorrectly calling function twice, in code like "SLen(c :=
SomeFunction())" (#1339)

· Fixed problem with parent methods not being visible in derived classes (Xbase++
dialect) (#1349)

· Fixed problem with ::new() not working properly in class methods (Xbase++ dialect)
(#1350)

· Fixed an exception when an error occurred for a token that was defined in a header file

· Fixed a compiler error when returning super:Init() from a XBase++ method (#1357)

· Fixed a problem with STATIC DEFINEs in same named .prg files (#1361)

New features

· Introduced warning for not specifying the OUT keyword for OUT parameters (#1295)

· The parser rules for method and constructor calls without parameters have been
updated. This may result in a bit faster compilation.

· SLen() is no longer "inlined" by the compiler. If you reference XSharp.Core in your app,
SLen() now gets resolved to the SLen() function inside X# Core.
If you compile without X# runtime, or compile against the Vulcan Runtime you now need
to add a SLen() function to your code.
This is the code inside X# Core that you can use as a template
FUNCTION SLen(cString AS STRING) AS DWORD
 LOCAL len := 0 AS DWORD
 IF cString != NULL
 len := (DWORD) cString:Length

84X# Documentation

© 2015- 2024 XSharp BV

 ENDIF
 RETURN len

· Added support for preprocessor commands #ycommand and #ytranslate that are also
supported by Harbour. They work the same as #xcommand and #xtranslate, but the
tokens are compared in case sensitive mode (#1314)

· Code generation for some of the Xbase++ specific features has changed.

· We have added several more UDCs with the IN <cursor> clause

· We have added UDC support for the FoxPro CAST expression

· Several more SET commands now also support the & operator

· The compiler now supports "Late bound names" in more locations, such as in the
REPLACE command, With command etc. This now compiles without problems:

cVar := "FirstName"
WITH oCustomer
 .&cVar := "John"
END WITH
and this too

cVar := "FirstName"
REPLACE &cVar with "John"

Runtime

Bug fixes

· Fixed problem with incorrectly closing dbf file before relations are cleared (#1237)

· Fixed incorrect index scope visibility immediately after file creation (#1238)

· Fixed problem in FFirst()/FNext() not finding all files specified by filter (#1315)

· Fixed problem with DBSetIndex()/VoDbOrdListAdd() always reseting the controlling
order to 1 (#1341)

· Fixed problem with updating index keys in the DBFCDX driver when the key expression
was of type DATE.

· Fixed a problem when Str() and StrZero() had a built-in maximum string length of 30.
(#1352)

· The RegisteredRDD Class now uses a ConcurrentDictionary.

· Fixed a bug in the RDD TransRec() method when a field is missing in the target table
(#1372)

· Fixed a problem in the Advantage RDD to prevent ADS functions from being called
when the table is closed

· Fixed a problem in the Advantage RDD that could occur when an field with an incorrect
name was read

· Fixed a problem in the CurDir() function when the current directory is a UNCPath (\
\Server\Share\SomeDir) (#1378)

New features

· Added support for accessing indexers in the USUAL type (#1296)

· We have added a DbCurrency type that is returned from the RDD when a currency field
is read.

85 XSharp

© 2015- 2024 XSharp BV

· Implemented the TEXT TO FILE command (#1304)

· Now the RDD reports an error (dialog) when tagname > maximum length when creating
an index order (#1305)

· Added a function _CreateInstance() that accepts a System.Type parameter

· The late binding code now detects from where Send(), IVarGet() and IVarPut() are called
and allow access to private/hidden fields when the calling code is of the same type as
the type where the class members were declared. This is used in some of the XBase++
related changes.

· The classes in the XBase++ have been restructured a bit.

· The mapping of several DBF / Workarea / Cursor related UDCs has been changed to
be more FoxPro compatible.

· We have added runtime support for the FoxPro CAST expression

· We have done some small code optimizations w.r.t. dictionaries(#1371)

· Several DbServer properties no longer call into the RDD when the server is closed, but
return blank values instead.

Typed SDK classes

· Added a DbServer:Append() overload without parametrs (#1320)

· Added missing DataServer:LockcurrentRecord() method (#1321)

· Fixed runtime error when creating a DataWindow with a ShellWindow as owner (#1324)

· Changed DataWindow:Show() method to CLIPPER for compatibility with existing code
(#1325)

· Fixed exception when using a ComboBox on a VO Window (#1328)

· Fixed error when opening a datawindow with an assigned server (#1332)

· Fixed runtime error when instantiating a DBServer object with an untyped FileSpec
object as first argument (#1348)

· Fixed problem with displaying items in Comboboxes and Listboxes (#1347)

· Several DbServer properties no longer call into the RDD when the server is closed, but
return blank values instead.

Visual Studio Integration

Bug fixes

· Fixed problem with the "allow dot" setting in the project file (#1192)

· Several macros such as $CALLSTACK were not returning values in expected format.
This has been fixed (#1236)

· Fixed build problem when there is a block comment in the first line of form.prg (#1334)

· Fixed probelm with block commenting a code snippet in a single line (#1336)

· Fixed failing project build when the project file contains a property
<GenerateAssemblyInfo>True</GenerateAssemblyInfo> (#1344)

· Fixed a problem in the Parser that was causing errors parsing DebuggerDisplay
attributes in the expression evaluator.

· The new debugger windows were not following the current windows theme. This is now
partially fixed. (#1375)

86X# Documentation

© 2015- 2024 XSharp BV

VO Compatible Editors

· Fixed design time display issue with CheckBox and RadioButton captions with specific
fonts in the VOWED (#796)

· Fixed problem with the VOWED editor changing all existing classes in the prg to
PARTIAL (#814)

· Fixed problem with incorrectly adding constructor code to instantiate the DataBrowser in
the VOWED, even when there are no (non-deleted) data columns (#1365)

· Fixed several problems in the VOMED with menu item define names in source code
and resource files (#1374)

VOXporter

New features

· Introduced options (inline in existing code) to comment, uncomment and delete lines
from the original VO code (#1303)

- {VOXP:COM} // comment out line
- {VOXP:UNC} // uncomment line
- {VOXP:DEL} and // {VOXP:REM} // remove line

Installer

New features

· The installer now detects if the required Visual Studio components "Core Editor" and
".Net Desktop Development" are installed.
When it finds one or more VS installations but none of these installations has both the
required components then a warning is shown.

Changes in 2.17.0.3

Compiler

Bug fixes

· Fixed several incompatibilities with XBase++ regarding using class members (#1215)
UNCONFIRMED

· Fixed /vo3 option not working correctly in XBase++ dialect. Also added support for

modifiers final, introduce and override (#1244)

· Fixed problem with using the NEW modifier on class fields (#1246)

· Fixed several preprocessor issues with XPP dialect UDCs (#1247, #1250)

· Fixed VO incompatibility with special handling of INSTANCE fields in methods and
properties (#1253)

· Fixed problem with the debugger erratically stepping to incorrect lines (#1254, #1264)

· Fixed problem with showing the wrong error line number in some cases with nested
statements (#1268)

87 XSharp

© 2015- 2024 XSharp BV

· Fixed problem where a DO CASE statement without CASE lines was producing an
internal error in the compiler (#1281)

· Fixed a couple preprocessor issues (#1284, #1289)

· Fixed missing compiler error on calling with SUPER a method that does not exist, when
late binding is enabled (#1285)

· Fixed a Failed to emit Module error with CONST class field missing value assignment
(#1293)

· Fixed a problem with repeated match markers (such as in the SET INDEX TO
command) in the preprocessor.

· Fixed a problem that an property definition with an explicit interface prefix could lead to a
compiler crash when the interface was "unknown" at compile time and/or the property
name was not "Item" (#1306)

New features

· Added support for "classic" INIT PROCEDURE and EXIT PROCEDURE (#1290)

· Added warnings when statement list inside case blocks, if blocks and other blocks are
empty. To suppress the warning you can add a NOP statement in your code.

· We have made some changes to the lexer and parser in the compiler. This may result
in a bit smaller memory footprint and faster compilation speed for code with many
nested blocks.

Runtime

Bug fixes

· Fixed several problems (incompatibilities with VO) in CToD() (#1275)

· Added support for 3rd parameter in AAdd() for specifying where to insert the new
element (#1287)

· The Default() function now no longer updates usuals that have a value of
NULL_OBJECT to be compatible with Visual Objects.(#1119)

· We have added support for parameters for the AdsSQLServer class (#1282)

Visual Studio integration

New Features

· We have added debugger pane windows for the following items:
o Global variables
o Dynamic memory variables (Privates and Publics)
o Workareas
o Settings

· You can open these windows from the Debug/XSharp menu during debugging. There is
also a special "X# Debugger Toolbar" which is also only shown during debugging.

· These windows will only show information when the app being debugged uses the X#
runtime (so they will not work in combination with the Vulcan Runtime).
If you are debugging an application written in another language that uses the X# runtime
then these windows will also show information.
We have planned to add more features to these windows in future builds, like the
properties of the current selected area and the field/values in the current selected
workarea

88X# Documentation

© 2015- 2024 XSharp BV

· We have added support for "FileCodeModel" for X# files. This is used by the WPF
designer and XAML editor.
This now also fixes the Goto definition in the XAML editor (#1026)

· Several properties of X# projects are now cached. This should result in slightly faster
performance.

· We have added support for "Goto Definition" for User Defined commands. For example
choosing "Goto definition" on the USE keyword from the USE command will bring you to
its definition in our standard header file.

Bug fixes
· Fixed member completion issue with Type[,] arrays (#980)

· Fixed missing member completion in class inside namespace when same named class
exists without namespace (#1204)

· Fixed an auto indent problem when an entity has an attribute in the precessing line
(#1210)

· Fixed intellisense problems with static members in some cases (#1212)

· Fixed some intellisense issues with code or declarations spanning in multiple lines
(#1221, #1260)

· Fixed intellisense problem with nested classes inside a namespace (#1222)

· Fixed incorrect resolving of VAR local type, when using a type cast (#1224)

· Fixed several problems with collapsing/expanding code in the editor (#1233)

· Fixed showing of bogus member completion list with unknown types (#1255)

· Fixed some problems with auto typing text with Ctrl + Space (complete Word) (#1256)

· Fixed coloring of Text .. EndText statements (#1257)

· Fixed several issues with tooltip hints with generic types (#1258, #1259, #1273)

· Fixed problem with delegate signature not showing in intellisense tooltips (#1265)

· Fixed invalid coloring of code with multiline comments (#1269)

· Fixed invalid entries in member completion after typing "self." (#1270)

· Fixed problem with calling the disassembler when path specified (in option X# Custom
Editors\Other Editors\Disassembler) with spaces (#1271)

· Fixed editor coloring completely stopping when using some UDC calls (#1272)

· Fixed problem with hint not showing on CONSTANT locals in FOR statements (#1274)

· Fixed auto indent problem when code contains a LOOP or EXIT keyword (#1278)

· Fixed an exception in the editor when typing a parenthesis under specific circumstances
(#1279)

· Fixed problem with incorrectly trying to open in design mode files with filenames starting
with an opening bracket (#1292)

· The "XSharp Website" menu option inside VS was broken (#1297)

· Fixed problem with the Match Identical Identifiers functionality that could slow down
Visual Studio

· Fixed a VS lock up that could happen when a file was opened during debugging.

· Parameter tips for classes with a static constructor and a normal constructor were not
processed correctly. This has been fixed.

· When a project was opened where the dependency between a dependent item (like a
.resx file or a .designer.prg file) and its parent was missing, then an exception could
occur, which prevented the project from opening. This has been fixed.

· When 2 compiler errors occurred on the same line with the same error code they were
sometimes shown in the VS output window but not in the Error List. This has been fixed
(#1308)

89 XSharp

© 2015- 2024 XSharp BV

VOXporter

New Features

· Added support for special tags {VOXP:COM}, {VOXP:UNC} and {VOXP:DEL} /
{VOXP:REM} to comment out, uncomment and remove lines from the original VO code
(#1303)

Changes in 2.16.0.5

Compiler

New Features Xbase++ dialect
We have made several changes in the way how Xbase++ class definitions are generated.
Please check your code extensively with this new build !
· We now generate a class function for all classes. This returns the same object as the

ClassObject() method for Xbase++ classes.
This class function is generated, regardless of the /xpp1 compiler option.
The Class function depends on the function __GetXppClassObject and the
XSharp.XPP.StaticClassObject class that both can be found in the XSharp.XPP
assembly(#1235).
From the Class function you can access class variables and class methods.

· In Xbase++ you can have fields (VAR) and properties (ACCESS / ASSIGN METHOD)
with the same name, even with same visibility. Previously this was not supported.
The compiler now automatically makes the field protected (or private for FINAL classes)
and marks it with the [IsInstance] attribute.
Inside the code of the class the compiler will now resolve the name to the field. In code
outside of the class the compiler will resolve the name to the property.

· For derived classes the compiler now automatically generates a property with the name
of the parentclass, that is declared as the parent class and returns the equivalent to
SUPER.

· We have fixed an issue with the FINAL, INTRODUCE and OVERRIDE keywords for
Xbase++ methods (#1244)

· We have fixed some issues with accessing static class members in the XBase++
dialect (#1215)

· You can now use the "::" prefix to access class variables and class methods inside
class methods.

· When a class is declared as subclass from another class then the compiler generates
a (typed) property in the subclass to access the parent class, like Xbase++ does. This
property returns the value "super".

· We are now supporting the READONLY clause for Vars and Class Vars. This means
that the variable must be assigned in the Init() method (instance variables) or InitClass()
method (Class vars)

New Features other dialects
· Inside Visual Objects you could declare fields with the INSTANCE keyword and add

ACCESS/ASSIGN methods with the same name as the INSTANCE field.
In previous builds of X# this was not supported.

90X# Documentation

© 2015- 2024 XSharp BV

The compiler now handles this correctly and resolves the name to the field in code
inside methods/properties of the class and resolves the name to the property in code
outside of the class.

· The PPO file now contains the original white space from user defined commands and
translates.

Bug fixes

· Fixed some method overload resolution issues in the VO dialect (#1211).

· Fixed internal compiler error (insufficient stack) with huge DO CASE statements and
huge IF ELSEIF statements (#1214).

· Fixed a problem with the Interpolated/Extended string syntax (#1218).

· Fixed some issues with incorrectly allowing accessing static class members with the
colon operator or instance members with the dot operator (#1219,#1220).

· Fixed Incorrect visibility of MEMVARs created with MemVarPut() (#1223).

· Fixed problem with _DLL FUNCTION with name in Quotes not working correctly
(#1225).

· If the preprocessor generated date and/or datetime literals, then these were not
recognized. This has been fixed (#1232).

· Fixed a problem with the preprocessor matching of the last optional token (#1241)

· Fixed a problem with recognizing the ENDSEQUENCE keyword in the Xbase++ dialect
(#1242).

· Using a default parameter value of NIL is now only supported for parameters of type
USUAL. Using NIL for other parameter types will generate a (new) warning XS9117 .
Also assigning NIL to a Symbol or using NIL as parameter to a function/method call that
expects a SYMBOL will now also generate that warning (#1231).

· Fixed a problem in the preprocessor where two adjacent tokens were not merged into
one token in the result stream. (#1247).

· Fixed a problem in the preprocessor where the preprocessor was not detecting an
optional element when the element started with a Left parenthesis (#1250)

· Fixed a problem with interpolated strings that contained literal double quotes like in
i"SomeText""{iNum}"" "

· Fixed a problem that was introduced in an earlier build of 2.16 with local functions /
procedures.

· A warning generated at parse time could lead to another warning about a preprocessor
define even when that is not needed. This has been fixed.

· Fixed issue with default parameter values for parameters declared as "a := NIL,b := NIL
as USUAL" introduced in an earlier build of 2.16

· Fixed issue with erratic debugger behavior introduced in an earlier build of 2.16.

· When you are referring to a type in an external assembly that depends on another
external assembly, but you did not have a reference to that other external assembly,
then compilation could fail without proper explanation. Now we are producing the normal
error that you need to add a reference to that other assembly.

· Omitting the type for a parameter for a function or method that does not have the
CLIPPER calling convention is allowed. These parameters are assumed to be of type
USUAL.
This now produces a new warning XS9118.

Breaking changes

If you are using our parser to parse source code, please check your code. We have made
some changes to the language definition for the handling of if ... else statements as well

91 XSharp

© 2015- 2024 XSharp BV

as for the case statements (a new condBlock rule that is shared by both rules). This
removes some recursion in the language. Also some of the Xbase++ specific rules have
been changed. Please check the language definition online

Runtime

New Features
· Added the DOY() function.

· Addeding missing ADS_LONG and ADS_LONGLONG defines.

· Improved the speed of CDX skip operations on network drives (#1165).

Bug fixes

· Fixed a problem with DbSetRelation() and RLock() (#1226).

· Adjusted implicit conversion from NULL_PSZ to string to now return NULL instead of an
empty string.

· Some initialization code is now moved from _INIT procedures to the static constructor of
the SQLConnection Class, in order to make it easier to use this class from non-X#
apps.

· Fixed an issue with the visibility of dynamic memory variables that were created with the
MemVarPut function (#1223).

· Fixed a problem with the DbServer class in exclusive mode (#1230).

· Implicit conversions from NULL_PSZ to string were returning an empty string and not
NULL (#1234).

· Fixed a problem in the CTOD() function when the day, month or year were prefixed with
spaces.

· Fixed an issue with OrderListAdd() in the ADS RDD. When the index is already open,
then the RDD no longer returns an error.

· Fixed an issue with MemRealloc where the second call on the same pointer would
return NULL_PTR (#1248).

VOSDK
· Global arrays in the SDK classes are now initialized from the class constructor of the

SQLConnection class to fix problems when the main app does not include a link to the
SQL Classes assembly.

Visual Studio integration

Debugger
· The debugger expression evaluator now also evaluates late bound properties and fields

(if that compiler option is enabled inside your project).
If this causes negative side effects then you can disable that in the "Tools/Options
Debugging/X# Debugger options screen".

· The debugger expression evaluator now is initialized with the compiler options from your
main application (if that application is an X# project).
The settings on the Debugger Options dialog are now only used when debugging DLLs
that are loaded by a non X# startup project.

· The debugger expression evaluator now always accepts a '.' character for instance
fields, properties and methods, regardless of the setting in the project options.
This is needed because several windows in the VS debugger automatically insert '.'

https://github.com/X-Sharp/XSharpDev/blob/main/XSharp/src/Compiler/XSharpCodeAnalysis/Parser/XSharp.g4

92X# Documentation

© 2015- 2024 XSharp BV

characters when adding expressions to the watch window or when changing values for
properties or fields.

New Features
· Added support for importing Indexes in the DbServer editor.

· The X# project system now remembers which Windows were opened in the Windows
editor in design mode and reopens them correctly when a solution is reopened.

· We have added templates for a Harbour console application and Harbour class library.

· We have added item templates for FoxPro syntax classes and Xbase++ syntax
classes.

· The Class templates for the FoxPro and XBase++ dialect now include a class definition
in that dialect.

· We have improved the support for PPO files in the VS Editor.

· We have updated some of the project templates.

Bug fixes

· Fixed a problem with incorrectly showing member list in the editor for the ":=" operator
(#1061).

· Fixed VOMED generation of menu item DEFINE names that were different to the ones
generated by VO (#1208).

· Fixed VOWED incorrect order of generated lines of code in some cases (#1217).

· Switched back to our own version of Mono.Cecil to avoid issues on computers that have
the Xamarin (MAUI) workload in Visual Studio.

· Fixed a problem opening a form in the Form Designer that contains fields that are
initialized with a function call (#1251).

· Windows that were in [Design] mode when a solution is closed, are now properly
opened in [Design] mode when the solution is reopened.

Changes in 2.15.0.3

Compiler

New Features
· Implemented the STACKALLOC syntax for allocating a block of memory on the stack

(instead of the heap) (#1084)
· Added ASYNC support to XBase++ methods (#1183)

Bug fixes

· Fixed missing compiler error in a few specific cases when using the dot for accessing
instance members, when /allowdot is disabled (#1109)

· Fixed some issues with passing parameters by reference (#1166)

· Fixed some issues with interpolated strings (#1184)

· Fixed a problem with the macro compiler not detecting an error with incorrectly
accessing static/instance members (#1186)

· Fixed incorrect line number reported for error messages on ELSEIF and UNTIL
statements (#1187)

· Fixed problem with using an iVar named "Value" inside a property setter, when
option /cs is enabled (#1189)

93 XSharp

© 2015- 2024 XSharp BV

· Fixed incorrect file/line info reported in error message when the Start() function is
missing (#1190)

· Fixed bogus warning about ambiguous methods in some cases (#1191)

· Fixed a preprocessor problem with nested square brackets (in SUM and REPLACE
commands) (#1194)

· Fixed incorrect method overload resolution in some cases in the VO dialect (#1195)

· Fixed incorrect ambiguous call error with OBJECT/IntPtr parameters (#1197)

· Fixed erratic debugging while stepping over code in some cases (#1200, #1202)

· Fixed a problem where a missing "end keyword", such as ENDIF, NEXT, ENDDO was
not reported when the code between the start and end contained a compiler warning
(#1203)

· Fixed a problem in the build system where sometimes an error message about an
incorrect "RuntimeIdentifier" was shown

Runtime

Bug fixes

· Fixed runtime error in DBSort() (#1196)

· Fixed error in the ConvertFromCodePageToCodePage function

· A change in the startup code for the XSharp.RuntimeState could lead to incorrect
codepages

Visual Studio integration

New Features
· Added VS option for the WED to manually adjust the x/y positions/sizes in the generated

resource with multipliers (#1199)
· Added new options page to control where the editor looks for identifiers on the Complete

Word (Ctrl+Space) command.
· A lot of improvements to the debugger expression evaluator (#1050). Please note that

this debugger expression evaluator is only available in Visual Studio 2019 and later
· Added a debugger options page that controls how expression are parsed by the new

debugger expression evaluator.
You can also change the setting here that disallows editing while debugging.

· We have added context help to the Visual Studio source code editor. When you press
F1 on a symbol then we inspect the symbol. If it comes from X# then the relevant page
in the help file is opened. When it comes from Microsoft then we open the relevant page
from the Microsoft Documentation online.
In a next build we will probably add an option for 3rd parties to register their help
collections too.

· When a keyword is selected in the editor that is part of a block, such as CASE,
OTHERWISE, ELSE, ELSEIF then the editor will now highlight all keywords from that
block.

· The Jump Keywords EXIT and LOOP are now also highlighted as part of the repeat
block that they belong to.

· When a RETURN keyword is selected in the editor, then the matching "Entity" keyword,
such as FUNCTION, METHOD will be highlighted too.

94X# Documentation

© 2015- 2024 XSharp BV

· Added a warning to the Application project options page, when switching the target
framework.

Bug fixes

· Fixed previously broken automatic case synchronization, when using the cursor keys to
move to a different line in the editor (#722)

· Fixed some issues with using Control+Space for code completion (#1044, #1140)

· Fixed an intellisense problem with typing ":" in some cases (#1061)

· Fixed parameter tooltips in a multiline expressions (method/function calls) (#1135)

· Fixed problem with Format Document and the PUBLIC modifier (#1137)

· Fixed a problem with Go to definition not working correctly with multiple partial classes
defined in the same file (#1141)

· Fixed some issues with auto-indenting (#1142, #1143)

· Fixed a problem with not showing values for identifiers in the beginning of a new line
when debugging (#1157)

· Fixed Intellisense problem with LOGICs in some cases (#1185)

· Fixed an issue where the completionlist could contain methods that were not visible
from the spot where the completionlist was shown (#1188)

· Fixed an issue with the display of nested types in the editor (#1198)

· Cleaned up several X# project templates, fixing problems with incorrect placement of
Debug/Output folders (#1201)

· Undoing a case synchronization in the VS editor was not working, because the editor
would immediately synchronize the case again (#1205)

· Rebuilding the intellisense database no longer restarts Visual Studio (#1206)

· Now the VO Menu Editor uses the same menu item DEFINE values, as those used in
the original VO app (re-porting of the app is necessary for this to work) (#1207)

· A Change to our project system and language service could lead to broken "Find in
Files" functionality in some versions of Visual Studio. This has been fixed.

· Fixed an issue where goto definition was not working for protected or private members

· Fixed an issue where for certain files the Dropdown combo boxes on top of the editor
were not correctly synchronized.

Documentation

Changes
· Some methods in the typed SDK were documented as Function. They are now properly

documented as Method
· Property Lists and Method lists for classes now include references to methods that are

inherited from parent classes. Methods that are inherited from .Net classes, such as
ToString() from System.Object are NOT included.

95 XSharp

© 2015- 2024 XSharp BV

Changes in 2.14.0.2, 3 & 4

Visual Studio Integration

Bug fixes

· Fixed an exception in the X# Editor when opening a PRG file in VS 2017

· Selecting a member from a completion list with the Enter key on a line immediately after
an entry that has an XML comment could lead to extra triple slash (///) characters to be
inserted in the editor

· The triple slash command to insert XML comments was not working. This has been
fixed.

· Fixed a problem with entity separators not shown on the right line for entities with
leading XML comments

· Fixed a peek definition problem with types in source code that do not have a constructor

· Fixed a problem with the Implement Interface action when the keyword case was not
upper case

· Fixed a problem that the keyword case was prematurely synchronized in the current
line.

· Fixed a problem with indenting after keywords such as IF, DO WHILE etc

· Fixed a problem with selecting words at the end of a line when debugging

· Fixed a problem where Format Document could lock up VS

· Fixed a problem that accessors such as GET and SET were not indented inside the
property block

· Fixed a problem that Format Document was not working for some documents

· Changed the priority of the background scanner that is responsible for keyword
colorization and derived tasks inside VS.

Changes in 2.14.0.1

Compiler

Bug fixes

· Fixed a problem with date literals resulting in a message about an unknown alias
"gloal" (#1178)

· Fixed a problem that leading 0 characters in AssemblyFileVersion and
AssemblyInformationalVersion were lost. If the attribute does not have the wildcard '*'
then these leading zeros are preserved (#1179)

Runtime

Bug fixes

· The runtime DLLs for 2.14.0.0 were marked with the TargetFramework Attribute. This
caused problems. The attribute is no longer set on the runtime DLLs (#1177)

96X# Documentation

© 2015- 2024 XSharp BV

Changes in 2.14.0.0

Compiler

Bug fixes

· Fixed a problem resolving methods when a type and a local have the same name
(#922)

· Improved XML doc messages for methods implicitly generated by the compiler (INITs,
implicit constructors) (#1128)

· Fixed an internal compiler error with DELEGATEs with default parameter values (#1129)

· Fixed a problem with incorrect calculation of the memory address offset when obtaining
a pointer to a structure element (#1132)

· Fixed problematic behavior of #pragma warning directive unintentionally enabling/
.disabling other warnings (#1133)

· Fixed a problem with marking the complete current executing line of code while
debugging (#1136)

· Fixed incompatible to VO behavior with value initialization when declaring global
MEMVAR (#1144)

· Fixed problem with compiler rule for DO not recognizing the "&" operator (#1147)

· Fixed inconsistent behavior of the ̂operator regarding narrowing conversion warnings
(#1160)

· Fixed several issues with CLOSE and INDEX UDC commands (#1162, #1163)

· Fixed incorrect error line reported for error XS0161: not all code paths return a value
(#1164)

· Fixed bogus filename reported in error message when the Start() function is missing
(#1167)

· The PDB information for a command defined in a UDC now highlights the entire row and
not just the first keyword

· Fixed a problem in the CLOSE ALL and CLOSE DATABASES UDC.

Runtime

New Features
· Added 2 new values to the DbNotificationType enum: BeforeRecordDeleted and

BeforeRecordRecalled. Also added AfterRecordDeleted and AfterRecordRecalled which
are aliases for the already existent RecordDeleted and RecordRecalled (#1174)

Bug fixes

· Added/updated several defines in the Win32API SDK library (#696)

· Fixed a problem with "SkipUnique" not working correctly (#1117)

· Fixed an RDD scope problem when the bottom scope is larger than the highest
available key value (#1121)

· Fixed signature of LookupAccountSid() function in the Win32API SDK library (#1125)

· Improved exception error message when attempting to use functions like Trim() (which
alter the key string length) in index expressions (#1148)

97 XSharp

© 2015- 2024 XSharp BV

· Fixed a Macro Compiler runtime exception when there is an assignment in an IIF
statement (#1149)

· Fixed a problem with resolving the correct overloaded method in late bound calls
(#1158)

· Fixed a problem with parametrized SQLExec() statements in the FoxPro Dialect

· Fixed a problem in the Days() function where the incorrect number of seconds in a day
was used.

· Fixed a problem in the Advantage RDD when a FieldGet returned fields with trailing 0
characters. These are now replaced with a space.

· Fixed a problem with DBI_LUPDATE in the ADS RDDs

· Fixed the Debugger display of the USUAL type.

Visual Studio integration

New Features
· Now using the "Reference Manager" instead of the "Add Reference Dialog Box" for

adding References (#21, #1005)
· Added an option to the Solution Explorer context menu to split a Windows Form in a

form.prg and form.designer.prg (#33)
· We have added an options page to the Tools / Options TextEditor/X# settings that

allows you to enable/disable certain features in the X# source code editor, such as
"Highlight Word", "Brace Matching" etc. The option to backup the source code for the
Windows Forms Editor has been moved from the Texteditor options page to the
Custom Editor options page. Search for 'Backup" in the Tools/Options dialog to find the
setting.

· Tooltips for all source code items now contain the Location (file name and the
line/column).

· We have added "search keywords" to all of our option page. you may be able to find a
page by typing the keyword that you are looking for in the search control.

Bug fixes

· Fixed a problem renaming files when a solution is under SCC with Team Foundation
Server (#49)

· The WinForms designer now ignores differences in the namespaces specified in the
form.prg and designer.prg files (the one from form.prg is used) (#464)

· Fixed incorrect mouse tooltip for a class in some cases (#871)

· Fixed a code completion issue on enum types with extension methods (#1027)

· Fixed some intellisense problems with enums (#1064)

· Fixed a problem with Nuget packages in VS 2022 causing first attempts to build projects
to fail (#1114)

· Fixed a formatting problem in XML documentation tooltips (#1127)

· Fixed a problem with including bogus extra static members in the code completion list in
the editor (#1130)

· Fixed problem with Extension methods not included in Goto Definition, Peek definition,
QuickInfo tips and Parameter Tips (#1131)

· Fixed a problem in determining the correct parameter number for parameter tips when a
compiler pseudo function such as IIF() was used inside the parameter list (#1134)

· Fixed a problem with selecting words with mouse double-click in the editor with
underscores while debugging (#1138)

98X# Documentation

© 2015- 2024 XSharp BV

· Fixed a problem with evaluating values of identifiers with underscores in their names
while debugging (#1139)

· Fixed identifier highlighting causing the VS Editor to hang in certain situations (#1145)

· Fixed indenting of generated event handler methods in the WinForms designer (#1152)

· Fixed a problem with the WinForms designer duplicating fields when adding new
controls (#1154)

· Fixed a problem with the WinForms designer removing #region directives (#1155)

· Fixed a problem with the WinForms designer removing PROPERTY declarations
(#1156)

· Fixed a problem that the type lookup for locals was failing in some cases (#1168)

· Fixed a problem where the existence of extension methods in code was causing a
problem filling the member list (#1170)

· Fixed a problem when completing the member completion list without selecting an item
(#1171)

· Fixed a problem with showing member completion on types of static members of a
class (#1172)

· Fixed a problem with the indentation after single line entities, such as GLOBAL,
DEFINE, EXPORT etc. (#1173)

· Fixed a problem with parameter tips for extension methods (#1175)

· Fixed a problem with tooltips for namespaces and nested classes (#1176)

· Optional tokens in UDCs were not colored as Keyword in the source code editor

· Fixed a problem in the CodeDom provider that failed to load on a Build Server because
of a dependency to Microsoft.VisualStudio.Shell.Design version 15.0 when generating
code for WPF projects.

Changes in 2.13.2.2

Compiler

Bug fixes

· Class members declared with only the INSTANCE modifier were generated as public.
This has been changed to protected, just like in Visual Objects (#1115)

Runtime

Bug fixes

· IVarGetInfo() returned incorrect values for PROTECTED and INSTANCE members.
This has been fixed.(#1116)

· The Default() function was changing usual variables initialized with NULL_OBJECT to
the new value. This was not compatible with Visual Objects (#1119)

99 XSharp

© 2015- 2024 XSharp BV

Visual Studio integration

New Features
· The Rebuild Intellisense Database menu option now asks for confirmation before

restarting Visual Studio (#1120)
· The "Include Files" node in the solution explorer can now be hidden (Tools/ Options X#

Custom Editors/Other Editors)

Bug fixes

· The type information for variables declared in a CATCH clause was not available. This
has been fixed (#1118)

· Fixed several issues with parameter tips (#1098, #1065)

· Fixed a performance issue when the cursor was on a undeclared identifier in a "global"
entity such as a function or procedure in VERY large projects

· The "Include Files" node could contain duplicate references when the source code for
an #include statement contained relative paths, such as
#include "..\GlobalDefines.vh"

· Suppressed the expansion of the "Include Files" node in the Solution Explorer when a
solution is opened.

· Single character words (like i, j, k) were not highlighted with the 'highlight word' feature

· The type 'ptr' was not marked in the keyword color in quickinfo tooltips

· The nameof, typeof and sizeof keywords were not synchronized in the keyword case

Changes in 2.13.2.1

Compiler

New Features
· The parser now recognizes AS <type> clause for PUBLIC and PRIVATE memory

variable declarations but ignores these with a warning
· We have added support for AS <type> for locals declared with LPARAMETERS. The

function/procedure is still clipper calling convention, but the local variable is of the
declared type.

Bug fixes

· The PUBLIC and PRIVATE keywords are sometimes misinterpreted as memvar
declarations when the /memvar compiler option is not even selected. We have added
parser rules to prevent this from happening: when /memvar is not selected then PUBLIC
and PRIVATE are only used as visibility modifiers

· Fix to an issue with selecting function and method overloads (#1096, #1101)

· Build 2.13.2.0 introduced a problem that could cause a big performance problem for
VERY large source files. This has been fixed in 2.13.2.1.

100X# Documentation

© 2015- 2024 XSharp BV

Runtime

Bug fixes

· When the runtime cannot resolve a late bound call to an overloaded method it produces
an error message that includes a list of all relevant overloads (#875, #1096).

· The .NULL. related behavior that was added for the FoxPro dialect was breaking existing
code that involves usuals. In the FoxPro dialect DBNull.Value is now seen as .NULL. but
in the other dialects as a NULL_OBJECT / NIL

· Several internal members of the PropertyContainer class in the VFP library are now
public

Visual Studio integration

Bug fixes

· The lookup code for Peek definition, Goto definition etc. was filtering out instance
methods and only returning static methods. This has been fixed (#1111, #1100)

· Several changes to fix issues with indentation while typing (#1094)

· Fixed several problems with parameter tips (#1098, #1066, #1110)

· A recent change to support the wizard that converts packages.config to package
references has had a negative impact on nuget restore operations during builds inside
Visual Studio. This was fixed. (#1113 and #1114)

· Fixed recognition of variables in lines such as CATCH, ELSEIF, FOR, FOREACH etc
(#1118)

· Fixed recognition of types in the default namespace (#1122)

Changes in 2.13.1

Compiler

New Features
· The PUBLIC and PRIVATE statements in the FoxPro dialect now support inline

assignments, such as in
PUBLIC MyVar := 42
Without initialization the value of the PUBLIC will be FALSE, with the exception of the
variable with the name "FOXPRO" and "FOX". These will be initialized with TRUE in the
FoxPro dialect

Bug fixes

· Fixed a problem with initialization of File Wide publics in the foxpro dialect

· Column numbers for error messages were not always correct for complex expressions.
This has been fixed (#1088)

· Corrected an issue in the lexer where line numbers were incorrect when the source
contains statements that span multiple lines (by using a semicolon as line continuation
character) (#1105)

101 XSharp

© 2015- 2024 XSharp BV

· Fixed a problem in the overload resolution when one or more overloads have a Nullable
parameter(#1106), such as in
 class Dummy�
 method Test (param as usual) as int
 .
 method Test(param as Int? as int
 .
 end class

· Fixed a problem with the code generation for late bound method calls and/or array
access in the FoxPro dialect with the /fox2 compiler compiler option ("compatible array
handling") for variables of unknown type (#1108).
An expression such as

 undefinedVariable.MemberName(1)

was interpreted as an array access but it could also be a method call.
The compiler now generates code that calls a runtime function that checks at runtime if
"MemberName" is either a method or a property.
If it is a property then the runtime will assume that it is an array and access the first
element.
Code with more than 2 parameters or with non-numeric parameters, such as

 undefinedVariable.DoSomething("somestring")

was not affected, since "somestring" cannot be an array index.
TIP: We recommend however, to always declare variables and specify their type. This
helps to find problems at compile time and will generate MUCH faster code.

Runtime

New Features
· Added functions to resolve method calls or array access at runtime (#1108)

· Added GoTo record number functionality to the WorkareasWindow in the
XSharp.RT.Debugger library

Visual Studio Integration

New Features
· Now the VS Project tree shows (in a special node) include files that are used by a

project (#906).
This includes include files inside the project itself but also include files in the XSharp
folder or Vulcan folder (when applicable).

· We are using the built-in images of Visual Studio in the project tree and on several other
locations when possible.

· Our background parser inside VS is now paused during the built process to interfere
less with the build.

· We have added a setting to the indentation options so you can control the indentation for
class fields and properties separately from methods.

102X# Documentation

© 2015- 2024 XSharp BV

So you can choose to indent the fields and properties and to not indent the methods.
This has also been added to the .editorconfig file

Bug Fixes
· Fixed problems with Peek Definition and Goto Definition

· When looking up Functions we were (accidentally) sometimes also including static
methods in other classes.

· When parsing tokens for QuickInfo and Peek Definition then a method name would not
be found if there was a space following the name and before the open parenthesis.

· Fixed a problem where project wide resources and settings (added from the project
properties page) did not get the code behind file when saving

· Quick Info and Goto definition on a line that calls a constructor will now show / goto the
first constructor of the type and no longer to the type declaration

· When the build process of a project was failing due to missing resources or other
resource related problems, then the error list was not properly updated. This has been
fixed (#1102)

· The XSharpDebugger.DLL was not installed properly into VS2017 and VS2019.

Changes in 2.13

Compiler

New Features
· We have implemented a new compiler option /allowoldstyleassignments, which

allows using the "=" operator instead of ":=" for assignments.
This option is enabled by default in the VFP dialect and disabled by default in all other
dialects.

· We have revised the behavior of the /vo4 and /vo11 command line options that are
related to numeric conversions.
Before /vo4 only was related to conversions between integral numbers. It has now been
extended to also include conversions between fractional numbers (such as float, real8,
decimal and currency) and integral numbers.
In the original languages (VO, FoxPro) you can assign a fractional number to a variable
with integral value without problems.
In .Net you can't do that but you will have to add a cast to the assignment:

LOCAL integerValue as INT
LOCAL floatValue := 1.5 as FLOAT
integerValue := floatValue // no conversion: this will
not compile in .Net without conversion
integerValue := (INT) floatValue // explicit conversion: this
does compile in .Net
? integerValue

If you enable the compiler option /vo4 then the assignment without the cast will
also work.
The /vo4 compiler option adds an implicit conversion
In both cases the compiler will produce a warning:

103 XSharp

© 2015- 2024 XSharp BV

warning XS9020: Narrowing conversion from 'float' to 'int' may lead to loss
of data or overflow errors
The value of the integer integerValue above is controlled by the /vo11 compiler
option:
By default in .Net conversions from a fractional value to an integer value will round
towards zero, so the value will then be 1.
If you enable the compiler option /vo11 then the fractional number will be rounded
to the nearest even integral value, so the value of integerValue in the example will
be 2.
This is not new.
We have made a change in build 2.13, to make sure that this difference is no
longer determined at runtime for the X# numeric types but at compile time.
In earlier builds this was handled inside conversion operators from the FLOAT and
CURRENCY types in the runtime.
These classes choose the rounding method based on the /vo11 setting from the
main program which is stored in the RuntimeState object.
However that could lead to unwanted side effects when an assembly was
compiled with /vo11 but the main program was not.
This could happen for example with ReportPro or bBrowser.
If the author of such a library now chooses to compile with /vo11 then he can be
certain that all these conversions in his code will follow rounding to zero or
rounding to the nearest even integer, depending on his choice.

· The DebuggerDisplay attribute for Compile Time Codeblocks has changed. You now
see the source code for compile time codeblocks in the debugger.

Bug fixes

· Fixed a code generation issue with ASYNC/AWAIT (#1049)

· Fixed an Internal compiler error with Evaluate() in CODEBLOCK in VFP dialect (#1043)

· Fixed an Internal compiler error with UDCs incorrectly inserted after an END FUNCTION
statement

· Fixed a problem in the preprocessor with #region and #endregion in nested include files
(#1046)

· Fixed some problems with evaluating DEFINEs based on the order they appear (#866,
#1057)

· Fixed a compiler error with nested BEGIN SEQUENCE .. END SEQUENCE statements
(#1055)

· Fixed some problems with codeblocks containing complex expressions (#1056)

· Fixed problem assigning function to delegate, when /undeclared+ is enabled (#1051)

· Fixed a bogus warning when defining a LOCAL FUNCTION in the Fox dialect (#1017)

· Fixed a problem with the Linq Operation Sum on FLOAT values (#965)

· Fixed a problem with using SELF in an anonymous method/lamda expression (#1058)

· Fixed an InvalidCastException when casting a Usual to a Enum defined as DWord
(#1069)

· Fixed incorrect emitted code when calling AScan() with param nStart supplied and
similar functions (#1062, #1063)

· Fixed a problem with resolving the correct one form overloads of the same function that
span across different assemblies (#1079)

104X# Documentation

© 2015- 2024 XSharp BV

· Fixed unexpected behavior of the preprocessor with #translate for specific XBase++
code (#1073)

· Fixed a problem with unexpected behavior of "ARRAY OF" (#885)

· Fixed some issues with calling specific overloads of functions accepting an ARRAY as
a first argument (#1074)

· Fixed a bogus XS0460 error when using the PUBLIC keyword on a method (#1072)

· Fixed incorrect behavior when enabling Named Arguments option (#1071)

· Fixed Access violation when calling a function/method with DECIMAL argument with
default value (#1075)

· Fixed some issues with #xtranslate not recognizing the Regular match marker in the
preprocessor. Also fixed an issue with recognizing the double colon (::) inside
expression tokens in the preprocessor. (#1077)

· Fixed some issues with declaring arrays in the VFP dialect (#848)

Runtime

Bug fixes

· Fixed some incompatibilities with VO in the Mod() function

· Fixed an exception with Copy to array in the VFP dialect when dimensions do not match
(#993)

· Fixed a seeking problem with SetDeleted(TRUE) and DESCEND order (#986)

· Fixed a problem with DataListView incorrectly showing (empty) deleted records with
SetDeleted(TRUE) (#1009)

· Fixed problem with SetOrder() failing with SYMBOL argument (#1070)

· Reverted a previous incorrect change in the SDK in DBServer:FieldGetFormatted()
(#1076)

· Fixed several issues with StrEvaluate(), including not recognizing MEMVARs with
underscores in their names (#1078)

· Fix for a problem with InList() and string values (#1095)

· The Empty() function now returns false for the values .NULL. and DBNull.Value to be
compatible with FoxPro

· Fixed a problem with GetDefault()/ SetDefault() to make them compatible with Visual
Objects (#1099)

New Features

· Enhancements for Unicode AnyCpu SQL classes (#1006):

· Added a property to open a Sqlselect in readonly mode. This should prevent Append(),
Delete() and FieldPut()

· Implemented delay creating InsertCmd, DeleteCmd, UpdateCmd until really needed

· Added callback mechanism so customers can override the commandtext for these
command (and for example route them to stored Procedures)

· When a late bound method call cannot be resolved because the method is overloaded
then a better error message is now generated that also includes the prototypes of the
methods found (#1096)

105 XSharp

© 2015- 2024 XSharp BV

FoxPro dialect
· Added ADatabases() function

Visual Studio Integration

New features

· You can now control how indenting is done through the Tools/Options Text Editor/X#
option pages. We have added several options that control indenting of your source
code. You can also set these from an .editorconfig file if you want to enforce indenting
rules inside your company.

· We have now added extensive code formatting options to the source code editor. See
Tools/Options/Text Editor/X#/Indentation for available options (#430)

· We have implemented the option "Identifier Case Synchronization". This works as
follows: The editor picks up the first occurrence of an Identifier (class name, variable
name etc) in a source file and make sure that all other occurrences of that identifier in
the same source file use the same case. This does NOT enforce casing across source
files (that would be way too slow)

· We have added color settings to the VS Color dialog for Matched braces, Matched
keyword and Matched identifiers. Open the Tools/Options dialog, Choose
Environment/Fonts and Colors and look for the colors in the listbox that start with the
word "X#". You can customize these to your liking.

· X# projects that use the Vulcan Runtime now have a context menu item that allows you
to convert them to the X# runtime. Standard Vulcan assemblies will be replaced with the
equivalent X# runtime assemblies. If you are using 3rd party components such as
bBrowser or ReportPro then you need to replace the references to these components
yourself.(#32)

· We have added an option to the language page of the project properties to set the
new /allowoldstyleassignments commandline option for the compiler

Bug fixes

· Fixed a problem with Get Latest Version for solution that is under TFS (#1045)

· Fixed WinForm designer changing formatting in main-prg file (#806)

· Fixed some problems with code generation in the WinForms designer (#1042, #1052)

· Fixed a problem with formatting of DO WHILE (#923)

· Fixed problem with Light Bulb "Generate default constructor" feature (#1034)

· Fixed problem with ToolTips in the Debugger. We now parse the complete expression
from the first token until the cursor location. (#1015)

· Fixed some remaining intellisense issues with .Net array locals defined with VAR (#569)

· Fixed a problem with indenting not working correctly in some cases (#421)

· Fixed a problem with auto outdenting (#919)

· Several improvements to keyword pair matching (#904)

· Fixed a problem with Code Completion showing also static members after typing a dot
in "ClassName{}." #1081

· Fixed a performance Issue when typing . for .and. (#1080)

· Fixed a problem with the navigation bar while typing new classes/methods (#1041)

· Fixed incorrect info tooltips on keywords (#979)

· Fixed a possible VS freeze when using "Clean Solution" (#1053)

106X# Documentation

© 2015- 2024 XSharp BV

· Fixed incorrect positioning of caret in eventhandlers in the form designer (#1092)

· Fixed a problem with the form designer failing to open forms after creating a new one
(#1093)

· Right Click on a packages.config file and choosing the option "Migrate to
packagereferences" did not work because inside Visual Studio there is a hardcoded list
of supported project types. We are now "faking" the projecttype to make VS happy and
enable the wizard.

Build System

· The XSharp.Build.Dll, which is responsible for creating the command line when
compiling X# projects in VS, was not properly passing the /noconfig and /shared
compiler options to the compiler. As a result the shared compiler was not used, even
when the project property to use the Shared Compiler was enabled. Also the compiler
was automatically including references to all the assemblies that are listed inside the file
xsc.rsp, which is located inside the XSharp\bin folder.
You may experience now that assemblies will not compile because of missing types.
This will happen if you are using a type that is inside an assembly that is listed inside
xsc.rsp. You should add explicit references to these assemblies in your X# project now.

Changes in 2.12.2.0

Compiler

Bug fixes

· Fixed a bug in the code generation for handling FoxPro array access with parenthesized
indices (#988, #991)

· The compiler was generating incorrect warnings for locals declared with IS. This has
been fixed.

· The compiler was not reporting an error on invalid usage of the OVERRIDE modifier on
ACCESS/ASSIGNs, this has been fixed (#981)

· Fixed inconsistent behavior in reporting warnings and errors in several cases when
converting from various numeric data types to another (#951, #987)

· Fixed some "failed to emit module" issues with iif() statements in some cases (#989)

· Fixed a problem with compiling X# code scripts (#1002)

· Fixed a problem with using classes for some specific assemblies in the macro compiler
(#1003)

· Fix an incorrect error message when adding an INT to a pointer in AnyCPU mode
(#1007)

· Fixed a problem with casting STRING to PTR syntax (#1013)

· Fixed a problem with PCount() when passing a single NULL argument to a CLIPPER
function/method (#1016)

New Features

· We have added support for the TEXT .. ENDTEXT command in all dialects. Please note
that there are several variations of this command. One variation work in ALL dialects
(TEXT TO varName). Other variations depend on the dialect chosen. We have moved
the support for TEXT .. ENDTEXT now also from the compiler to the preprocessor. This

107 XSharp

© 2015- 2024 XSharp BV

means that there are also 2 new preprocessor directives, #text and #endtext (#977,
#1029)

· Implemented new compiler option /vo17, which implements a more compatible to VO
behavior for the BEGIN SEQUENCE..RECOVER command (#111, #881, #916):
o For code that contains a RECOVER USING, a check is made for wrapped

exceptions. When the exception is not a wrapped exception then a function in the
runtime is called (FUNCTION _SequenceError(e AS Exception) AS USUAL) that
can process the error. It can for example call the error handler, or throw the error

o When there is no RECOVER USING clause , then the compiler generates one and
from within this generated clause detects if the RECOVER was reached with a
wrapped exception or a normal exception. For wrapped exceptions it gets the value
and calls a special function in the runtime (FUNCTION
_SequenceRecover(uBreakValue AS USUAL) AS VOID). When the generated
recover is called with a 'normal' exception then _SequenceError function from the
previous bullet is called.

· We have added support for CCALL() and CCALLNATIVE()

· The #pragma directives are now handled by the preprocessor. As a result you can add
#pragma lines anywhere in your code: between entities, inside the body of an entity etc.

Runtime

Bug fixes

· Changed the prototype for AdsGetFTSIndexInfo (#966)

· Fixed a problem with TransForm and decimal types (#1001)

· Added several missing return types in the VFP assembly

· Fixed a problem with browsing a DBFVFP table in the FoxPro dialect

· Fixed an inconsistency with handling values provided by BREAK commands inside
surrounding BEGIN...RECOVER statements, depending on if early or late bound call is
used (#883)

· Fixed a problem with floating point format when assigning a System.Decimal value to a
USUAL var (#1001)

· Fixed a runtime error with DbCopyToArray() when copying to an array that has more
columns than the table, in the FoxPro dialect (#993)

· Fixed a problem with the typecast expression and numeric literals with the +/- sign in the
macro compiler (#1025)

· Fixed problem in the Late binding code where a string was sometimes passed in and
not properly converted to symbol

· IVarPut()/IVarGet() now throw an appropriate exception when trying to use an
inaccessible (due to limiting visibility modifiers) property getter/setter
(ACCESS/ASSIGN) (#1023)

· Fixed an issue with IVarGet() and IVarPut() for properties that are redefined in a
subclass with the NEW modifier (#1030)

· DbDataSource now tries to lock a record when deleting or recalling the record

· Foreach was not working correctly on properties containing collections that were
returned from a late bound property access such as IVarGet()(#1033)

108X# Documentation

© 2015- 2024 XSharp BV

New Features

· You can now register a delegate in the runtime state that allows you to control how the
macro compiler caches types from loaded assemblies(#998).
This delegate has to have the format:

DELEGATE MacroCompilerIncludeAssemblyInCache(ass as Assembly) AS LOGIC

Example:

XSharp.RuntimeState.MacroCompilerIncludeAssemblyInCache := { a =>
DoNotCacheDevExpress(a)}
FUNCTION DoNotCacheDevExpress(ass as Assembly) AS LOGIC)
 // do not cache DevExpress assemblies
 RETURN ass:Location:IndexOf("devexpress",
StringComparison.OrdinalIgnoreCase) == -1

Compatible VO SDK

· Fixed an issue where SetAnsi(FALSE) causes SingleLineEdit controls with pictures to
show random characters when entering umlauts (#1038)

Typed VO SDK

There are 2 new properties for the SQLSelect class.
· ReadOnly - which makes the SQLSelect Readonly

· BatchUpdates - which controls how updates are handled

ReadOnly cursors and delayed creation of command objects

Previously the SQLSelect class created DbCommand objects to update, insert and delete
changes made to a cursor immediately when the result set was opened.
That could cause problems when a complex query was used to select data, because the
DbCommandBuilder object could not figure out how to create these statements.
We are now delaying the creation of these commands until the first time they are needed.
At the same time we have now added a ReadOnly property with a default value of FALSE.
If you set ReadOnly to true then:
· Calling FieldPut(), Delete() and Append() will generate an error with Gencode

EG_READONLY.
· No Command objects will be created for the SQLSelect, because the cursor cannot be

updated.
If ReadOnly remains FALSE then the command objects to update, insert and delete will
be created the first time they are needed.
These commands are created in the __CreateDataAdapter() method.
You can override this method and create the commands in your own subclass when you
want.
The command creation and the updates work as follows:
· First a DataAdapter (of type DbDataAdapter) is created using the CreateDataAdapter

method from the SQLFactory class

https://docs.microsoft.com/en-us/dotnet/api/system.data.common.dbcommand?view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.data.common.dbcommandbuilder?view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.data.common.dbdataadapter?view=netframework-4.8

109 XSharp

© 2015- 2024 XSharp BV

· Then a CommandBuilder object (of type DbCommandBuilder) is created from the
CreateCommandBuilder method of the SQLFactory class

· Then the Insert, Delete and Update Command objects (all of type DbCommand) are
created from the GetInsertCommand() etc methods from the DbCommandBuilder
object. The DBCommandBuilder object takes the Select statement and creates
commands with parameters based on the SQLSelect command

· These command objects are assigned to the DataAdapter and then the
DataAdapter:Update() method is called with the DataTable that is behind the SQLSelect
as argument.

Batch Updates

Normally updates in a SQLSelect will be sent to the server when you move the record
pointer to a new row, or when you call Update()
If you set the BatchUpdates property to TRUE then the SQLSelect will delay sending
updates to the server and will not do that for each record movement, but will wait until you
call the Update() method with an argument TRUE. This will then write all the buffered
changes to the server. This may then also trigger the creation of the DBCommand objects
(see before).
If your table has autoincrement fields then you may want to call Requery() afterwards to
see the newly assigned key values.

Visual Studio Integration

Bug fixes

· Fixed the handling for project property pages for flavored projects (#992)

· When trying to start the debugger with a non existing working directory or program file
name, now an appropriate error is displayed (#996)

· Fixed a problem with the form designer generating sometimes invalid code with
#regions (#1020, #935)

· The WinForms designer now by default adds the OVERRIDE keyword modifier to the
generated Dispose() method (was added in the template) (#1004)

· Due to a changed threading model inside the latest VS2022 releases, error messages
were sometimes not shown in the output window and the error list. This has been fixed

· Fixed a problem in the windows forms designer code generation with nested classes
inside the main form class (#1031).

· Fixed problem with windows forms editor failing to open form with command based on
UDC (#1037).

Sourcecode Editor

· Type lookups on full names were sometimes failing because the fullname was defined
as case sensitive (#978)

· Nested type lookup was sometimes failing. This has been fixed.

· The indenting options can now also be overridden in the .editorconfig file (#999)

· When a source file was loaded in the editor then the combo boxes with types and
members were not activated until the caret was moved in the buffer (#995)

· The member combobox in the editor was getting confused for code that contains local
functions or local procedures.

https://docs.microsoft.com/en-us/dotnet/api/system.data.common.dbcommandbuilder?view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.data.datatable?view=netframework-4.8

110X# Documentation

© 2015- 2024 XSharp BV

· Fixed a lookup problem for expressions inside a conversion or cast with a keyword,
such as DWORD(SomeExpression). There were no quick info tips for the expression
inside the parentheses for the conversion (#997)

· Fixed an intellisense problem with DATATYPE(<expression>) conversion expressions
(#997)

· Fixed a problem with properties declared with the => symbol in their implementation
causing Navigation Bar contents to be incomplete (#1008)

· Fixed several issues with code folding and formatting (#975)

· Fixed problem with typing a comma inside an argument list did not invoke the
Parameters Tooltip (#1019)

· Fixed some issues with the detection of variable types for the VAR keyword (#903)

· Fixed an Intellisense problem with typing ":" or "." inside a string literal (#1021)

· Fixed a problem with unknown identifiers sometimes causing bogus member
completion list to show (#1022)

· Pressing CTRL+SPACE in the editor now always invokes a code completion list (#957)

New Features

· Added options to insert page and reorder pages in a tabcontrol, in the VOWED (#1024)

· We have updated the WPF Application template. The Main window is now called
"MainWindow".

· Added the following new settings to the .editorconfig file to set indentation options
(#999).

· indent_entity_content (true or false)
· indent_block_content (true or false)
· indent_case_content (true or false)
· indent_case_label (true or false)
· indent_continued_lines (true or false)

VOXporter

· The VOXporter now correctly enabled or disables the Allow MEMVAR/Undeclared vars
compiler options, if they were enabled in the VO app (#1000)

Changes in 2.11.0.1

Compiler

Bug fixes
· Fixed an internal compiler error with CLIPPER calling convention delegates (#932)

· Fixed an AccessViolationException at runtime with the Null-conditional operator ?. on a
usual property (#770)

· [XBase++ dialect] Fixed a problem with parsing method declarations with parentheses
(#927)

· [XBase++ dialect] Fixed a problem with parsing the (obsolete in X#) ANNOUNCE and
REQUEST statements (#929)

· [XBase++ dialect] Fixed a problem with parsing INLINE ACCESS and ACCESS ASSIGN
statements (#926)

111 XSharp

© 2015- 2024 XSharp BV

· [VFP dialect] Fixed a problem with parsing FOR EACH statements containing "M."
variables usage where the variable was not typed in the FOR EACH line (#911) .

· Fixed a problem where the PPO files contains some output twice, when a single UDC
was producing several statements (#933)

· Fixed some issues with the "FIELDS" clause in several UDCs (#931, #795)

· Fixed a problem in the preprocessor with parentheses in #xtranslate directives (#963)

· Fixed several more issues with #command and #translate directives (#915)

· In some cases, the compiler would emit code that does not throw a runtime exception,
when casting/converting from one type to an incompatible one. This has been fixed
(#961, #984)

· The compiler was not reporting narrowing conversion warnings in several cases, this
has been fixed (#951)

· The compiler was not reporting signed/unsigned conversion warnings. This has been
fixed (#971)

· Fixed a problem that could lead to the "Could not emit module" error message, caused
by NULL values inside IIF() expressions(#989)

New features

· Added compiler option /noinit to not generate $Init calls for libraries without INIT
procedures for the sake of postponed loading (#854)

· Added preprocessor support for #stdout and #if. (#912)

· The full contents of #include files is now written to the ppo file (#920)

· When a parser error occurs because an identifier was replaced by a define with the
same name, then the compiler will now generate a second warning.

· If a header file contains actual code and this code is called during debugging then the
debugger will now step into the header file when debugging this code.
Previously all statements were linked to the #include line from the place where the
header was included. (#967)

· When you are suppressing compiler errors with the /vo11 (Compatible numeric
conversion) compiler option you will now see a XS9020 "narrowing" warning indicating
that a runtime error may happen or that data may be lost.

· When you are suppressing conversion errors between signed and unsigned integers
with /vo4 then you will now see as XS9021 warning indicating that data may be lost or
an overflow error may occur.

Visual Studio Integration

New features

· The source code editor now also supports the new #if and #stdout preprocessor
commands (#912)

· There is new "Lightbulb" option to generate constructors for classes.

Bug Fixes

· Fixed a problem with specifying custom preprocessor defines in the project properties
(#909)

· The VO-style editors now retain existing "CLIPPER" clause to methods/constructors
when generating code (#913)

· Fixed incorrect parsing of classes as nested to each other (#939)

112X# Documentation

© 2015- 2024 XSharp BV

· Fixed a problem with using embedded variables in the form of $(SomeName) in the
project settings (#928)

· Fixed a problem where deleting items from a project would fail.

· Fixed a problem resolving the DLL produced by project files from other development
languages, in particular SDK style C# projects (#950)

· Fixed a problem with quick info tooltip after an unrecognized identifier (#894)

· Fixed a problem with the editor incorrectly adding parentheses after auto typing a
property (#974)

· Fixed extremely slow editor response when creating a new line after an #endif directive
(#970)

· Fixed some intellisense issues with .Net array types (#569)

· Fixed a problem with the DevExpress DocumentManager control at design time (#976)

· Fixed an ArgumentNullException in the Output window when "Show output from" is set
to "Extension" (#940)

Runtime

New features

· Added a constructor with IEnumerable to the array class (#943)

· Implemented missing functions AdsSetTableTransactionFree() and
AdsGetFTSIndexInfo() (#966)

· Moved functions GetRValue(), GetGValue() and GetBValue() from the Win32API library
to XSharp.RT, so they can be used by AnyCPU code (#972)

· [VFP dialect] Implemented function APrinters() (#952)

· [VFP dialect] Implemented function GetColor() (#973)

· [VFP dialect] Implemented functions Payment(), FV() and PV() (#964)

· [VFP dialect] Implemented commands MKDIR, RMDIR and CHDIR (#614)

Bug fixes

· Fixed a problem with the ListView TextColor and TextBackgroundColor ACCESSes in
the SDK (#896)

· Fixed a problem with soft Seek not respecting order scope when to strict key is found
(#905)

· Fixed DBUseArea() search logic for files in various folders. Also SetDefault() is no
longer initialized with the current directory (for VO compatibility) (#908)

· Fixed problem with creating dbfs with character fields with length > 255 (#917)

· Fixed a problem with the buffered read system in some cases when a dbf was being
read, closed, overwritten and then reopened (#968)

· Fixed a VO compatibility problem with how DBSetIndex() changes the active order when
opening index files (#958)

· Fixed a problem with db append, copy etc, when both source and destination files have
the same structure and include a memo file (#945)

· Fixed an incorrect result of DBOrderInfo(DBOI_ORDERCOUNT) with a non existing or
not open index file (#954)

· [VFP dialect] Added optional parameter to Program([,lShowSignature default=.f.])
(#712)

· [VFP dialect] Fixed several issues with the Type() function (#747, #942)

· [VFP dialect] Fixed a problem with ExecScriptFast() (#823)

113 XSharp

© 2015- 2024 XSharp BV

· [VFP dialect] Fixed a problem with SQLExec() not putting the record pointer on the first
record (#864)

· [VFP dialect] Fixed a problem with SQLExec() with null values (#941)

· [VFP dialect] Fixed a write error in the buffer returned from SqlExec() (#948)

· [VFP dialect] Fixed a problem with the DBFVFP RDD and null columns (#953)

· [VFP dialect] Fixed a problem with SCATTER TO and APPEND FROM ARRAY (#821)

Typed SDK

· Fixed a problem with the FileName property of standard open dialogs

· Fixed a problem with a FOREACH inside the Menu constructor causing handled
exceptions

RDD

Bug fixes

· Fixed a problem in the DBFVFP RDD with the calculation of the keysize of nullable keys
(#985)

VOXporter

Bug fixes

· Fixed incorrectly detecting pointers to functions inside literal strings and comments
(#932)

Changes in 2.10.0.3

Compiler

Bug fixes
· Fixed some problems with COPY TO ARRAY command in the FoxPro dialect (#673)

· Fixed a problem with using a System.Decimal type on a SWITCH statement (#725)

· Fixed an internal compiler error with Type() in the FoxPro dialect (#840)

· Fixed a problem with generating XML documentation (#783, #855)

· Prevented a warning from appearing for members of SEALED classes when /vo3 (all
members VIRTUAL) is enabled (#785)

· Fixed problems with assigning and comparing "ARRAY OF <type>" vars to
NULL_ARRAY (#833)

· Fixed some issues with passing arguments by reference with the @ operator and/or
using it as the AddressOf operator (#810, #899, #902)

· Fixed a problem resolving parameters passed by reference with the @ operator when
the function/ method had a parameter of the pointer type (#899, #902)

114X# Documentation

© 2015- 2024 XSharp BV

New features

· Added compiler option (-enforceoverride) to make the OVERRIDE modified mandatory
when overriding a parent member (#786, #846)

· The compiler now reports an error when using String2Psz() and Cast2Psz() in a non
local context (since such PSZs are being released on exiting the current entity) (#775)

· FUNCTIONs and PROCEDUREs now support the ASYNC modifier (#853)

· You can now suppress the automatic generation of the $Init1() and $Exit() functions by
passing the compiler commandline
option -noinit (#854). This is NOT yet supported in the VS Properties dialog

· Added support for the ASTYPE operator also for USUAL vars (#857)

· Allowed specifying AS <type> clause in PUBLIC var declarations (ignored by the
compiler, but used by the editor in the future for intellisense) (#853)

· The AS <datatype> OF <classlib> clause is now also supported for several other FoxPro
compatible commands, such as PARAMETERS and PUBLIC.
Since these variables are untyped at runtime by nature, the clause is ignored by the
compiler and a warning is shown.

Build System

Bug Fixes

· Running MsBuild on a X# WPF project could fail (#879)

Visual Studio Integration

New features

· We have added Visual Studio integration for VS 2022

· We have added support for Package References

· Now XML comments are automatically inserted in the editor when the user types "///".
(#867, #887) Conditions:
o Cursor must be on a line before the start of an entity
o Cursor must NOT be before a comment line

· Now the tooltip on a class includes also information about the parent class and
implemented interfaces (if any) (#860)

· We have added tooltips, parameter completion etc for the pseudo functions that are built
into the compiler, such as PCount() and String2Psz().

· We have added a first version of Lightbulb tips. For now to implement missing interface
members and to convert a field to a Property. More implementations and configuration
options will follow

· We have added a new dialog to configure source code formatting with visual examples
of the effects of the options.

· We have added the ability to log operations of the X# VS integration to the Windows
debug window and/or a logfile.
If you are experiencing unexplainable problems we will contact you and tell you how to
enable these options, so you can send us a log file that shows what happened before a
problem occurred inside Visual Studio. We have used Serilog for this.

· The Highlight Word feature now is case insensitive and no longer hightlights words that
are part of a comment, string or inactive editor region

115 XSharp

© 2015- 2024 XSharp BV

· We have added 'Brace Completion' to the editor

Bug Fixes

· Fixed some problems with the Format Document command (#552)

· Fixed several issues with Parameter Tooltips (#728, #843)

· Fixed problem with code completion list showing even for not defined vars/identifiers
(#793)

· Fixed member completion and parameter tooltips with chained expressions (#838)

· Fixed recognition of type for VAR locals in some cases (#844)

· Fixed member completion and tooltip info problems with VOSTRUCT vars (#851)

· Fixed a problem with ignoring Line Breaks in XML Comments (#858)

· Fixed some WinForms designer problems with CHAR properties (#859)

· Fixed a problem with Goto Definition not working correctly with SUPER() constructor
calls (#862)

· Fixed an error with the Rebuild Intellisense Database command, when the solution
contains a space in the path (#865)

· Goto Definition for types from external assemblies was failing when there was more
than one copy of VS running at the same time.

· Fixed a problem with a VOSTRUCT some times confusing the parser (#868)

· Fixed some more problems with quickinfo and member completion (#870)

· Fixed a problem in the Windows Forms designer (#873)

· Fixed an intellisense problem with ENUMs using no MEMBER keywords (#877)

· Fixed a member completion problem with inherited exception types (#884)

· If an XML topic had sub elements of type <see> or other these were not shown in the
editor. This has been fixed (#900)

· Unbalanced braces were sometimes matched in the editor with keywords. This has
been fixed (#892)

· Line separators were sometimes flickering. This has been fixed (#792)

· When parsing for local variables we were not processing the include files. This could
lead to a situation where a local that was declared in a conditional block (#ifdef
SOMEVAR) was not found. This has been fixed. The editor parser now includes the
header files and #defines and #undefines found in the code even when parsing a part of
the source file (#893)

· #include lines are now included in the fields/members combobox in the editor (when
fields are shown). They are also saved to the intellisense database.

· The editor was trying to show QuickInfo tooltips when the cursor was over an inactive
preprocessor region (#ifdef). This no longer happens.

Runtime

Bug fixes

· Fixed DBFCDX corruption that could happen with simultaneous updates (#585)

· Fixed a problem opening FoxPro tables with indexes on nullable fields (#631)

· The BlobGet() function was returning a LOGIC instead of the actual field value (#681)

· Greatly improved speed of index creation with large number of fields in the index
expression (#711)

· Fixed some problems with FieldPutBytes() and FieldGetBytes() (#797)

· DBSeek() with 3rd param (lLast) TRUE had incorrect behavior in some cases (#807)

116X# Documentation

© 2015- 2024 XSharp BV

· Fixed a potential NullreferenceException that could happen when creating indexes
(#849)

· Improved indentation in the text produced by the method Error.WrapRawException()
(#856)

· Fixed a runtime problem when converting .Net Array <-> USUAL (#876)

· DbInfo() was returning TRUE even when an info enum was not supported.(#886)

· Fixed also a possible DBFNTX corruption problem (#889)

· DbEval() could fail in FoxPro when the codeblock was returning NIL or was VOID (#890)

· Fixed a problem with Softseek and descending indexes.

· Fixed a problem where incorrect scope expressions could lead to unexpected results.
Now the server goes to (and stays at) EOF with an incorrect scope.

· Fixed a problem with accessing FoxPro arrays with the parenthesis operators in a
macro expression (#805).
Please note that for this to work you have to compile the main program with /fox2

Changes in 2.9.1.1 (Cahors)

Compiler

Bug fixes

· Fixed a problem introduced in 2.9.0.2 with define symbols not respecting the /cs
compiler option in combination with the /vo8 compiler option (#816)

· Fixed an internal compiler error with assignment expressions inside object initializers
when the /fox2 compiler option is enabled (#817)

· Fixed some problems with DATEs in VOSTRUCTs (#773)

· Fixed a problem in the preprocessor that would occur when using a list rule like FIELDS
<f1> [,<fn>] in the middle of a UDC.

· Fixed a problem compiling UDCs such as SET CENTURY &cOn because cOn was not
parsed as an identifier but as a keyword.

New features

· There is a new result marker (the NotEmpty result marker) in the preprocessor that
does the same as the regular result marker, but writes a NIL value to the output when
the (optional) match marker is not found in the input.
This can be used when you want to make the result a part of an IIF() expression in the
output, since the sections inside an IIF expression may not be empty.
The result marker looks like this: <!marker!>

· Using a Restricted match marker as the first token in an UDC was not allowed before.
This has been fixed. You can now write a rule like this, which will output the keyword
(SCATTER, GATHER or COPY) followed by the stringified list of options.

#command <cmd:SCATTER,GATHER,COPY> <*clauses*> => ? <"cmd">,
<"clauses">

117 XSharp

© 2015- 2024 XSharp BV

FUNCTION Start AS VOID
 SCATTER TO TEST // is preprocessed into ? "SCATTER" , "TO
TEST"
 RETURN

Visual Studio Integration

Bug Fixes

· Fixed a problem introduced in 2.9.0.2 with code generation for WPF projects (#820)

· Fixed a VS freezing problem after building (#819)

· Fixed some problems with code collapsing and the navigation bar for source files that
contains a SELF property (#825)

· Fixed a problem with the form designer emitting invalid code when the form prg contains
nested classes (#828)

· Fixed a problem with code completion showing the wrong members when opened just
left to a closing paren (#826)

· Fixed a VS crash when clicking on a generic class (#827)

· Fixed a problem with the keyword colorization for expressions such as SET CENTURY
&cOn, where &cOn was colored in the keyword color.

· Parameter tips for nested function calls required an extra space before the name of the
nested function (#728)

· Fixed a problem with the form designer deleting delegates and other nested types in the
form.prg (#828)

· The background process to load the types in the ClassView / ObjectView windows was
slowing down the VS performance. This has been disabled for now.

· Fixed type lookup for Generic types.

· Hovering the mouse over a constructor keyword was showing a tooltip for the class and
not for the constructor. This has been fixed.

· Fixed an issue in the code generator for Windows Forms for literal characters with
special values (such as '\0') (#859)

· Fixed an exception in the project system when the project system was initialized in the
background (for example when no X# projects were opened) (#852)

· Fixed missing code completion for the LONGINT and SHORTINT keywords (#850)

· The context menu option "View in Disassembler" is now only shown for X# projects

· Fixed code generator problem with ARRAY OF <type> (#842)

· Fixed a performance problem when clicking on code in the editor (#829)

· Fixed a problem with loading Windows Forms when the lookup of a nested type failed.

New features

· We have added a context item to the project context menu in the solution explorer to edit
the project file. This will unload the project when needed and then open the file for
editing.

· The Rebuild Intellisense Database menu option in the Tools/XSharp menu now unloads
the current solution, deletes the intellisense database and reopens the solution to make
sure that the database is recreated correctly.

118X# Documentation

© 2015- 2024 XSharp BV

· We have made some changes to the process that parses the source code for a
solution in the background.

· Generic Typenames are now stored in the Name`n format in the Intellisense database,
for example IList`1 for IList<T>

Runtime

New features

· Added missing ErrorExec() function (#830)

· Added support for BlobDirectExport, BlobDirectImport, BlobDirectPut and BlobDirectGet
(#832)

· Fixed a problem with creating DBF files with custom file extension. Also added support
for _SET_MEMOEXT (#834)

· When you do a numeric operation on two USUALs of different types we now make sure
that decimal values are no longer lost (#808). For example a LONG + DECIMAL will
result in a DECIMAL. See the table in the USUAL type page in this help file for the
possible return values when mixed types are used.

Bug Fixes
· Fixed a problem with _PrivateCount() throwing an InvalidateOperationException (#801)

· Fixed a problem with member completion in the editor sometimes showing methods of
the wrong type (#740)

· Fixed some problems with the ACopy() function (#815)

· Fixed a few issues that were remaining related to DATEs in VOSTRUCTs (#773)

Macro compiler

New features

· Added support for the & operator (#835)

· Added support for parameters by reference (both @ and REF are supported) for late
bound method calls (#818)

VOXporter

Bug Fixes

· Fixed problem with incorrectly prefixing PUBLIC declarations with "@@"

119 XSharp

© 2015- 2024 XSharp BV

Changes in 2.9.0.2 (Cahors)

Compiler

New features

· The parser now supports class variable declarations and global declarations with
multiple types(#709)

EXPORT var1 AS STRING, var2, var3 as LONG
GLOBAL globalvar1 AS STRING, globalvar2, globalvar3 as LONG

· If you are using our parser you should be aware that the ClassVarList rule has
disappeared and that the ClassVars, VoGlobal and ClassVar rules have changed.

· We have added a command to fill a foxpro array with a single value
STORE <value> TO ARRAY <arrayName>

· When you create a VOSTRUCT or UNION that contains a DATE field, then the compiler
will now use the new __WinDate structure that is binary compatible with how DATE
values are stored inside a VOSTRUCT or UNION in Visual Objects (#773)

· It is now possible to use parentheses for (instead of brackets) accessing ARRAY
elements in the FoxPro dialect. The compiler option /fox2 must be enabled for that to
work (#746)

· We have added support (for the FoxPro dialect only) for accessing WITH block
expressions inside code of a calling function / method. So you can type .SomeProperty
and access the property that belongs to a WITH BLOCK expression inside the calling
code. To use this Late Binding must be enabled, since the compiler does not know the
type of the expression from the calling code (#811).

Bug fixes

· When you use the NEW or OVERRIDE modifier for a method where no (virtual) method
in a parent class exists an error will now be generated (#586, #777)

· Fixed a problem with LOGICAL AND and OR for USUAL variables in an array (#597)

· Error messages and Warnings for some compiler generated code (such as Late bound
code) were not always pointing to the right line number, but to the first line in the body of
the method or function. This has been fixed. (#603)

· Fixed a problem incorrect return values for IIF expressions (#606)

· Fixed a problem in the compiler when parsing multiple method names on a DECLARE
METHOD line (#708)

· Fixed a problem in the FoxPro dialect with assigning a single value to an array to fill the
array (#720)

· Fixed a problem with the calculation of VOSTRUCT sizes when the structure contained
a member of type DATE (734)

· The previous problem caused runtime errors (#735)

120X# Documentation

© 2015- 2024 XSharp BV

· Fixed a problem in code like this (#736)
var aLen := ALen(Aarray)

· Fixed a compiler crash when overriding CLIPPER method with STRICT for methods
with typed return value (#761)

· When the interface implementation had different casing then the definition then an
incorrect error message was shown (#765)

· Fixed a compiler crash with incorrect function parameters inside a codeblock (#759)

· Recursive definitions of DEFINEs could result in an infinate loop inside the compiler
causing a StackOverflowException(#755)

· Fixed a problem with late bound calls and OUT parameters (#771)

· If you compile with warning level 4 or lower then certain warnings for comparing value
types to null are not shown. We have changed the default warning level to 5 now. (#772)

· Fixed a compiler crash with multiple PRIVATE &cVarName statements in the same
entity (#780)

· Fixed a problem with possibly corrupting the USUAL NIL value when passing USUAL
params by reference (#784)

· Fixed a problem with declared PUBLIC variables getting created as PRIVATE in the
FoxPro dialect (#753)

· Fixed a problem with using typed defines as default arguments (#718)

· Fixed a problem with typed DEFINEs that could produce constants of the wrong type
(#705)

· Fixed a problem with removing whitespace from #warning and #error directive texts
(#798)

Runtime

New Features

· We have added several strongly typed overloads for the Empty() function that should
result in a bit better performance (#669)

· We have added an event handler to the RuntimeState class. This event handler is called
"StateChanged" and expected a method with the following signature:
 Method MyStateChangedEventHandler(e AS StateChangedEventArgs) AS VOID
The StateChangeEventArgs type has properties for the Setting Enum, the OldValue and
the NewValue.
You can use this if you have to synchronize the state between the X# runtime and an
external app, for example a Vulcan App, VO App or for example (this is where we are
using it) with an external database server, such as Advantage.

· We have added a new (internal) type __WinDate that is used when you store a DATE
value into a VoStruct or Union. This field is binary compatible with the Julian date that
VO stores inside structures and unions.

· We have added an entry to the RuntimeState in which the compiler stores the
current /fox2 compiler setting for the main app.

· Added runtime support to support filling FoxPro arrays by assigning a single value.

Bug Fixes

· Fixed a problem (incompatibility with VO) in the Descend() function (#779) -
IMPORTANT NOTE: If you are using Descend() in dbf index expressions, then
those indexes need to be reindexed!

121 XSharp

© 2015- 2024 XSharp BV

· Late bound code that was returning a PSZ value was not correctly storing that inside a
USUAL (#603)

· Fixed a problem in the Cached IO that could cause problems with low level file IO (#724)

· The VODbAlias() function now returns String.Empty and not NULL when called on an
area where no table is open. (#733)

· Fixed a compatibility problem with the MExec() function (#737)

· The M-> prefix was not recognized correctly inside codeblocks (#738)

· The Explicit DATE -> DWORD cast was returning an incorrect value for NULL_DATE.

· Fixed a problem with late bound calls and OUT parameters (#771)

· Added a new __WinDate type that is used to store DATE values inside a VOSTRUCT or
UNION. (#773)

· Fixed several problems with FoxPro arrays

· Removed TypeConstraints on T for functions that manipulate __ArrayBase<T>

· Fixed a problem with Directory() including files that match by shortname but not by
longname (#800)

RDDs

· When creating a new DBF with the DBFCDX driver an existing CDX file is not
automatically deleted anymore (#603)

· Fixed a problem with updating memo contents in DBFCDX (#782)

· Fixed a runtime exception when creating DBFCDX index files with long filenames (#774)

· Fixed a problem with with DBSeek() with active OrderDescend() finding even deleted
records

· Fixed a problem with a missing call to AdsClearCallbackFunction() in the ADS RDD in
OrderCreate() (#794)

· Fixed a problem with VODBOrdCreate function failing it the cOrder parameter contains
an empty string (#809)

Macro compiler

· Fixed a problem in the Preprocessor

· Added support for parameters passed by reference with the @ operator

· Added support for M->, _MEMVAR-> and MEMVAR-> prefixes in the macro compiler

· When the Macro compiler finds 2 or more functions with the same name it now uses
the same precedence rules that the compiler uses:
o Functions in User Code are used first
o Functions in the "Specific" runtimes (XSharp.VO, XSharp.XPP, XSharp.VFP,

XSharp.Data) take precedence over the ones inside XSharp.RT and XSharp.Core
o Functions in XSharp.RT take precedence over functions inside XSharp.Core

Visual Studio Integration

In this build we have started to use the "Community toolkit for Visual Studio extensions"
that you can find on GitHub. This toolkit contains "best practices" for code for VS
Extension writers, like we are. As a result more code is now running asynchronously
which should result in better performance.
We have also started to remove 32 bit specific code that would become a problem when
migrating to VS 2022 which is a 64 bits version if Visual Studio that is expected to ship in
November 2021.

122X# Documentation

© 2015- 2024 XSharp BV

New features

· Added several new features to the editor
o The editor can now show divider lines between entities. You can enable/disable this in

the options dialog (#280)
o Keyword inside QuickInfo tooltips are now colored (#748)
o Goto definition now also works on "external" types. The editor generates a temporary

file that contains the type information for the external type. In the options dialog you
can also control if the generated code should contains comments (as read from the
XML file that comes with an external DLL). (#763)

o You can control which keyword is used for PUBLIC visibility from the Tools/Optons
menu entry (PUBLIC, EXPORT or No modifier at all)

o You can control which keyword is used for PRIVATE visibility from the Tools/Optons
menu entry (PRIVATE or HIDDEN).

· The various code generators inside VS now follow the capitalization rules from the
source code editor.

· The intellisense database now has views that return the unique namespaces in the
source code and in the external assemblies

· The X# specific menu points in the Tools menu have been moved to a separate
submenut

· Added option for the WinForms designer to generate backup (.bak) files of form.prg and
form.designer.prg files when saving (#799)

Bug Fixes

· Fixed several problems in the editor:
o We have made several improvements to increase the speed inside the editor (#689,

#701)
o Fixed a problem in the type lookup of variables for FOREACH loops (#697)
o Parameter tips were not shown for methods selected from a completion list (#706)
o Keyword case synchronization did not work when the keyword was not followed by a

space (#722)
o Goto definition always went to line 1 / column 1 in the file where a function was defined

(#726)
o Code completion for Constant members of classes (#727)
o QuickInfo for DEFINES (#730, #739)
o VOSTRUCT Member completion with the '.' operator (#731)
o The ENUM and FUNC keywords are now recognized as identifier and not case

synchronized in these cases.(#732)
o Fixed a problem when opening files (#742)
o Fixed parameter tip display for default values NULL, NULL_DATE and NULL_OBJECT

(#743)
o Fixes broken parameter tips for constructors (#744)
o Nested classes were not always handled correctly by the intellisense (#745)
o Fixed a problem in the type lookup of variables declared with ARRAY OF <something>

(#749)
o The Editor could sometimes "freeze" when the buffer contained invalid code (#751)
o Non-existing namespaces would produce a bogus completion list (#760)
o Fixed an editor exception in some cases when typing invalid code (#791)

· The code generator for Windows Forms was replacing tab characters with spaces.
This has been fixed.(#438)

123 XSharp

© 2015- 2024 XSharp BV

· Fixed a problem with the Form Designer corrupting code that contains EXPORT
ARRAY OF <type>

· Fixed a problem with the Form Designer that when removing an event handler in the
editor, some code was deleted (#812)

· Fixed a problem with the Form Designer converting EXPORT, INSTANCE and HIDDEN
keywords to PUBLIC and PRIVATE (#802)

VO-Compatible Editors

· Now all VO-compatible editors support full Undo/Redo functionality. Also added
cut/copy/paste functionality to the Menu editor

· Fixed several visual problems with VOWED controls in Design and Test mode (#741)

· Fixed a VS crash when Alt-Tabbing out of the editors, with the Properties window having
focus (#764)

· Adjusted ComboBoxEx controls to have the same fixed height, as in VO. Also allowed
the previous behavior, when the user has manually increased the height by more than
50 pixels, then this height is being used instead (#750)

· Added a bitmap thumbnail for the "Button Bmp" property of the Menu Editor in the
Properties Window

· Added support for specifying a Ribbon in the Menu Editor. The ribbon (bitmap) to be
used needs to be specified as a filename in the properties of the Menu's main item
(#714)

· Fixed some issues with event code generation in the Window Editor (#441, #46)

Changes in 2.8.3.15 (Cahors)

Compiler

New features

· You can now use the .AND. logical operator and .OR. logical operator between variable
names or numbers without leading or trailing whitespace (a.AND.b)

· The PRIVATE declaration in the FoxPro dialect no longer allows an initializer.

· Added support for the FoxPro NULL date ({ / / }, { - - } and { . . }) in the FoxPro dialect

Bug fixes

· Fixed a problem with a DIM array that uses a DEFINE for its dimension (#638)

· Fixed a problem with the FoxPro PUBLIC ARRAY command (The ARRAY keyword is no
longer mandatory) (#662).

· Fixed a problem with DEFAULT(Usual) expressions as parameters for function /
method calls (#664)

· Fixed a problem with variables declared with the LOCAL declaration and dimensioned
with the DIMENSION command (#683)

· Fixed issue with overloads with the same name in different X# runtime assemblies that
manifested itself with problems with FRead()(#686)

124X# Documentation

© 2015- 2024 XSharp BV

· Fixed a problem with passing PRIVATE and PUBLIC memory variables by reference
(#691)

· Fixed a problem with PARAMETERS statement (#691)

· Fixed a problem with real numbers (#704) that was caused by the change in handling of
.AND. and .OR.

· Fixed a problem parsing the DECLARE METHOD / ACCESS / ASSIGN lines inside
class declarations.

· Fixed a problem with truncating results for binary operators (+, -, *, /) for mixed integral
types (e.g. int and word)

Runtime

Bug Fixes

· The _shutdown flag in the Runtime State is now set when the system shuts down.

· Fixed a problem with the FoxPro ALen() function (#650)

· Added default values on several locations (#678)

· Fixed a problem where FRead() on a file opened by an RDD would go into an endless
loop (#688)

· Fixed a problem with FieldGet() when the file is at EOF (#698)

· Fixed a scope problem when the scope was empty and a record matching the scope
was added in another workarea or by another workstation (#699)

· Fixed a problem with the BOF setting after a Skip(0) (#700)

MacroCompiler

New features
· You can now use the .AND. operator between variable names or numbers without

leading or trailing whitespace
· Added support for the FoxPro NULL date ({ / / }, { - - } and { . . }) in the FoxPro dialect

· Strings containing .AND. and .OR. are no longer reformatted by the macro compiler
(#694)

· We have added an experimental new faster script compiler. This script compiler allows
to compile statements, so no functions, classes etc.
This new script compiler is much faster than the existing script compiler and uses a lot
less memory.
To call this script compiler use the new function ExecScriptFast() which has the same
parameters as ExecScript().
You can compile multiline scripts. The compiler should recognize all statements
including PARAMETERS and LPARAMETERS to receive parameters.
If you are using scripts in your code we would love to hear feedback.
An example of code that should work:

FUNCTION Start() AS VOID
LOCAL ctest AS STRING
TRY
 cTest := "? 'Hello world'"
 ExecScriptFast(cTest)
 cTest :=String.Join(e"\n",<STRING>{;

125 XSharp

© 2015- 2024 XSharp BV

 "PARAMETERS a,b,c",;
 "RETURN CallMe(a,b,c)"})
 ? ExecScriptFast(cTest,1,2,3)
 cTest :=String.Join(e"\n",<STRING>{;
 "LPARAMETERS a,b,c",;
 "RETURN CallMe(a,b,c)"})
 ? ExecScriptFast(cTest,1,2,3)

CATCH e AS Exception
 ? e:ToString()
 END TRY

wait
RETURN

FUNCTION CallMe(a,b,c) AS USUAL
 ? "Inside function, parameters received",a,b,c
 RETURN a+b+c

Please test this new functionality and let us know what you think of it.

Visual Studio Integration

New Features

· "Highlight word" now highlights words in the whole file when the cursor is outside of an
entity (for example on the USING statements in the start of the file).

Bug Fixes

· Fixed a problem with displaying names of custom controls in the toolbox of the VO
compatible Windows Editor

· Fixed a problem with extra spaces when loading settings from cavowed.inf for the VO
compatible Windows Editor

· Fixed a problem with an incorrect completion list after an assignment statement (#658)

· Fixed an exception in the editor after deleting code (#674)

· Fixed a "freeze" problem in the VS IDE when attaching a file to the shell window (#676)

· Fixed a problem when using dot instead of colon in VO Dialect with AllowDot (#679)

· Fixed a problem with showing a completion list inside class (#685)

· Fixed a performance problem in the editor (#689)

· Fixed a problem with showing function overloads in the editor (#692)

· Fixed a problem with intellisense after a !, .NOT. or other operator (#693)

· Fixed a problem where the incorrect methods were shown in the completion list (#695)

Tools

· Fixed an issue in VOXPorter with resources and the copying to the Resources subfolder

126X# Documentation

© 2015- 2024 XSharp BV

Changes in 2.8.2.13 (Cahors)

Compiler

· Fixed issues with extension methods that were not marked as STATIC (#660)

· Fixed problem with IIF() expressions that returned an OBJECT and were assigned to a
Decimal

· The pragma commands were not checking for the current dialect

· Fixed an exception in the preprocessor

· The FoxPro LOCAL ARRAY was not generating a LOCAL variable but a PRIVATE
variable.

· Functions in XSharp.RT that are overridden in XSharp.VO, XSharp.VFP or XSharp.RT
will no longer generate a warning. The version that is not in XSharp.RT will have
preference

· Enumerating a USUAL variable in a FOREACH loop will now call a runtime function that
returns the ARRAY inside the USUAL or throws an error otherwise

· Implicit conversions from OBJECT -> NUMERIC are now supported when /vo7 is
enabled.

Runtime

· Enumerating a USUAL variable in a FOREACH loop will now call a runtime function that
returns the ARRAY inside the USUAL or throws an error otherwise (#246)

· Fixed a problem creating index with an Eval block and 0 records (#619)

· Fixed an incompatibility with the ALen() function and array handling compared to FoxPro
(#642)

· We have fixed some issues in FoxPro AIns() function (#650)

· We have added a ShowFoxArray() function that will be automatically called when you
call ShowArray() on a FoxPro array (650)

· Added support for OClone()

· The _Quit() function now closes all databases and then kills the current running process
(#665)

· Fixed a problem with DbOrderInfo (#666)

· Fixed a problem with the unary minus operator for currency values (#670)

· Fixed a problem in the Integer function when a Currency value was sent in (#671)

· We have added an implementation of MemCheckPtr() (#677)

Macro compiler

· Fixed a problem calling functions after a new assembly was loaded with
Assembly.Load()

· Added support for passing variables by references (not yet for functions with Clipper
calling convention) (#653)

127 XSharp

© 2015- 2024 XSharp BV

VO SDK

· Fixed a problem in GetObjectByHandle() in the GUI Classes(#677)

Visual Studio Integration

· Fixed an exception on the Build Options page inside VS (#654)

· The project system did not write back the right property for the XML documentation
generation (#654)

· Intellisense could crash in header files (#657)

· We have added #defines and user defined commands (#command, #translate) to the
members combobox in the editor as members of the global type. You can now also do a
Goto definition on a value defined with #define.

· We have fixed a problem with member completion for enums (656)

· We have fixed a problem with the Windows Forms Editor that could happen if another
VS extension had loaded an older version of Mono.Cecil (#661)

· Code completion was not showing instance members when the project option "Allow
dot" was enables (#679)

· The "header" new item template had a .VH extension. This has been changed to .XH

· Fix a crash in the VO Compatible windows editor that happened with an incorrect
CAVOWED.INF

· Code completion inside parentheses for a method or function call was not working
correctly

· Improved Build Speed in Visual Studio when no files are changed (#675)

Tools

· VO Xporter was generating 2 lines in the .xsproj file for the output folder (#672)

Changes in 2.8.1.12 (Cahors)

Compiler

· Fixed issues with interpolated strings (#598, #622):
o The script compiler now correctly sets the AllowDot compiler option from the current

active dialect in the runtime (Core & FoxPro: AllowDot = true)
o When compiling with DOT(.) as instance method separator then the ":" character is

used inside interpolated strings to prefix the format string.
o When compiling with COLON (:) as instance method separator then the colon can not

be used to separate expressions from the format string inside interpolated strings. In
that case we now support a double colon (::) between the expression and the format
string. For example

128X# Documentation

© 2015- 2024 XSharp BV

LOCAL num as LONG
num := 42
? i"num = {num::F2}" // this diplays num with 2 decimals
WAIT

· You can now use DATE fields inside VOSTRUCT and UNION (#595)

· Fixed an assertion error 'UnconvertedConditionalOperator' (#616)

· Fixed an assertion error in the compiler when the namespace "xsharp" is used (#618)

· Fixed an "failed to emit" problem for methods defined in COM assemblies with default
arguments and arguments passed by reference (#626)

· Fixed a problem with the handling of default parameters and method calls (#629)

· Fixed a problem where the _SizeOf() operator was not calculating the right size for a
VOSTRUCT (#635).
Please note that _SizeOf() can only be calculated at compile time when your application
is compiled for x86 or x64 mode. When compiling for AnyCpu we will be calculating
_SizeOf() at runtime.

· Fixed a problem where the "IS Pattern" was not always working correctly for variables of
type USUAL (#636)

Runtime

· Implemented the FoxPro Evl() function (#389)

· DbCloseArea() was returning TRUE even when no area was open. This was
incompatible with VO. We are returning FALSE now.(#611)

· Macro compiler was not able to find functions in assemblies that were loaded
dynamically (#607)

· When a DBF file was opened "readonly" and then an index was created, then a runtime
error would happen when the file was closed, because the RDD was trying to set the
"production index" flag in the DBF header. This flag is no longer set for files that are
opened "readonly" (#610)

· Fixed an exception (that was caught) inside DbOrderInfo(DBOI_KEYCOUND) (#613)

· Fixed a problem with the Workareas debug window (#625)

· DbOrderInfo() was returning incorrect values when an index was not abailable (#627)

· Fixed a problem with TransForm() and symbol arguments (#628)

· Fixed a problem with the StrZero function (#637)

· Fixed a problem with the AELement() function (#639)

RDD System

· Fixed a problem with indexes on workareas/cursors created with the SqlExec() function
when the index expression contained "nullable" fields (#630)

Macrocompiler

· The macro compiler had problems finding functions that were inside an assembly that
was loaded later (#607)

129 XSharp

© 2015- 2024 XSharp BV

Visual Studio Integration

· Fix problem with saving dialect from General Page

· Quick info and Goto definition were not working for members inside the same class
when they were not prefixed with SELF:

· Fix code completion for nullable types with the '?' syntax (#567)

· Methods combobox was not correctly synchronized (#602)

· Todo comments were not always parsed correctly, They were also included when they
were part of another word or when they were not the first word on the line. This has
been fixed.(#617)

· Fix problem that "warnings as errors" was not saved from the Build properties page
(#621)

· Fix problems that would start occurring after editor window was split (#641)

· After selecting a member of type "Assign" from the completion list the editor was
incorrectly inserting a '(' character (#643)

· Typing '(' on the declaration line of an entity (function, method) would trigger parameter
completion. This has been fixed.(#643)

· Parameter tips were not shown for Constructor calls (#645)

· Completion list was incorrectly including static members (#646)

· QuickInfo for external types was not including "AS Type" for the parameters (#647)

· Fixed a problem when resolving parser options for a project that was not yet completely
loaded (#649)

· Local variables were not always recognized with their correct type in the editor (#651)

Installer

· The installer was adding an incorrect version of XSharp.CodeAnalysis.dll to the Global
Assembly Cache. This has been fixed.

Changes in 2.8.0.0 (Cahors)

Compiler

General

· We have migrated to the latest version of the Roslyn source code.

· Passing a typed variable by reference to a function/method with clipper calling
convention (untyped parameters) was not updating the local variable. This has been
fixed.

· Using the @ operator in a program in the VO Dialect when the /vo7 compiler option is
NOT enabled could generate code that produces an error "Cannot be boxed". (#551)

· The generated code for NULL_PSZ and NULL_SYMBOL has been optimized (#398)

· The generated VoStructAttribute on structures and unions had the wrong size when an
element with the PSZ type was used. This has been fixed.

130X# Documentation

© 2015- 2024 XSharp BV

· Fixed an internal compiler error when converting NULL to LOGIC

· The _SIZEOF() operator will generate a constant now for VOSTRUCTS and UNIONS.
(#545)

· Using a keyword as field name could cause problems. For example FIELD->NEXT was
not handled properly. The compiler now allows that. Of course you can also use the
@@ prefix to tell the compiler that in a particular case you do not mean the keyword but
an identifier.

· Parenthesized expression that contained an expression list were not compiled correctly.
This has been fixed.
This could happen when you wanted to have more than one expression as part of an
IIF() expression.

 LOCAL l AS LOGIC
 LOCAL v AS STRING
 l := TRUE
 v := "abcd"
 ? iif (l, (v := Upper(v), Left(v,3)), (v := Lower(v), Left(v,4)))

Since Roslyn (the C# compiler) does not allow an expression list inside a conditional
expression, we are converting the parenthesized expression now to a function call to a
local function. The expressions inside the Parenthesized expression become the body
of the new local function and the compiler calls the generated local function.

· The compiler now warns if you call a Function in a class that has a member with the
same name. For example

CLASS Test
METHOD Left(sValue as STRING, nLen as DWORD) AS STRING
 RETURN "Test"
METHOD ToString() AS STRING
 RETURN Left("abc",2) // This will generate a warning that the
function Left() is called and not the method Left().
 // if you want to call the method you
will have to prefix the call with SELF:
END CLASS

New language features

· We have added support for LOCAL FUNCTION and LOCAL PROCEDURE
statements.
These functions and procedures become part of the statement list of another function,
procedure, method etc. They have the following restrictions:
o A LOCAL FUNCTION must be terminated with END FUNCTION, a LOCAL

PROCEDURE must be terminated with END PROCEDURE
o The full "signature" of normal functions is supported, so Parameters, Return type,

Type Parameters and Type Parameter constraints.
o They cannot have Attributes (they are not compiler into methods but in a special kind

of Lambda expression)
o The only valid Modifiers for a local function are UNSAFE and ASYNC

131 XSharp

© 2015- 2024 XSharp BV

o Because they cannot have Attributes, we also do not support untyped parameters, so
all parameters must be typed

o If you need a local function with a variable number of parameters then you can define
default parameter values or use a PARAMS array

o Local functions can access local variables from its surrounding code. Roslyn creates
a special structure where it stores the variables that are shared between the local
function and its surrounding code.

· Added support for Expression bodied members. Expression body definitions let
you provide a member's implementation in a very concise, readable form. You can
use an expression body definition whenever the logic for any supported member,
such as a method or property, consists of a single expression. An expression body
definition has the following general syntax:
MEMBER => expression
An expression-bodied method consists of a single expression that returns a value
whose type matches the method's return type, or, for methods that return void, that
performs some operation. For example, types that override the ToString method
typically include a single expression that returns the string representation of the
current object.
An example of this could be

CLASS MyClass
METHOD ToString() AS STRING => "My Class"
END CLASS

The result of this code is exactly the same as

CLASS MyClass
METHOD ToString() AS STRING
 RETURN "My Class"
END CLASS

So you could say that the => operator replaces the RETURN keyword.

· We have added support for the Null Coalescing Operator (??) like C# has as well
as the Null Coalescing assignment operator (??=).
This operator does a check for != null. The operator will only work on Reference
types so not on value types like USUAL, DATE and the built-in types like INT.

FUNCTION Start() AS VOID
LOCAL s := NULL AS STRING
s := s ?? "abc" // The ?? is the Null Coalescing
Operator
s ??= "abc" // This is the same as the line
before but compacter
? s
RETURN
// So this will not compile
LOCAL i := 0 AS LONG
i := i ?? 42 // Operator '??' cannot be applied to
operands of type 'int' and 'int'

132X# Documentation

© 2015- 2024 XSharp BV

// But this will compile
LOCAL i := NULL AS LONG? // Nullable LONG
i := i ?? 42

· We have added support for the Properties with INIT accessors. These accessors
allow you to assign a value to a property but only in the constructor. The property will
be read only outside of he constructor of the class / structure.

· We have added a new compiler option /enforceself. When this option is used then all
calls to instance methods inside a class must be prefixed with SELF (or SUPER). In the
FoxPro dialect THIS is supported too. Please note that some generated code, such as
inside the Windows Forms editor does not use SELF: and applying this compiler option
may force you to change the generated code, or may force you to add an #pragma
options("enforceself", disable) to the code to disable the option for that file.

· We have added a new compiler option /allowdot. With this option you can control if the
DOT (".") operator is allowed to be used to access instance members. The default for
the Core and FoxPro dialect is /allowdot+. The default for the other dialects is /allowdot-.
You can also use this with a #pragma: #pragma options("allowdot", enable)

· XML comments in the source code no longer require fully qualified cref names (#467)

Preprocessor

· The preprocessor now automatically declares a match marker with the name <udc>.
This match marker will contain all the tokens that were matched with the UDC by the
preprocessor. This can be used for example to add the original source as string to the
result:
#command INSERT INTO <*dbfAndFields*> FROM MEMVAR =>
__FoxSqlInsertMemVar(<"udc">)

· Wildcard markers (such as the dbfAndFields marker in the previous bullet) now can
also appear in the middle of a UDC. They will continue to match until the first token after
the Wildcard marker (in the above example the FROM keyword) is found.

· The standard header files (from the XSharp\Include folder) are now also included in the
compiler as resource. When the file is missing then these files will be loaded from the
resource.

· The preprocessor was not generating macros for __FOX2__ . This has been fixed (but
it is now obsolete, see the FoxPro dialect)

· When wildcard tokens are included with a stringify result marker then the white space
between these tokens is correctly included in the output of the UDC.

FoxPro dialect

· The feature to allow parentheses as array delimiters for the FoxPro dialect that was
added in the previous build had too many side effects. We have removed this feature for
now. You have to use bracketed array arguments again.

· The /fox2 compiler option is no longer needed (and ignored by the compiler).
The compiler now checks to see if a runtime function is marked
NeedsAccessToLocalsAttribute, which is defined in the XSharp.Internal namespace.
If the compiler finds a function that is marked with this attribute, such as the Type()
function or the SQLExec() function then it will add some code before and after the
function call to allow these functions to access the locals on the stack. This will only
happen if the /memvar compiler option is enabled and only in the FoxPro dialect.
The NeedsAccessToLocalsAttribute has a mandatory parameter which indicates if a

133 XSharp

© 2015- 2024 XSharp BV

function is expected to write to the locals or only read the locals.
When the function is expected to write to locals then the compiler will generate extra
code after the call to make sure that the locals are updated when needed.

· We have added a standard header file for the FoxPro embedded SQL statements. This
header file should parse embedded SQL but will output warnings that the embedded
SQL is not yet supported.

· We have added the FoxPro array support, with a special subtype of the Array type in the
runtime and support for DIMENSION and (Re)DIMENSION and filling arrays by
assigning a single value. (#523)

Runtime

General

· Fixed a problem with the return value of FSeek() and FSeek3()

· AsHexString() and AsString() were not displaying the same result for PTR values as
Visual Objects.

· Fixed a problem with SetScope() for the DBFCDX RDD when the previous scope was
empty. (#578)

· Adjusted the Secs() function to make it more Visual Objects compatible.

· The enumerator for Array and Array Of now returns an enumerator for a clone of the
internal data, to prevent runtime errors when you are modifying the array from within
your code.

· The various Xbase types (DATE, FLOAT, CURRENCY, BINARY, ARRAY, USUAL etc.)
are now marked with a [Serializable] attribute and implement ISerializable. They all work
fine with the BinaryFormatter() classes, since that class not only stores the values but
also the values in the stream. Most of the types also work with the JsonSerializer,
however not all of values can be correctly deserialized with the Json serializers. (#529)

· The CompareTo() operator on the Date type was not sorting the values correctly
because it was making an incorrect assumption about the memory layout of the
elements in the structure. This has been fixed.

· We have made some changes in the error handling for functions such as DbUseArea()
and DbSkip(). They were not always behaving the same as Visual Objects when an
error occurs (for example when a file could not be opened). We have now also added
an error handler similar to the default error handler in Visual Objects with a dialog that
has the Abort, Retry and Ignore buttons. The Retry button is only enabled when the error
object has the property "CanRetry" set to TRUE. (#587, #594)

· Fixed Val() incompatibility with string that has more than one decimal place (#572)

· Fixed a problem with comparing dates "in reverse" (#543)

· We have added a couple of functions that bring up dialogs to display the current open
workareas, settings, globals and private and public memory variables. See
DbgShowGlobals(), DbgShowWorkareas(), DbgShowMemvars() and
DbgShowSettings()

RDD system

· DbCommit and DbCommitAll were failing when a workarea is opened Read only. This
has been fixed. (#554)

· When FoxPro CDX file has more than one tag and one of the tags has an invalid index
expression (for example a missing closing parenthesis, which was accepted by Visual
Objects) then the RDD system did not open the CDX at all. We now open the CDX with
the exception of the tag with the corrupted index expression. (#542)

134X# Documentation

© 2015- 2024 XSharp BV

· Added support for Advantage GUID and Int64 columns. GUIDs are returned as string
and INT64 as INT64. We have also added some missing DEFINE values from the ACE
header file.

· Fixed a problem with incorrect negative Lock Offsets in the DBFNTX driver.

· We have fixed several "exotic" problems with index "information" (KeyCount, KeyNo)
etc. with indexes with Scopes, Descending indices etc. (#423, #578, #579, #580, #582,
#583, #593, #599)

· Fixed problems when opening MEMO files (Fpt and DBT) from different threads and
different workstations (#577)

· We have fixed a locking and corruption problem that could occur when 2 stations were
frequently writing to the same CDX file. (#575, #592)

· Improved Locking Speed when a lock fails. (#576)

· SetOrder(0) was not working for ADS tables (#570)

· Changed several method prototypes for ADS to have the correct IN / OUT modifiers
(#568)

Macro Compiler

· Fixed a problem in the FoxPro dialect assigning a value to an expression in the form of
VariableName.PropertyName

· The X# macro compiler was allowing to reference GLOBAL and DEFINE values in
macros. This made the compiler incompatible with VO and this would cause problems
when indexing on a field with the same name as a GLOBAL or DEFINE. The support to
reference GLOBALs or DEFINEs has been removed from the macro compiler. (#554)

· The Macro compiler had a problem with a variable name was surrounded with
parentheses. It was seeing that as a typecast. This has been fixed. (#584)

Visual Objects SDK

· Added some missing defines to the Win32APILibrary assembly, such as
DUPLICATE_SAME_ACCESS.

· DbServer:Filter was sometimes returning NIL instead of an empty string (#558)

VO Dialect
· We have added support for SysObject (#596)

Xbase++ dialect

· Fixed a problem with XPP Collation tables that was introduced in 2.7

FoxPro dialect

· Added the NeedsAccessToLocalsAttribute for the /fox2 compiler option

· Adjusted the code that exposes the values of LOCAL variables to functions such as
Type() and SqlExec().

· Several functions have been marked with the new attributes so they will be able to "see"
local variables.

· Added an overload of TransForm() with a single argument.

· Fixed a problem with the SQLExec() function and sql statements that contain a
":" (colon) character.

· We have added the Bit..() functions (thanks Antonio)

· We have added CapsLock(), NumLock() and InsMde (hanks Karl-Heinz)

· We have improved the FoxPro array code (#523)

135 XSharp

© 2015- 2024 XSharp BV

Runtime Scripting

This build introduces Runtime Scripting through the ExecScript() function. At this moment
you will have to include the Full macro compiler (XSharp.MacroCompiler.Full.dll) and its
support DLLs (XSharp.Scripting.dll , XSharp.CodeAnalysis.dll) if you use Runtime
scripting,
We are working on a light weight version of the Runtime Scripting which will be included in
one of the next builds.
See the topic Runtime Scripting for more information.

Visual Studio Integration

The Visual Studio integration in this build no longer supports Visual Studio 2015. Only
Visual Studio 2017 and 2019 are supported.

General

· New code templates in a subfolder were generated with a namespace name that starts
with "global::". This has been fixed.

· Added support for LOCAL FUNCTION and LOCAL PROCEDURE.

· Adding an item from the Class template in a folder prefixed the namespace with
"global::". This has been fixed.

· When the intellisense database file on disk was corrupted then an error occurred. Now
the file is deleted and all code information is collected again.

· The Editor options in the Tools/Options dialog are now marked with "X#" and no longer
with "XSharp".

· We have added a window under Tools/Options where you can set several values for our
VO compatible editors, such as the grid size, paste offset etc. Look for X# in the tools
options dialog.(#279, #440)

· We have added 2 new options to the formatting options for the editor: "Trim Trailing
Whitespace" and "Insert Final Newline"

· Loading a MsTest project did not always work. The project file for MsTest projects will
be adjusted when opening the project. (#563)

· We have added support for t4 templates (text files with a .tt extension containing scripts
to generate code)

· Adding an existing .resx file did not make it a child of a parent form.prg (#197)

· The project property dialogs have been completely redesigned.

Source code editor

· Longer QuickInfo tooltips are now shown over multiple lines to make them easier to
read.

· Refactored the "type lookup" code to improve the speed of the source code editor

· Member completion in the source code editor was not always working for variables
declared with the VAR keyword where there were nested curly braces and/or
parentheses. (#541, #560)

· Fixed a problem with member completion for project references (#540)

· Fixed an exception when uncommenting a block of lines when one of the lines in the
block was an empty line.

136X# Documentation

© 2015- 2024 XSharp BV

· We have added support for .editorconfig files. See the chapter about .editorconfig files in
the documentation file.

· Collapsing the last entity om the editor did not work correctly (#564)

· Fixed a problem with syntax highlighting after line continuation comments(#556)

· Added parameter completion for delegates (#581)

· Fixed a problem with certain cyrillic characters in QuickInfo tooltips (#504)

Code generator

· Character literals are now always prefixed with the 'c' prefix and values > 127 are written
in Hex notation to make sure they work in all codepages.

Windows Forms Editor

· We have fixed several issues with DevExpress controls.

· Fixed a problem with a control that has the same name as a X# keyword (#566)

· Fixed a problem with a control that has a property of type DWORD (#588)

· Fixed a problem with the code generation for character literals (#550)

· The .designer.prg no longer has to have the "INHERIT FROM " clause. (#533)

Object Browser

· Goto definition was not working when you had performed a search first (#565)

VO Compatible Forms editor

· Added support in the WED for correctly visually displaying custom controls that do not
have the expected control class inheritance defined

· Fixed a problem with custom controls in cavowed.inf not recognized that are not data
aware

· Added support for Cloning Windows (#508)

· Fixed a problem with the display of Checkboxes (#573)

· Fixed a problem with the code generation (#553)

· There is a menu option in Tools/Options to set several settings (#279, #440)

Debugger

· The debugger now fully supports 64 bits debugging

· Added support for the new type names for CURRENCY and BINARY

Templates

· We have made adjustments to several VS item templates and project templates (#589)

· We have added a new X# t4 template (.tt file)

137 XSharp

© 2015- 2024 XSharp BV

Changes in 2.7.0.0 (Cahors)

Compiler

General

· Fixed a problem with Nullable types that were missing an explicit cast for an assignment

· Fixed a problem with calling a parent constructor in a class hierarchy where a parent
level was being skipped and the constructor for the grandparent was called instead.

· The /usenativeversion commandline option was not checking +/- switches. This has
been fixed.

· Fixed a problem with PCall() and PCallNative() in source files with an embedded DOT in
the filename (my.file.prg)

· We have added a new header files to the files in the XSharp\Include files that helps to
add custom User Defined Commands or defines that you want to include in every
project. This file (CustomDefs.xh) will be automatically include by our XSharpDefs.xh.
The default contents of this file is just some comments.
The installer will NOT overwrite the file in this folder and will not delete it when the
product is uninstalled.
You can choose to customize this file in the Include folder under Project Files. However
you can also add a file with the same name to your project folder or to a common
include folder for your project/solution. That last location allows you to keep the header
file under source code control with the rest of your source code.

FoxPro dialect

· The compiler now allows a M Dot (M.) prefix in LOCAL, PRIVATE and PUBLIC
declarations. (LOCAL m.Name)

· The compiler now also accepts parentheses as array delimiters in the Foxpro Dialect
(aMyArray(1,2))

· The compiler now allows (and ignores) AS Type OF Classlib clauses for PRIVATE,
PUBLIC, PARAMETERS and LPARAMETERS declarations.

· Support for TO keyword in CATCH clause of TRY CATCH

· Added support for the ASSERT command and SET ASSERT

· Added support for SET CONSOLE and SET ALTERNATE

· Assignments to macros with a single equals operator were not working (&myVar =
42). This has been fixed.

· Added support for zero length binary literals (0h)

Build System

· Added a project property to control if RC4005 errors (duplicate defines) should be
suppressed for the Native Resource compiler

138X# Documentation

© 2015- 2024 XSharp BV

Runtime

General

· IsMethod() now returns TRUE for overloaded methods.

· AbsFloat() was "losing" the settings for # of decimal places. This has been fixed.

· Binary:ToString() was using single digit numbers for binary values < 15. This has been
fixed.

· Added an implicit operator to assign a usual to a binary.

· Added an implicit conversion for USUAL values that contain an integer to an Intptr.

· Some low level functions now set the OS error number FERROR_EOF when
operations fail, just like in VO.

· Exceptions in late bound code were not always showing the correct location where the
error occurred. This has been fixed.

· We have added support for DataSessions. The list of open workareas/cursors in the
runtime is now called "DataSession" (the old name Workareas is still available).
You can have multiple datasessions. You can also swap the "active" DataSession in the
RuntimeState with a new method SetDataSession on the RuntimeState class.
FoxPro databases are opened in their own datasession.
You can inspect the open DataSessions in the debugger by adding the watch
expression: XSharp.RDD.DataSession.Sessions
Each DataSession is associated with a Thread. When the Thread is stopped or aborted
then the DataSession will be closed, which also closes all of its tables.
At program shutdown all DataSessions are closed including their tables. This is done
through an AppDomain:ProcessExit event handler.

· Low level File IO functions (including the RDD system) that open a file in Exclusive
mode now use "buffered IO". This should result in faster performance.

· The (undocumented) functions to convert a Stream from/to a MemoryStream have been
removed. This is replaced with the buffer I/O from the previous bullet.

· We have added System.Enum types for the FoxPro CursorProperties,
DatabaseProperties and SQLProperties.

· We have added a DatabasePropertyCollection type. This type is used to add "additional"
properties to Fields, such as the DBF fields for FoxPro tables.

Terminal API

· We have added support for Alternate files. SET ALTERNATE TO SomeFile.txt. Also
SET ALTERNATE ON and SET ALTERNATE OFF

· The ? statement now respects the sessions for Set Console and Set Alternate .

· We have added support for the SET COLOR command. Only the fist color in the settings
is used and the blink attribute is ignored and interpreted as "highlight". For example SET
COLOR TO w+/b

· We have added a CLEAR SCREEN command

FoxPro dialect

· Added an Assert dialog

· Added support for DBC files. This includes the SET DATABASE to commands,
DbGetProp() and reading properties for files that are part of a database without explicitly
opening the database first. DbSetProp() does not do anything yet. Also functions like
DbAlias() and similar have been implemented.

139 XSharp

© 2015- 2024 XSharp BV

· The Runtime now works with DataSession object. The DBC files are opened in their
own datasession as well of the files per thread. Each datasession has a list of open
tables and a unique list of aliases and cursor/workarea numbers.

· AutoIncrement columns in cursors returned by SqlExec() now have a numbering
scheme that starts with -1 and subtracts 1 for every new row added.

· Several settings needed for the FoxPro dialect have been added to the Set Enum.

Macro Compiler

· Until now the macro compiler was producing runtime codeblocks that take an array of
objects and return an object return value. There was a class in the runtime that wrapped
this and took care of usual -> object conversion for the parameters and for object->
usual conversion of the return value. This caused a problem when macros were
returning a NIL value because that was converted to NULL_OBJECT.
The reason for the OBJECT API is that the macro compiler needs to be used in the
Core dialect (in the RDD system) and this dialect does not support the USUAL type.
We have now added a new IMacroCompilerUsual interface in the XSharp.RT assembly
that allows you to compile a string into a codeblock that supports USUAL arguments
and a USUAL return value. The macro compiler now supports both this interface as well
as the 'old' interface. As a result you may see a (very small) performance improvement
when compiling macros.

· Calling Altd() and _GetInst() inside a macro was not supported. This has been fixed.

· The macro compiler was reporting an error when you had overridden a built-in function
in your own code. We have now implemented a default
MacroCompilerResolveAmbiguousMatch delegate in the runtime that now gives
preference to functions that are defined in your code over functions in our code.

· When choosing between 2 overloads of a method or function the Macro compiler now
chooses the method with a USUAL parameter over a method without a USUAL
parameter

· Fixed a problem with calling functions/methods with a parameter by reference or an out
parameter

· Added support for the CURRENCY and BINARY types to the macro compiler.

RDD System

· Exclusive DBF access now works in "buffered" mode which should make it a lot faster

· Internally the RDDs now work with the Stream objects, which makes it a bit faster.

· Fixed a problem when updating a key in an index where many duplicate key values
existed.

· Removed duplicate Foxpro "machine" collations for several codepages, since they were
all the same.

· For VFP compatible DBF files with field names > 10 characters you can now use the
short (10 char) or the full fieldname to retrieve the values.

· The DBFVFP driver now uses the built in DBC support in the runtime to read "extended"
properties for DBF files. These properties are the longer fieldname, but also the Caption
etc. When a DBFVFP table is used as datasource for a DbDataSource or DbDataTable
and when this data source is assigned to a Grid then the columns headers in the Grid
should show the Captions from the DBC.

· DBF files with an empty codepage byte are now opened as DOS - US just like in VO
and Vulcan.

· GoTop(), GoBottom() and other operations were failing for when a DBFCDX/DBFVFP
area was a child in a SetRelation and when the previous parent value was resulting in
an "empty" resultset.

140X# Documentation

© 2015- 2024 XSharp BV

· We have added structures and functions for the ADS Management API to the RDD
assembly.

Visual Studio integration

· When creating a new VO compatible UI form in the VS IDE you can now clone an
existing form.

· Fixed some problems with custom controls in the VO compatible form editor.

· Fixed several problems in the Windows Forms editor for the code parsing and code
generation for DevExpress controls

· Solutions with "flavored" projects (such as MsTest projects) were not always opened
correctly. An exception could occur.

· We have added an (internal) property FieldValues() to the workarea class that allows
you to inspect the fieldnames and their values for the current record in the debugger. To
see the current workarea in the debugger you have to add a watch expression:
XSharp.RuntimeState.DataSession.CurrentWorkarea

· Added Project property to set the new flag to suppress RC4005 (duplicate defines)
errors for the resource compiler.

Changes in 2.6.1.0 (Cahors)

This is a bug fix release with fixes for some issues found in 2.6.0.0

Compiler

· Fixed problems with passing typed variables by reference to late bound code and to
untyped constructors

· Fixed an internal compiler error in code where a define containing a logic was cast to a
byte
 BYTE(_CAST, LOGICDEFINE).
Of course this is code that should be avoided at all times, but unfortunately even the VO
SDK is full of code like this..
The example above should be written as IIF(LOGICDEFINE, 1,0) for example. The
compiler will see that the define is constant and will replace that code with either 1 or 0.

· The compiler was not recognizing $.50 as a valid Currency literal (because the 0 is
missing). This is now accepted.

Runtime

· Updated the code in the runtime that handles late bound calls to improve the handling of
parameters by reference

· Fixed a problem in late bound code when accessing properties such as fInit, dwFuncs
and dwVars in the OleAutoObject class

· Added operator TRUE and operator FALSE to the Usual type

· Calling Val() with a NULL_STRING could cause an exception. This has been fixed.

· String properties returned by DbDataTable() and DbDataSource() are now trimmed with
the TrimEnd() method of the string class.

141 XSharp

© 2015- 2024 XSharp BV

· Added a DbTableSave() function to save changes in a DbDataTable to the current
workarea.

Visual Studio integration

· Opening and upgrading project files that are under Scc could sometimes cause
problems. This has been fixed

· Fixed a regression introduced in 2.6.0.0. causing the task list to no longer be updated.

· Opening a solution that referenced X# projects that do not exist on disk could cause an
exception. This has been fixed.

· Opening a X# Project file that is not part of a solution could also cause an exception.
This has been fixed. We'll assume the project is part of a solution file in the same folder
as the project and with the same name (but different extension) as the project.

· The project system no longer makes backup files of projects that are updated. We
assume you're all making backups yourself or using some kind of SCC system.

· Fixed a regression that caused the VS Tasklist not to work for X# projects.

Changes in 2.6.0.0 (Cahors)

Please note that there are some breaking changes in this build.
Therefore the Assembly version number of the Runtime Components has been
changed and you will need to recompile all your code and you need new versions
of 3rd party components!

Compiler

· The compiler was ignoring a (USUAL) cast. This has been fixed.

· When the compiler detects a TRY .. ENDTRY without CATCH and FINALLY then it
automatically adds a CATCH class that catches all exceptions silently. This was already
the case, but we now generate a warning XS9101 when this happens.

· Passing parameters by reference with an @ sign was not working correctly for late
bound method calls. This has been fixed.

· Compiler option vo15 and compiler option vo16 can now also be set with a #pragma

· When /vo16 (Automatically generate Clipper calling convention constructors) was
enabled then the compiler was also adding constructors to classes that are marked with
the [COMImport] attribute. This has been fixed.

· Currency literals ($12.34) were not compiled into the Currency type but were stored as
System.Double. This has been fixed.

· Fixed a problem with automatic version number generation for version numbers that are
specified as [assembly: AssemblyVersion ("1.0.*")] or [assembly:
AssemblyVersion ("1.0.0.*")].
If you are building with the /deterministic compiler option then an error message XS8357
is shown.

· Fixed a problem when passing a single USUAL argument to a constructor with a
parameter array.

· Fixed a problem when calling an overloaded method in a class tree where one level has
a parameter of one type and another level the same method name but a parameter of

142X# Documentation

© 2015- 2024 XSharp BV

another type and when there is an implicit typecast from the one type to the other (like
between Date and Datetime, or between String and Symbol). The compiler now first
looks to see if there is an overload with exactly the same type and where there is not
then it looks for overloads for which the argument can be passed with an implicit
conversion.

· The __CastClass() pseudo function can now be used to box a usual into an object or to
unbox a usual from an object.
__CastClass(USUAL, <objectValue>) unboxes the usual that is inside the object.
__CastClass(OBJECT, <usualValue>) boxes the usual into an object.

· The <usualValue> IS SomeType VAR <newVariableOfTypeSomeType> clause was
boxing the Usual into the Object before assigning it to the new variable instead of
extracting the object from the usual. This has been fixed.

· Late bound assignments (such as obj.&prop = "Jack") were failing when the
assignment operator was a single equals character. This has been fixed.

· Aliased Expressions such as SomeArea->(SomeExpression()) were returning an error
on the incorrect source code line when SomeArea was not open. This has been fixed.

· We have added support for the BINARY type and BINARY Literals. See the topics about
binaries and binary literals in the documentation.

· Expressions such as

LOCAL dwDim := 512 IS DWORD
were parsed as and compiled into

LOCAL dwDim := (512 IS DWORD) AS USUAL
As a result dwDim contained a USUAL with a LOGICAL value.
This has been fixed and this code will now throw an error that DWORD variables cannot
be declared with the IS keyword.
This also happens for GLOBAL variables and Class Variables.

· We have added a MatchLike preprocessor token to match expressions that contain
wildcard characters, such as in the UDC
SAVE ALL LIKE a*,*name TO SomeFileName.
The token to use for MatchLike is <%name%>

· Added support for pattern matching (WHEN clauses) in TRY .. CATCH statements,
such as in the example below. The WHEN keyword is positional, so it can also be used
as a variable name like in the example.

FUNCTION Test AS VOID
 local when := 42 as long
 TRY
 THROW Exception{"FooBar"}
 CATCH e as Exception WHEN e:Message == "Foo"
 ? "Foo", when, e:Message
 CATCH e as Exception WHEN e:Message == "Bar"
 ? "Bar", when, e:Message
 CATCH WHEN when == 42
 ? "No Foo and No Bar", when

 END TRY
 RETURN

143 XSharp

© 2015- 2024 XSharp BV

· Added support for pattern matching and filters for SWITCH statements. We support
both the "Identifier AS Type" clause as well as the "WHEN expression" filter clause, like
in the examples below

 VAR foo := 42
 VAR iValues := <LONG>{1,2,3,4,5}
 FOREACH VAR i IN iValues
 SWITCH i
 CASE 1 // This is now called the
'constant pattern'
 ? "One"
 CASE 2 WHEN foo == 42 // Filter with a constant
pattern
 ? "Two and Foo == 42"
 CASE 2
 ? "Two"
 CASE 3
 ? "Three"
 CASE 4
 ? "Four"
 OTHERWISE
 ? "Other", i
 END SWITCH

 VAR oValues := <OBJECT>{1,2.1,"abc", "def", TRUE, FALSE, 1.1m}
 FOREACH VAR o in oValues
 SWITCH o
 CASE i AS LONG // Pattern matching
 ? "Long", i
 CASE r8 AS REAL8 // Pattern matching
 ? "Real8", r8
 CASE s AS STRING WHEN s == "abc" // Pattern matching with
filter
 ? "String abc", s
 CASE s AS STRING // Pattern matching
 ? "String other", s
 CASE l AS LOGIC WHEN l == TRUE // Pattern matching with
filter
 ? "Logic", l
 OTHERWISE
 ? o:GetType():FullName, o
 END SWITCH
 NEXT

· Please note that the performance of these patterns and filters is just like normal IF
statements or DO CASE statements.
The difference is that the compiler checks for duplicate CASE expressions so you are
less likely to make mistakes.

144X# Documentation

© 2015- 2024 XSharp BV

· We have added support for the IN parameter modifier. This declares a parameter that is
a REF READONLY parameter. You could consider to use this when passing large
structures to methods or functions. Instead of passing the whole structure then the
compiler will only pass the address of the structure which is 4 bytes or 8 bytes
depending on if you are running in 32 bits or 64 bits.
We are planning to use this in the X# runtime for functions that accept USUAL
parameters which should give you a small performance benefit (Usual variables are 16
bytes in 32 bits mode and 20 bytes when running in 64 bit mode).

Runtime

· Error messages in Late Bound code were not always showing the error causing the
exception. We now retrieve the "inner most" exception so the message shows the first
exception that was thrown.

· We have added runtime state settings for Set.Safety and Set.Compatible and the
functions for SetCompatible and SetSafety

· A UDC used to save and restore workareas for various Db..() functions was incorrect,
causing the wrong area to be selected after the function call. This has been fixed.

· The VFP MkDir() function has been added.

· Fixed a problem in late bound IVarGet() / IVarPut() when a subclass of a type
implements only the Getter or the Setter and the parent class implements both.

· We have added a IDynamicProperties interface and added an implementation of this on
the XPP DataObject, VFP Empty and VO OleAutoObject classes. This interface is used
to optimize late bound access to properties in these classes.

· An Exception in OleAutoObject.NoMethod was not forwarded "as is" but as an argument
exception.

· The Select() function now behaves differently in the FoxPro dialect to be compatible with
FoxPro (no exception is thrown when the alias that is passed does not exist)

· When an Error object is created from an exception then the innermost exception is used
for the error information.

· The casing of the Default() function has changed.

· We have added a new XSharp.__Binary type. See the compiler topic above for more
information.

· We have added the CLOSE ALL UDC to dbcmd.xh as synonym for CLOSE
DATABASES.

RDD System

· Fixed a problem in the Advantage RDD for the ADSADT driver when field names were >
10 characters.

· In the Advantage RDD the EOF, BOF and FOUND flags for tables that are a child in a
relation were not properly set. This has been fixed.

· In the FoxPro dialect the 'AutoOrder' behavior has changed. In this dialect no longer the
first order in the first index is selected. The index file is opened but the file stays in
natural order and when opening the file the cursor is positioned on the record number 1.

· When exporting to CSV and SDF there was an exception for empty dates. This has
been fixed.

· When an CDX is opened for which one of the order expressions could not be compiled
(because a function is missing) then previously the complete CDX was ignored. Now
the other tags are opened succesfully. The RuntimeState.LastRddError property will

145 XSharp

© 2015- 2024 XSharp BV

contain an Exception object that contains the error message for the tag that failed to
open.

· The calculation of Index keys for fields of type "I" (in the DBFVFP driver) was incorrect.
This has been fixed.

· Fixed a problem with the OrdDescend() function/

Visual Studio integration

· Fixed a problem in the VS parser for default expressions in parameter lists

· Parameters for external methods/functions were not always showing the right "As"/"Is"
modifiers

· The location on the QuickInfo tooltip is now shown on its own line inside the tooltip.

· Fixed a problem where the XML tooltips or parameter tips for the first member in a XML
file were not shown.

· We have made a change to the project file format (see comment below). All project files
will be updated when opened with this build of X#.

· Improved the speed of closing a solution inside Visual Studio.

· The project system will no longer try to update SDK style project files.

· When looking for a method such as Foo.SomeMethod() the codemodel sometimes
returned a method Bar.SomeMethod().
This was leading to problems when opening forms in the Windows Forms editor. This
has been fixed.

VO Compatible editors

· Code generated from the VO Compatible editors now preserves the INTERNAL or other
modifiers as well as IMPLEMENTS clauses for classes.

· We have fixed the display of "LoadResString" captions in PushButton controls

Foxpro commands

· We have added support for several new Foxpro compatible commands:

· CLOSE ALL

· SCATTER

· GATHER

· COPY TO ARRAY

· APPEND FROM ARRAY

· COPY TO SDF|CSV|DELIMITED|FOXPLUS|FOX2X

· APPEND FROM SDF|CSV|DELIMITED|FOXPLUS|FOX2X

· All variations support a fields list, FIELDS LIKE or FIELDS EXCEPT clause and the
relevant commands also support the MEMO and BLANK clauses.

· Not all variations from COPY TO and APPEND FROM are supports, such as copying to
excel and sylk

· The Database and name clause in the COPY TO command are ignored for now as well
as the CodePage clause

146X# Documentation

© 2015- 2024 XSharp BV

Build System

· We have prepared the X# Build System to work with SDK type projects that are used by
.Net 5 and .Net Core. See the topic below for what this means for the project files.

· Please note that the source code for the Build System has been moved to the Compiler
repository on GitHub, since the build system is also needed for automated builds that
run outside of Visual Studio.

Changes to project files

· We are now no longer deploying our MSBuild support to a folder inside each VS version
separately but we are only deploying it once in a folder inside the XSharp installation
folder.
The installer sets an environment variable XSharpMsBuildDir which points to that folder.
As a result all project files will be updated when opened with this version of X#.

· The change that we make is that the macro "$(MSBuildExtensionsPath)\XSharp" is
replaced with "$(XSharpMsBuildDir)" which is an environment variable that points to the
location of the X# MsBuild support files on your machine. If you are running X# on a build
server you can set this environment variable in your build scripts when needed.

· The installer automatically adds this environment variable and points it to the
<XSharpDir>\MsBuild folder.

Changes in 2.5.2.0 (Cahors)

Compiler

· When a define contains an expression that contains the _Chr() function with a value >
127 then a warning is generated about possible code page differences between the
development machine and the end users machine

· Fixed an issue where a define was defined as PTR(_CAST,0) and this define was also
used as a default value for a function/method.

Runtime

· Calling IsAccess, IsAssign and similar methods on a NULL_OBJECT was causing an
exception. This has been fixed.

· EmptyUsual now also works for the type OBJECT

· When a float division was returning an Infinite value then no divide by zero exception
was generated. This has been fixed.

· When a parameter is skipped in a late bound call, and when that parameter has a
default value, then we will now use the default value instead of NIL

· The default value of the 5th parameter (uCount) of StrTran() was "only" 65000
replacements. The default value now takes care of replacing all occurences.

· The variable name passed to NoIVarGet() and NoVarPut() is now converted to
Uppercase.

147 XSharp

© 2015- 2024 XSharp BV

RDD System

· Fixed a problem with skipping forward when a Scoped Descending Cdx was at Eof()

VOSDK

· Several DbServer methods were calling a method to write changes before the correct
workarea was selected. This was an old bug originating in VO and has been fixed.

Visual Studio integration

· Looking up XML documentation was sometimes not working in VS 2019. This has been
fixed.

· ClassView and Objectview are working "somewhat" now. This needs to be improved.

· Improved the loading of so called "Primary Interop Assemblies"

· Fixed a problem in the Type and Member dropdown bars in the editor window

· Improved the renaming of controls when applying copy/paste in the VO Compatible
window editor.

· The X# toolbar for the VO Window editor is now automatically visible when the VO
Window editor is opened

· The position and size of the property window and toolbox of the VO Window editor (and
the other VO Editors) is now saved between sessions of Visual Studio.

Build System

· The generated XML files were generated in the project folder and not in the intermediate
folder. This has been fixed.

Documentation

· The [Source] links were missing for most topics. This has been fixed.

· Corrected some docs

Changes in 2.5.1.0 (Cahors)

Compiler

· no changes to the compiler in this build (it is still called 2.5.0.0)

Runtime

· (VO Compatibility) Fixed a VO compatibility issue for arrays . Accessing an single
dimensional array with an index with 2 dimensions now returns NIL and does not
generate an exception. This is stupid but compatible.

148X# Documentation

© 2015- 2024 XSharp BV

· (VO Compatibility) Comparing a usual with a numeric value with a symbol no longer
generates an exception. The numeric value is now casted to a symbol and that symbol
is used for the comparison.

· (XPP compatibility) Accessing a USUAL variable with the index operator (u[1]) is not
allowed for usuals containing a LONG. This will return TRUE or FALSE and is a simple
way to check if a bit is set.

· The Literals for "DB" and "CR" are now stored in the resources and may be changed for
other languages.

· Added some optimizations to the support code for late binding

Visual Studio integration

· Reading type information for external assemblies would fail when the external assembly
contained 2 types for which the names were only different in case.

· The entity parser did not recognize GET and SET accessors that were prefixed with a
visibility modifier (PROTECTED SET)

· The entity parser did not recognize ENUM members that did not start with the MEMBER
keyword

· Added support for the Visual Studio Task Window. Source code comments containing
the words TODO or HACK (this is configurable in the Tools/Options window) are now
added to the Task List. These tasls are persisted in the intellisense database, so all
tasks are immediately visible after opening a solution without (re)scanning the source
files.

· Fixed a problem in the Type and Member lookup for the WIndows Forms editor

· Fixed a problem in the VS debugger where we were subtracting one from index
operators for arrays and collections. This was not correct (obviously).

Build System

· The file name of the generated XML file was derived from the project file name instead of
the output assembly name. This has been fixed.

Changes in 2.5.0.0 (Cahors)

Compiler

· #pragma lines that were followed by incorrect syntax would "eat" the incorrect syntax
causing entire methods to be excluded from compilation. This has been fixed.

· Multiline compile time codeblocks in a method /function with a VOID return type were not
being compiled correctly. This has been fixed.

· The compiler now allows to type the parameters in a codeblock. Since the codeblock
definition requires parameters of type USUAL this gets transformed by the compiler. The
parameters will still be of type USUAL, but inside the codeblock a local variable of the
proper type will be allocated. So this compiles now

149 XSharp

© 2015- 2024 XSharp BV

 { | s as string, i as int| s:SubString(i,1) }

· The code to fill in missing parameters was causing problems when passing parameters
to COM calls (Word Example from Peter Monadjemi)

· Fixed a problem passing an IntPtr, Typed pointer of the address of a VOSTRUCT to a
function that accepts an object.

· We have added code to add an integer value to a PSZ, which results in a new PSZ that
starts at a relative location in the original PSZ. No new buffer is allocated.

· We have fixed a problem with complex collection initializers.

· Chr() and _Chr() with an DEFINE as argument, such as _Chr(ASC_TAB) were not
properly resolved by the compiler.

· The compiler was not properly parsing the syntax PUBLIC MyVar[123]. This has been
fixed.

· Some special characters (such as the Micro Character, U+00B5) were not recognized
by the compiler as valid identifiers. We have now adopted the same identifier rules that
C# uses.

· Passing a pointer or PSZ in a value of type OBJECT is now handled by "boxing" the
variable. So a NULL_PTR is no longer passed as NULL_OBJECT but as an object
containing an IntPtr.Zero value.

· The compiler now allows to store IntPtr.Zero to a constant variable

· The compiler now allows to embed quotes inside a string by writing double quotes. So
this works:

? "Some String that has an embedded "" character"

· When you declare a MEMVAR with the same name as a function, the compiler will now
have no problem anymore resolving the function call. Please note that you HAVE to
declare the memvar for this resolution to work.
For example

FUNCTION Start() AS VOID
MEMVAR Test
Test := 123 // assign to the memory variable
Test(Test) // call the function 'Test' with the value of

'Test'
RETURN
FUNCTION Test(a)
? a
RETURN a

Common Runtime
· The Workareas class no longer has an array of 4096 elements, but uses a dictionary to

hold the open RDDs. This reduces the memory used by the runtime state.
· Fixed a problem in the WrapperRDD class

· OrdSetFocus() now returns the previous active tag as STRING

· Fixed a problem in FRead() , it was not ignoring the SetAnsi() setting as it should

· Added operators on the PSZ type for PSZ + LONG and PSZ + DWORD.

150X# Documentation

© 2015- 2024 XSharp BV

· The Usual class now implements the IDisposable() interface. When it contains an
object that implements IDisposable then it will call the Dispose method on that object.

· We have added Array index properties with one and two numeric indices to make code
that accesses array elements a bit faster

· The code SELECT 10, was not working properly. This has been fixed. Thanks Karl
Heinz.

· The return value of VoDbOrdSetFocus() was TRUE even when trying to set the order to
a non existing index. This has been fixed.

· We fixed a problem with Set(_SET_CENTURY) when the parameter passed was a
string in the "ON" or "OFF" format

· VODbOrdSetFocus() was returning TRUE even when the selected order could not be
selected.

· ArrayCreate<T> was not filling the array. This has been fixed.

· Trailing or Leading spaces are now ignored by the CToD() function.

· Calling VoDbSeek() with 2 parameters now does not set lLast to FALSE but to the LAST
value from the Current Scope.

· In the previous build the format for the stack trace for errors was changed (the names
are all uppercase like in VO). You can now choose to enable or disable this. We have
added a function SetErrorStackVOFormat() that takes and returns a logical value. The
default format for the error stack is the VO format for the VO and Vulcan dialects and
the normal .Net format for the other dialects.

· We have implemented the StrEvaluate() function.

· We have implemented the PtrLen() and PtrLenWrite() functions. These only work on the
Windows OS() when running in x86 mode.
For other OSes or for apps running in 64 bits these functions returns the same value as
MemLen().

· When dividing 2 float numbers results in a NaN (Not a Number) value because the
divisor is zero, then a DivideByZero exception will now be generated.

· When dividing 2 usual numbers results in a NaN (Not a Number) value because the
divisor is zero, then a DivideByZero exception will now be generated.

· Please note that dividing 2 REAL8 (System.Double) values can still result in a NaN,
because we are not "intervening" with this division.

· The OS() function now returns a more appropriate version description when running on
Windows. It reads the version name from the registry and also includes a x86 and x64
flag in the version.

RDD System

· The DBF RDD Now forces a disk flush when writing a record in shared mode.

· Fixed a problem in the DBFCDX rdd that could corrupt indexes.

· We have built in a validation routine inside the DBFCDX RDD that validates the integrity
of the current tag. To call this routine call DbOrderInfo with the DBOI_VALIDATE
constant.
This will validate:
§ If all records are included exactly once in the index
§ If the values for each record in the index are correct
§ If the order of the index keys in a page is correct
§ If the list of index pages in the index is correct

When a problem is found then this call returns FALSE and a file will be written with the
name <BagName>_<TagName>.ERR containing a description of the errors found.

151 XSharp

© 2015- 2024 XSharp BV

· Most exported variables inside the Workarea class (inside XSharp.Core) and other RDD
classes have been changed to PROTECTED.
We have also added some properties for variables that need to be accessed from
outside of the RDD

· Fixed a problem that occurred when skipping back repeatedly from the BOF position in
a scoped CDX index.

· The Zap() operation for DBFCDX was not clearing one of the internal caches. This has
been fixed.

· The DBFCDX driver now closes and deletes a CDX file when the last tag in that CDX
has been deleted.

Macro compiler

· The macro compiler was not recognizing 0000.00.00 as an empty date. This has been
fixed.

· The macro compiler now also exotic characters in identifiers like the normal compiler.
We have added the same identifier name rules that the C# compiler uses.

XBase++ Functions
· Fixed a problem in the XPP function SetCollationTable()

· DbCargo() can now also set the cargo value for a workarea to NULL or NIL

· We have added several functions, such as PosUpper(), PosLower(), PosIns() and
PosDel().

VFP Functions
· Added AllTrim() , RTrim(), LTrim() and Trim() variations for FoxPro (thanks Antonio)

· Added StrToFile() and FileToStr() (thanks Antonio and Karl Heinz)

VOSDK
· We have created a Destroy() method on the CSession and CSocket class, so you can

'clean up' objects (in VO you could call Axit(), but that is no longer allowed). The
derstructor on these classes will also call Destroy().

· Fixed a problem in TreeView:GetItemAttributes. It can now also be called with a hItem
(which happens inside TreeViewSelectionEvent:NewTreeViewItem)

· The OpenDialog class is now resizable.

· Fixed a problem in FormattedString:MatchesTemplChar(), that was causing problems
with edit controls with a picture

· Calling DataWindow:__DoValidate() late bound was not working because there are 2
overloads. This has been fixed. Please note that in the VO SDK
DataWindow:__DoValidate() expects a parameter of type Control, but inside the
DataBrowser code it is called with a parameter of type DataColumn. VO does not
complain but in .Net that does not work !

· Fixed a problem in GetMailTimeStamp() in the Internet classes.

· We have included "typed" versions of Consoleclasses, SystemClasses and RDD
classes. These are mostly strongly typed and can run in AnyCPU mode.
The SQL classes and GUI classes will follow.

152X# Documentation

© 2015- 2024 XSharp BV

Visual Studio Integration

Code Model

· We have totally rewritten the background parser and code model that is used to parse
"entities" in the VS editor and that is used to build a memory model of the types,
methods, functions etc in your VS solution. This parser now uses the same lexer that
the compiler uses, but the entities are collected with a hand written parser (since the
code in the editor buffer may contains incomplete code we can't reliably use the normal
parser).

· We are now using a SQLite database to persist the code model between sessions. This
reduces the memory needed by the X# project system. We are no longer keeping the
entire code model in memory.

· This also means that when you reopen an existing solution we will only have to parse
files that have changed since the last time they were processed. That should speed up
loading of large VS solutions.

· We are now also reading type information from external code (assembly references and
project references to non X# projects) using the Mono.Cecil library instead of the
classes in the System.Reflection namespace. This is faster, uses less memory and,
most important, we can easily unload and reload assemblies when they were changed.

· As a result of all of this, opening VS solutions should be faster and "lock up" VS less
often (hopefully not at all). Also code completion and other intellisense features should
be improved.

Source code editor

· Fixed a problem with the dropdown comboboxes above the editor when the cursor is in
a line of code before the first entity.

· Fixed a problem that functions in the editor after a class declaration had no collapsible
regions

· The code completion inside the editor now also picks up extension methods for the
types themselves, but also extension methods for interfaces implemented by these
types.

· The editor code now properly recognizes variables declared with the VAR keyword
when they are followed by a constructor call

· If you have XML comments in your source code for entities in your solution, then these
comments should be picked up by the tooltips inside Visual Studio and by the parameter
completion.

· Fixed several problems in the "reformatting" code

Windows Forms editor

· Some inline assignments to fields inside classes that are used by the Windows Forms
could make the form unusable by the form editor. This has been fixed.

· The Windows Forms editor was sometimes removing blank lines between entities. This
has been fixed.

· User Defined Commands in code parsed by the Windows Forms Editor were not
recognized and disappeared when the form was changed and saved. This has been
fixed.

153 XSharp

© 2015- 2024 XSharp BV

· Fixed a problem with setting images and similar properties with resources stored in the
project resources file (which are prefixed with "global::" in the source code)

VOXporter

· We have added support to export VO Forms from the AEFs to XML format

· We have added support to export VO Menus from the AEFs to XML format

Changes in 2.4.1.0 (Bandol GA 2.4a)

Compiler

· Bracketed strings are now no longer supported in the Core dialect to avoid problems
with single line external property declarations that contain attributes between the GET
and SET keywords

· The PROPERTY keyword was not properly recognized after an EXTERN modifier.

· Fixed a XS9021 warning for a IIF expressions with 2 numeric constants

· In the FoxPro dialect late bound calls are now always allowed on certain types (even
when the /lb compiler option is not enabled), such as USUAL and the Empty class.
These types are marked with the AllowLateBound attributes in the runtime.
They WILL generate a new compiler warning (XS9098).

· We have added a new compiler option -fox2. This option makes local variables visible to
the macro compiler and should also be used when you use SQL statements with
embedded parameters. This compiler option must be used in combination with -
memvar and the FoxPro dialect

Runtime

· Fixed a problem in the DELIM Rdd that would occur when using
DbServer:AppendDelimited() and DbServer:CopyDelimited().

· Fixed a problem with DbSetOrder() returning TRUE even when the order was not found.

· Fixed a problem where the File() function would return FALSE when using wildcard
characters

· SqlExec() now returns columns of type Date for SQL providers that have a separate
Date type

· Workareas/Cursors created with SqlExec() now have the NULL flags, Binary flags etc.
set properly according to the settings read from the backend.

· Fixed and added implementation of VFP functions (Gomonth, Quarter, ChrTran, At in
various variations, RAt in various variations, DMY, MDY). Thanks Karl Heinz.

· First work on parameterized SQL functions. Not finished yet.

· Some types in the runtime are now marked with a special "AllowLateBound" attribute.
These types will be accepted in the FoxPro dialect as candidates for compiling
latebound even when the /lb compiler option is not enabled.

· We have added support for the macro compiler to access local variables by name. This
is built into the VarGet() and VarPut() functions and also the MemVarGet() and

154X# Documentation

© 2015- 2024 XSharp BV

MemVarPut() functions. Local variables will have preference over same named private
or public variables. You have to enable the -fox2 compiler option for this.

· ValType() now returns "Y" for currency values and "T" for DateTime values

· No copy of the runtime state is created when that state is accessed in the Garbage
collector thread.

· SQLExecute() now returns -1 when an invalid SQL statement is executed.

· Added the VarType() function

· IVarGet() and Send() now return Empty strings when a method returns a NULL_STRING
and the return type is STRING

RDD

· Getting the OrdKeyNo for a scoped index was resetting the index position to the top of
the index. This would affect scrollbars in browsers for scoped indexes

VOSDK

· The Console classes assembly is now marked as AnyCpu.

· Fixed a problem introduced in the previous build with the calling convention for certain
functions imported from Shell32.DLL such as the Drag and Drop support.

· Fixed a problem in the PrintingDevice constructor for reading of printers when running
on a Remote Desktop

· We have changed several calls to IsInstanceOf with <var> IS <Type> constructs

· Fixed typo in several IsInstanceOf() calls

· Improved "column scatter" code for the DataBrowser class

Visual Studio Integration

· If you removed all the characters from the "Commit Completion List" control in the
XSharp editor options, then after restarting VS all default characters would appear. We
now remember that you have cleared the list and will not refill the list again.

· Fixed a problem that caused the editor not to rescan the current buffer for changed
entities

· Added project property for the new -fox2 compiler option

· The VO MDI template now has Drag and Drop enabled

· Fixed a problem in the Debugger with some of the runtime types, such as DATE that
could cause an exception while debugging in VS 2019

· Fixed a problem in the part of the editor code that is responsible for showing collapsible
regions and updating the comboboxes with type names and member names.

· Fixed the code generation for Tab pages in the VO compatible forms editor

155 XSharp

© 2015- 2024 XSharp BV

Changes in 2.4.0.0 (Bandol GA 2.4)

Compiler

· Fixed problems where certain operations on integers would still return the wrong
variable type

· The Unary Minus operator on unsigned integral types (BYTE, WORD, DWORD,
UINT64) was returning the same type as the original, so it was not returning a negative
value. This has been changed. The return value of this operator is now the next larger
signed integral type.

· Using a compiler macro, such as __VERSION__ in an interpolated string was causing
an internal error in the compiler. This has been fixed.

· The vo11 compiler option now only works for operations between integral and non
integral types. Other behavior has been removed because the VO behavior for mixing
integral types was confusing and impossible to emulate.

· Bracketed strings are now also recognized after a RETURN and GET keyword.

Runtime

· Fixed problems when subtracting a dword from a date (related to the signed/unsigned
problems in the compiler)

· LUpdate() now returns a NULL_DATE for workareas have no open table.

· Added the missing ErrorStack() function (thanks Leonid)

· Added the Stack property to the Error class

· Added the SQL..() functions from Visual FoxPro. Please note that SQLExec() and
SQLPrepare() with embedded parameters in the SQL statements are not supported yet.
This requires a change in the compiler that is planned for the next build.

· Added a DbDataTable() function that returns a (detached) DataTable with the data from
the current workarea

· Added a DbDataSource() function that returns a BindingList attached to the current
workarea. Updates to properties in the bindinglist will be directly written to the attached
workarea.

· Added 2 classes DbDataTable and DbDataSource that are returned by the functions
with the same name.

· Fixed a problem with incorrectly formatted USUALs with numeric values

· We have added the defines from FoxPro.h to the VFP assembly

· We have added the VFP MessageBox functions, including a message box that
automatically closes when a timeout has reached.

· Fixed AsHexString() to display large DWORD values that are stored inside USUALs

· Fixed several incompatibilities with VO for FLOAT->STRING conversions

RDD System

· Fixed a problem with skipping backward in a DBFCDX table with a scope

156X# Documentation

© 2015- 2024 XSharp BV

· Fixed a problem with creating unique indexes with the DBFCDX and DBFNTX drivers

· Writing NULL values to DBF columns is now always supported. When the column is a
Nullable column in a DBFVFP table then the null flags are set. For other RDDs a NULL
value will be written as a blank value.

· Fixed a performance issue in Append operations for all DBF based RDDs

· Fixed a problem with the DBFCDX driver that could happen when index pages were
nearly full with key-value pairs with all blanks

· Fixed a problem in WrapperRDD:Open()

· Added the SDF RDD

· Added a special DbfVFPSQL RDD that is used by the SQL..() functions in the VFP
support to store the results from SQL queries. The column information describing the
original column from the Sql Resultset can be retrieved with the DbFieldInfo() and the
DBS_COLUMINFO define. The return value for this call is an object of the type
XSharp.RDD.DbColumnInfo.

· Added the DELIM RDD and 2 subclasses (CSV and TSV). These RDDs all return
separated values. The default format for the DELIM RDD is to use the comma as
separator. CSV uses semi colons and TSV uses Tabs to delimit the fields. On top of
that CSV and TSV write a header row with field names.
The "normal" Delimited operations still use DELIM. If you want to use the CSV or TSV
RDDs you need to set a global setting:

RddSetDefault("DBFNTX")
DbUseArea(TRUE,"DBFNTX", "c:\Test\TEST.DBF")
DbCopyDelim("C:\test\test.txt") // this uses the DELIM
RDD

RuntimeState.DelimRDD := "CSV" // Tell the runtime to
use the CSV RDD for delimited writes
DbCopyDelim("C:\test\test.csv") // this uses the CSV
RDD

RuntimeState.DelimRDD := "TSV" // Tell the runtime to
use the TSV RDD for delimited writes
DbCopyDelim("C:\test\test.tsv") // this uses the TSV
RDD
DbZap()

RuntimeState.DelimRDD := "CSV" // Tell the runtime to
use the CSV RDD for delimited reads
DbAppDelim("C:\test\test.csv") // this uses the CSV RDD

VO SDK

· PrintingDevice:Init() no longer tries to read the default printer from win.ini but from the
registry

· Several other locations where the code was still accessing win.ini (with the GetProfile..()
funcitons) have been updated.

· The GUI Classes were delay loading several calls to common dialog DLL and
winspool.drv. This has changed because that is no longer needed in .Net.

157 XSharp

© 2015- 2024 XSharp BV

· Cleaned up all PSZ(_CAST operations in GUI Classes.

Visual Studio integration

· Parameter tips for OUT variables were shown as REF

· XML descriptions for member with REF or OUT parameters were not found

· Fixed an exception in the VS Editor

VOXporter

· No changes in this build

Changes in 2.3.2 (Bandol GA 2.3b)

Compiler

· Added support for Bracketed Strings ([Some String containing quotes: '' and '])

· Added support for Support for PRIVATE/PUBLIC syntax with &Id and &Id.Suffix notation

· EXE files were created without manifest before, unless you were using a WIN32
resource with a manifest. This manifest is now correctly added to exe files when no
manifest is supplied.

· The handling of unmanaged resources in relation to version resources and manifests
has changed:
o When the compiler detects native resources it will now check to see if there is a

version and/or manifest resource included.
o When there is no manifest resource, then the default manifest resource will be added

to the resources from the Win32 resource file.
o When there is a version resource then this version resource will be replaced by the

version resource that the compiler generates from the Assembly attributes.
o This should help people coming from VO, so they can use AssemblyVersion etc for all

their assemblies, also the ones that have menu and window resources.
If there happens to be a versioninfo resource in the source then this is ignored.

o Of course we have added a command line option to suppress this: if you use the
commandline option "-usenativeversion" then the native version that is included in the
Win32 resource will be used. If there is no version resource included in the Win32
resource file, then this commandline option is ignored.

· PCOUNT() and ARGCOUNT() are now supported inside ACCESS/ASSIGN methods.
The number of parameters that you can pass is still fixed, but both functions will now
return the # of parameters defined in ACCESS and/or ASSIGN methods.

· We fixed a problem that a compiler error "Failed to emit module" was produced instead
of showing the real problem in the code (a missing type) .

· Extended match markers in the preprocessor, such as <(file)> in the USE udc, now
also properly match file names.

· Improved the detection algorithm that distinguishes parenthesized expressions and
typecasts. This algorithm is now:

158X# Documentation

© 2015- 2024 XSharp BV

o Built in type names between parentheses are always seen as a typecast. For

example (DWORD), (SHORT) etc.
o Other type names between parentheses may be treated as typecast but also as

parenthesized expression. This depends on the token following the closing
parenthesis. When this token is an operator such as +, -, / or * then this is seen as
parenthesized expression. When the token following the closing parenthesis is an
opening parenthesis then the expression is seen as a typecast. Some examples:

? (DWORD) +42 // this is a typecast
? (System.UInt32) +42 // this is a parenthesized expression and
will NOT compile
? (System.UInt32) 42 // this is a typecast because there is no
operator before 42
? (System.UInt32) (+42) // this is a typecast because +42 is
between parentheses

· Code that calls the Axit() method now generates a compiler error.

· We have implemented the /vo11 compiler option

· We have fixed several signed/unsigned warnings

· You can now use PCall() on typed function pointers stored inside structures (this is
used in the VO Internet Server SDK)

· The lexer now recognizes (in the FoxPro dialect) the For() and Field() functions and you
do not need to prefix these with @@ anymore.

Runtime

· Fix for StrZero() with negative values

· Fix for IsSpace() crashing with empty or null string

· AFill() in the VFP dialect now fills also elements in subarrays (for multi dimensional
arrays)

· NoIVarGet() and NoIvarPut() no longer convert the IVar names to Symbol. That way the
original casing is kept when calling the NoIVarGet() and NoIVarPut() methods in a class

· The VFP and XPP Abstract classes are now really abstract.

· Implemented VFP Empty class.

· Implemented VFP AddProperty and VFP RemoveProperty functions.

· Fixed a typo in PropertyVisibility enum name

· Fixed several errors when calling DBF related functions for a workarea that did not
contain an open table.

· The Seconds() function now returns 3 decimals when running in the FoxPro dialect.
Please note that you have to add SetDecimal(3) to actually see the 3rd decimal

· The Like() function is now case sensitive in the FoxPro dialect and case insensitive in all
other dialects. The _Like() function is case sensitive in all dialects.

· ASort() was not accepting a 4th argument of type Object(). This has been correct: when
you pass an object that has an Eval() method then this method will be called to
determine the right sort order.

· When setting/restoring global State with the Set() function, some values that are
synchronized by the runtime could get out of sync. This could result in incorrect date
formats or similar errors. This has been fixed.

159 XSharp

© 2015- 2024 XSharp BV

· Several VFP compatibility functions have been added (some contributed by Thomas
Ganss).

· We have added several VFP functions such as

· When you set a "global setting" using the Set() function the runtime now makes sure
that related settings are set accordingly. For example Setting Set.DateFormat now also
updates the DateFormatNet and DateFormatEmpty.

· Fix for PadC() function with non standard filler

· We have added DBOI_COLLATION and DBS_CAPTION for FoxPro specific properties

VO SDK

· We have removed the versioninfo resource from the GUI classes sourcecode. The
version info is now generated from the Assembly attributes

· We have cleaned up the code and removed the warnings 9020 and 9021 from the
suppressed warnings, since the compiler now handles this correctly.

RDD system

· The DBFVP driver no longer fails to open a DBF when the DBC file is used exclusively
by someone else

· Added support for reading captions with DBS_CAPTION and collations with
DBOI_COLLATION

· The DBFNTX driver was not setting the HPLocking flag properly when creating new
indexes

Visual Studio integration

· The type lookup for variables declared with a VAR keyword could sometimes go into an
infinite loop. This has been fixed.

· Members starting with '__' are now only hidden from completion lists when the 'Hide
Advanced members' checkbox in the general editor options is checked

· Added support for colorizing BRACKETED_STRING constants

· Fixed a bug in the keyword case synchronization code.

· The code behind the VS Form editor had problems with methods declared without
return type. As a result forms could not be opened. This has been fixed.

· Improved intellisense info for Defines and Enum members

· You can now enable/disable /vo11 in the project properties dialog

VOXporter

· When porting from Clipboard contents, now VOXporter puts back the modified code to
the clipboard

· Added option to remove ~ONLYEARLY pragmas

Installer

· The installer now has a new command line parameter "-nouninstall" that prevents the
automatic installation of a previous version. This allows you to install multiple versions of
X# side by side.

160X# Documentation

© 2015- 2024 XSharp BV

Please note that the installer sets a registry key to the location where X# is last installed.
This location will be used by the Visual Studio integration to locate the compiler.
If you don't change this then all VS installations will always use the version of X# that is
last installed. See the topic about the build process in VS and with MsBuild for
information about how this mechanism works.
Also if you choose to install the X# runtime assemblies in the GAC then newer versions
of these runtime DLLs will/may overwrite older versions. This depends on the fact if the
newer DLLs have a new Assembly version.
At this moment all X# runtime DLLs (still) have version 2.1.0.0 even when X# itself is
now on version 2.3.2.

· The installer now lists all found instances of VS 2017 and VS 2019, including the Visual
Studio Buildtools, so you can choose to install in a particular instance of these versions
of Visual Studio or simply in all instances.
Please note that when you run X# with the -nouninstall command line option, this will
prevent the installer from removing X# from VS installations where it was previously
installed.

· We have added some documentation about all the installer command line options to the
help file.

Documentation

· Fixed errors in the documentation of escape codes

· We have added a chapter with tips and tricks that contains the following topics at this
moment.

· Added description of the installer command line arguments

· Added description of the Build process in VS and with MsBuild

· Added topics describing the dialect "incompatibilities" in the X# runtime. Please note that
this topic is not complete yet.

· How to catch errors at startup

· Compiler magic in the startup code

· Special classes generated by the compiler.

Changes in 2.3.1.0 (Bandol GA 2.3a)

Compiler

· When compiling in case sensitive mode, the compiler now checks to see if a child class
declares a method that only differs from a method in its parent class by case

· The warning message about assigning to a foreach iterator variable has been changed
from "Cannot assign" to "Should not assign"

· #pragma warnings was not working with the xs1234 syntax but only with numbers. This
has been corrected

161 XSharp

© 2015- 2024 XSharp BV

Runtime

· Added the SetFieldExtent method to the IRdd interface

· The USUAL type no longer "caches" the dialect setting

· Fixed some problems with ACopy() with skipped or negative arguments.

· The return value for Alias() is now in upper case.

VO SDK

· The VO SDK Console class now uses the System.Console class internally. The only
functionality that is no longer available is:
o It does not respond to the mouse anymore
o Creating a "new" console window is not supported.

RDD system

· Fixed a problem in the Advantage RDDs that was caused by a casing problem (a
method in a child class had a different case than the method in the parent class that it
tried to override). This is why we also added a check to the compiler.

· Creating an NTX with the DBFNTX driver could fail in some situations due to timing
issues. This has been fixed.

Visual Studio integration

· Fixed a problem in keyword case synchronization that could corrupt the editor contents.

Changes in 2.3.0.0 (Bandol GA 2.3)

Compiler

· Syntax errors (1003) or Parser errors (9002) in a source file could lead to multiple errors
in the error list. We are now only reporting the first of these error types in a source file.

· Implemented the -cs (Case Sensitive identifiers) compiler option

· The compiler now includes the source for a compiletime codeblock as string in that
codeblock. Calling ToString() on a compile time codeblock will retrieve this string.

· Fixed a problem that memory variables were not updated when passed to a DO <proc>
WITH statement

· Accessing or assigning undefined properties or calling undefined methods in typed code
was generating a compiler error. The compiler now detects if the type has a
NoIVarGet(), NoIVarPut() or NoMethod() method, and when it finds the appropriate
methods then a compiler warning (XS9094) is generated instead of a compiler error.

· Casting a numeric to a LOGIC with the LOGIC(_CAST, numValue) construct was only
looking at the lowest byte of numValue. If the lowest byte was zero and a higher byte

162X# Documentation

© 2015- 2024 XSharp BV

was non zero the result would be FALSE. The compiler now compiles this into
(numValue <> 0).

· The compiler now supports an (optional) THEN keyword for the IF statement

· Added support for the FoxPro CURRENCY type.

· The Value keyword is always compiled in lower case in PROPERTY SET methods

· Unterminated strings are now detected at the end of the line.

· Added ENDTRY UDC for FoxPro

· Added support for #pragma warning(s). See the #pragma warnings topic in the help file
for more info.

· Added support for #pragma options. See the #pragma options topic in the help file for
more info.

Runtime
· Added XSharp.Data.DLL which contains support code for .Net SQL based data access

used by the RDD system and the new Unicode SQL classes.
· DbEval() was throwing an exception when no FOR block or no WHILE block was

passed
· DbEval() was throwing an exception when the block that is evaluated was not returning

a logical expression
· The workarea event for OrdSetFocus() had an error which would result in an "Operation

Failed" error for this event, even when the event succeeded.
· The index operator on USUALs containing STRINGS (which is only supported in the

Xbase++ dialect) was not taking into account that the indices were already ZERO
based,

· Calling DbCreate() with incorrect lengths for Date or Logic fields was throwing an
exception, these are now automatically corrected

· Added a fix for converting USUAL values of type STRING with NULL to STRING

· Fixed a problem in __FIeldSetWa() when the area was NIL or "M".

· Added the FoxPro CURRENCY type. These are also supported in USUAL variables.
Internally the values of a CURRENCY variable are stored as Decimal but rounded to 4
decimal places.

· Most runtime DLLs are now compiled in Case Sensitive mode.

· Fixed a problem in the STOD() function, so it allows strings that are longer than 8
characters.

· We have added some VFP functions to the runtime, such as the Just..() functions and
AddBs(). Several other functions are there but not implemented. They are marked with
an [Obsolete] attribute and will throw a NotImplementedException when called.

· When running on windows the low level File IO system now uses native windows File
access in stead of the managed access. This also affects the RDD system.

· Fixed problems in ACopy(), Transform(), Str()

VOSDK Classes

· Added DbServer:FieldGetBytes() and DbServer:FieldPutBytes() to read the 'raw' bytes
of a string field. Please note that (in ccOptimistic mode) the bytes value is NOT cached
and that you have to manually lock and unlock the server when calling FieldPutBytes().

· Added several missing defines

163 XSharp

© 2015- 2024 XSharp BV

· Synchronized the VO SDK to the VO 2.8 SP4 SDK. The only changes that are not
included are the ones from the DateTimePicker class. These changes were causing
conflicts with the existing code in the X# VOSDK.

RDD System

· Querying the header size for the Advantage RDD would cause an exception. This has
been fixed

· Fixed a problem with DbRlockList() and the advantage RDD

· Skipping in a cursor for the Advantage RDDs was not refreshing the EOF and BOF
flags for related tables

· Fixed a problem writing strings in FPT files

· The AX_Get.. Handle() functions were not properly returning the handles

· We have added several missing Advantage related functions.

· The DBFVFP driver was not writing the block for DBC backlinks to the file header when
creating a new file, which resulted in negative record numbers.

· We have added (temporary) support for reading field names from DBC files for the
DBFVFP driver. As a result CDX files which use the long field names in index
expressions are now also opened correctly

· Fixed a problem in the CopyDb() code for the DBF RDD

· The DBFCDX RDD now implements the BLOB_GET and also BlobExport() and
BlobImport()

· Packing, Zapping or Rebuilding a CDX index with a Custom or Unique flag would not
keep these flags. This has been fixed.

· When you create a file with the DBFVFP driver you can now include Field Flags in the
field type of the DbCreate() array by following the type with a colon and one or more
flags, where flags is one of:
N or 0: Nullable
B Binary
+ AutoIncrement
U Unicode. (not supported by FoxPro)
Other flags may follow (for example Harbour also has E = Encrypted and C =
Compressed)
Note:
o Please note that the size of the field is the # of bytes, so {"NAME","C:U",20,0} declares

a Unicode character field of 10 Unicode characters and 20 bytes.
o We do not validate combinations of flags. For example AutoIncrement is only working

for fields of type Integer.
· DbFieldInfo(DBS_PROPERTIES) returns 5 for all RDDs with the exception of the

DBFVFP driver. That driver returns 6. The 6th property is the FLAGS field. This field is a
combination of the DBFFieldFlags enum values.

· Fixed a problem with AppendDb() and CopyDb() for the Advantage RDD

· Fixed a problem in the Append() code of the DBF RDD. When Append() was called and
no data was written then the record that was written to disk could be corrupted. The
Append() method now directly writes the new record with blanks..

· The Fully qualified names of the Advantage RDDs inside XSharp.RDD.DLL are now the
same as in the AdvantageRDD.DLL for Vulcan.

· We have added a FileCommit event to the notifications. This sent when a workarea is
committed.

164X# Documentation

© 2015- 2024 XSharp BV

Macro compiler

· The macro compiler now also recognizes the Array(), Date() and DateTime() functions.

· Fixed problems with Aliased expressions

· On the place where the macro compiler expects a single expression you can now also
have an expression list between parentheses. The last expression in the list is seen as
the return value of the expression list

Visual Studio integration

· The option to compile case sensitive has been enabled in the VS project system

· The speed of 'Format Document' has improved a lot.

· The XSharp Intellisense Optionspage in Tools/Options now has a scroll bar when
needed

· The ToolPalette in the VO Window editor now has icons

· We have added templates for VO MDI windows and VO SDI windows.

Build System
· When compiling native resources the resource compiler now automatically includes a

file with some defines such as VS_VERSION_INFO

Debugger

· When you enter a watch expression in the debugger or a breakpoint condition, you can
now use 1 based array indices. Our debugger will now automatically subtract 1 when
evaluating the expression.

VOXporter

· Fixed a problem in the Windows Forms code generation

· You can now also export single MEF files, single PRG files and data from the Clipboard.

· Code between #ifdef .. #endif is not touched by VOXPorter

Changes in 2.2.1.0 (Bandol GA 2.2a)

Compiler

· When compiling code that contained an assign and not an access then trying to read
the access could lead to a compiler exception. This has been fixed.

Runtime

· Added a missing _Run() function

165 XSharp

© 2015- 2024 XSharp BV

Visual Studio integration / Build system

· Fixed a problem that caused a dialog to be shown with the message "The 'XSharp
Project System' package did not load correctly."

· Fixed a problem with writing response files for the resource compiler when the source
file names contained ASCII characters with accents or other characters > 128. Even
though this is now fixed we still recommend not go to crazy with file names, because
these names have to be converted from Unicode to Ansi, since the resource compiler
can only read response files in Ansi format.

· Fixed a problem for certain QuickInfo / Tooltip windows

· The VO item templates now have a condition around the #include statements for the
Vulcan include files, since these are no longer needed when compiling for the X#
runtime.

· Added Support for the "Auto" window in the debugger

· Expressions in the Watch window, Breakpoint conditions etc may now contain SELF,
SUPER and a colon separator. Unfortunately they are still case sensitive.

VOXPorter

· we now detect that a class has fieldnames and accesses/assigns with the same name.
This was allowed in VO but no longer in .Net. The field names will be prefixed with an
underscore inside the class.

· We now prefix the name "Trace" with @@ because this is quite often used to
conditional compile tracing code in VS.

Changes in 2.2.0.0 (Bandol GA 2.2)

Compiler

· The compiler now recognizes the functions Date(), DateTime() and Array(), even
though their names are the same as type names.
Date() with 1 parameter will still be seen as a cast from that parameter to a Date(),
like in the following example
LOCAL dwJulianDate AS DWORD
LOCAL dJulianDate AS DATE
dwJulianDate := DWORD(1901.01.01)
dJulianDate := DATE(dwJulianDate) // This is still a cast
from Date to DWORD
However when Date is called with 0 or 3 parameters then either the current date is
returned (like with Today()) or a date is constructed from the 3 parameters (like in
ConDate())
The DateTime() function takes 3 or more parameters and constructs a DateTime()
value.
The Array() function takes the same parameters as the ArrayNew() function.

166X# Documentation

© 2015- 2024 XSharp BV

· When choosing overloads for String.Format() and a usual expression is passed as
first reference we no longer allow the compiler to choose one of the overloads that
expects an IFormatProvider interface.

· Parameters passed by reference to untyped methods/functions now have the
IsByRef flag set. You can query for "By Reference" parameters by checking the
parameter with IsByRef(uParameter). Please note that after assigning a new value
to a parameter, this flag will be cleared.

· The compiler now also allows to pass aliased fields and memvars by reference to
untyped functions. Even undeclared memvars are allowed.
Please note that the assignment back to the field and memvar will happen after the
call to the function returns. So inside the function the field or memvar will still have
its original value.

· Using ':' as send operator in Interpolated strings is ambiguous because ':' is also
used add format specifiers to interpolated strings. The compiler now detects and
allows "SELF:", "SUPER:" and "THIS:".
If you want to be safe use the '.' as send operator inside interpolated strings for
other variables, or simply don't use interpolated strings, but use String.Format like
in:
? String.Format("{0} {1}", oObject:Property1, oObject:Property2)
in stead of
? i"{oObject:Property1} {oObject:Property2}"
This is the code that the compiler will produce anyway

Macrocompiler

· The macro compiler now recognizes and compiles nested codeblocks, such as
LOCAL cb := {|e| IIF(e, {||SomeFunc()}, {||SomeOtherFunc}) } AS
CODEBLOCK
cb := Eval(cb, TRUE) // cb will now contain {||SomeFunc()}
? Eval(cb)

· In the FoxPro dialect the macro compiler now recognizes AND, OR, NOT and
XOR as logical operators

Runtime

· Added some Xbase++ compatible functions, such as DbCargo(), DbDescend()
and DbSetDescend().

· The DateCountry Enum now also the values System and Windows, which both
read the date format from the Regional settings in the System.

· We have added a WrapperRDD class that you can inherit from. This allows you to
wrap an existing RDD and subclass methods of your choice. See the
documentation of WrapperRDD for an example.

· We had added a XPP member to the CollationMode enum with the same number
as Clipper. This was confusing to some users. We have now give the XPP
member a new number.

· OleAutoObject:NoMethod() now behaves different in the Vulcan dialect (to be
compatible with Vulcan). In the Vulcan dialect the method name is inserted at the
beginning of the list of arguments. In the other dialects the arguments are
unchanged, and you need to call the NoMethod() function to retrieve the name of
the method that was originally called.

167 XSharp

© 2015- 2024 XSharp BV

· All settings in the runtime state are now initialized with a default value, so the
Settings() dictionary in the runtimestate will have values for all Set enum values.

· The previous change has fixed a problem with the Set() function when setting
values for logical settings with a string "On" or "Off". Because some settings were
not initialized with a logic this was not working.

· When creating indexes with SetCollation(#Ordinal) the speed is a bit better now.

· The runtimestate now has a setting EOF. When this is TRUE (which is done
automatically for the FoxPro dialect) then MemoWrit() will write a Ẑ (chr(26)) after
a text file, and MemoRead() will remove that character when it finds it.

· The runtimestate now has a setting EOL. This defaults to CR - LF
(chr(13+chr(10)). This setting is used for line delimiters when writing files with
FWriteLine().

RDD system

· Fixed locking problems in the DBFCDX RDD that were causing problems when
opening files shared between multiple apps but also between multiple threads. The
RDD now should properly detect that the CDX was updated by another process or
thread.

· Fixed a problem with the File IO system when running multiple threads

· Fixed a problem with the File() and FPathName() functions when running multiple
threads

· Added support for Workarea Cargo (See DbCargo())

· Numeric columns with trailing spaces were returned as 0. This has been fixed.

· Fixed a problem in the DBFCDX driver that was happening when many keys were
deleted / updated and index pages were deleted.

· Fix a read error at EOF for the DBF RDD.

VOSDK

· Fixed a problem in the DbServer destructor when called at application shutdown
for a server that was already closed.

Visual Studio integration

· Fixed speed problem in the "Brace Matching" code with the help of a user (thanks
Fergus!)

· You should no longer be able to edit source code when the debugger is running.

· We have added a property "Register for COM Interop" to the build options of the
Project Properties.

· We have updated the assembly info templates . They now have a GUID and
Comvisible attribute.

· Empty lines in the editor buffer could sometimes trigger an exception. This has
been fixed

· Text between TEXT .. ENDTEXT is no longer changed by formatting options in the
editor, such as indenting or case synchronization.

· Incomplete strings will have the color of normal strings in the editor.

· QuickInfo and Completion lists will follow the "format case" setting of the editor for
keywords.

168X# Documentation

© 2015- 2024 XSharp BV

· If a certain option from the Tools/Options was not set then loading a project that
was saved with files open in the editor could result in an exception, causing the
project to be loaded with no visible items. Unload and Reload would fix that. This
will no longer happen.

· We have made some changes to make solutions open and close faster.

· Some colors were difficult to read when the Visual Studio Dark theme was
selected. This has been fixed.

· Brace matching was sometimes incorrectly matching an END CLASS with the
BEGIN NAMESPACE. This should no longer happen.

· Fixed an exception when opening a solution under certain circumstances which
would display an error inside VS that the XSharp Project System was not loaded
correctly.

· The Code Generator for Windows Forms, Settings and Resources now respect
the keyword case setting from the Tools - Options TextEditor/XSharp page.

VOXPorter

· Folder names ending with a backslash could confuse VOXPorter

Changes in 2.1.1.0 (Bandol GA 2.11)

Compiler

· We have added new syntaxes for OUT parameters. You can now use one of the
following syntaxes

 LOCAL cString as STRING
 cString := "12345"
 IF Int32.TryParse(cString, OUT VAR result)

// this declares the out variable inline, the type is
derived from the method call
 ? "Parsing succeeded, result is ", result
 ENDIF
 IF Int32.TryParse(cString, OUT result2 AS Int32)

// this declares the out variable inline, the type is
specified by us
 ? "Parsing succeeded, result is ", result2
 ENDIF
 IF Int32.TryParse(cString, OUT NULL)

// this tells the compiler to generate an out variable, we
are not interested in the result
 ? "Parsing succeeded"
 ENDIF
 IF Int32.TryParse(cString, OUT VAR _)

// this tells the compiler to generate an out variable, we
are not interested in the result.

169 XSharp

© 2015- 2024 XSharp BV

// The name "_" has a special meaning "ignore this"
 ? "Parsing succeeded"
 ENDIF

· The compiler now allows the function names Date(), DateTime() and Array(). The
runtime has these functions (see below)

· Fixed a preprocessor problem where the <token> match marker inside UDCs was
stopping matching tokens when the .not. or ! operator was found after another
logical operator such as .AND. or .OR..

· Added support for <usualValue> IS <SomeType>. The compiler will automatically
extract the contents of the USUAL and wrap it in an object and then apply the
normal IS <SomeType> operation.

· Fixed a problem with Interpolated strings where the '/' character was not properly
recognized.

· The compiler now supports the FoxPro syntax for cursor access. When dynamic
memory variables are disabled this always gets translated to reading a field from
the current cursor/workarea.

 USE Customer
 SCAN
 ? Customer.LastName
 END SCAN
 USE
When memory variables are enabled then this code could also mean that you are
trying to read the Lastname property of a variable with the name "Customer" like in
the example below:
 USE Invoices
 Customer = MyCustomerObject{}
 SCAN
 ? Customer.LastName, Invoice.Total
 END SCAN
 USE
You can also use the M prefix to indicate a local variable or memory variable. The
compiler will try to resolve the variable to the local first and when that fails it will try
to resolve the variable to a memory variable (when dynamic memory variables are
enabled).

Runtime

· We have added support functions for the FoxPro cursor access syntax.

· In the Vulcan dialect the NoMethod() method now receives the methodname as
first parameter (this is NOT compatible with VO)

· Added functions Date() (can have 0 or 3 parameters, equivalent to Today() and
ConDate()), DateTime() and Array().

· Added fixes and optimizations for functions such that take an area parameter such
as Used(uArea) and Eof(uArea).

· AScan() and AScanExact() now return 0 when a NULL_ARRAY is passed.

170X# Documentation

© 2015- 2024 XSharp BV

RDD

· There was a problem reading negative numbers from DBFs. This has been fixed

· Fixed an exception when FPT drivers were writing data blocks in the FPT file with
a 0 byte length.

· The DBF() function returns the Full filename in the FoxPro dialect and the alias in
the other dialects.

· When creating an CDX index for a completely empy DBF file then an index key
would be inserted for the phantom record. This has been fixed.

Changes in 2.1.0.0 (Bandol GA 2.1)

Compiler

· We have added support for parameters by reference to function and method calls
for untyped parameters

· In the Xbase++ and FoxPro dialect arguments passed with '@' are always treated
as BY REF arguments because these dialects do not support the 'AddressOf'
functionality

· When /undeclared was used and an entity added a new private then this private
was not cleared when the entity went out of scope. This has been fixed.

· Compiling oObject?:Variable was not handled correctly by the compiler

· Fixed an internal compiler error when calling SELF:Axit()

· Parameters for the DO statement are now passed by reference

· Changed the order of 'necessary' assembly names when compiling for not core
dialect.

· We have added support for several SET commands, such as SET DEFAULT,
SET PATH, SET DATE, SET EXACT etc.

Runtime

· We have made some changes to get XSharp.Core to run on Linux

· We have fixed a problem in the Subtract operator for the Date type. This changes
the signature of the Subtract operator which has forced us to increase the
Assemblyversion of the runtime.

· The Xbase++ dialect now allows the [] operator on a string inside a usual. This
returns a substring of 1 character for the given position.

· We have fixed an incorrect event for the OrderChanged event

· CoreDb.BuffRefresh was sending an incorrect enumerator value to the
IRDD.RecInfo() method.

· The IVarList() function was including protected Fields and Properties. This has
been fixed.

· IsInstanceOfUsual() could not be used if an objects was of a subclass of
CodeBlock. This has now been fixed.

171 XSharp

© 2015- 2024 XSharp BV

· We have added many overloads of workarea related functions with an extra
parameter to indicate a workarea number or workarea name. For example for the
EoF(), Recno(), Found() and Deleted() functions

· We have added Xbase++ collation tables. The SetCollationTable() function now
selects the right collation.

· Several Array related functions now have better checks for NULL arrays

· The SubcodeText property in the error class is now Read/Write. When the value
has not been written then the subcode number is used to lookup the value of the
property.

· MExec() was not always evaluating the compiled codeblock. This has been fixed.

· We have added some missing Goniometric functions, such as ACos(), ASin() and
more.

· In the Xbase++ dialect the FieldGet() and FieldPut() functions no longer throw an
error for incorrect field numbers

· We have added a missing MakeShort() function and SEvalA() function.

· The DateCountry settings now include a System setting which will read the date
format from the settings for the current culture.

Macrocompiler

· When the macro compiler detects an ambiguous method or constructor it now
includes the signatures of these in the error message

· We have added a new IMacroCompiler2 interface that adds an extra property
"Resolver". This property will may receive a Delegate of type
"MacroCompilerResolveAmbiguousMatch". This delegate has the following
prototype:
DELEGATE MacroCompilerResolveAmbiguousMatch(m1 as MemberInfo, m2
as MemberInfo, args as System.Type[]) AS LONG

· The delegate will be called when the macro compiler detects an ambiguous match
and receives the System.Reflection.MemberInfo for possible candidates and an
array of the detected types of the arguments (detected at compile time). The
delegate can return 1 or 2 to choose between either candidate. Any other value
means that the delegate does not know which of the ambiguous members to
choose.
If the macro compiler finds more than 2 alternatives, it first calls the delegate with
alternatives 1 & 2, and then the selected delegate from these 2 and alternative 3
etc.

· You can register a function or method as delegate with the new function
SetMacroDuplicatesResolver()

· We are now handling (one level of) nested Macros. So the macro compiler
correctly compiles a codeblock like
{|e| iif(e, {||TRUE}, {||FALSE})}

· The macrocompiler now allows comparisons between Integers and Logics (just
like the Usual type in the runtime). This is still not recommended !

· The macrocompiler now allows the use of '[' and ']' as string delimiters. This is
NOT allowed in the normal compiler because these delimiters will be impossible to
differentiate from attributes.

· We have fixed a problem when a late bound call was needed for method names
that were matching method names or property names in the Usual type (such as a
method with the name Item()).

172X# Documentation

© 2015- 2024 XSharp BV

· PCount() for macro compiled codeblocks was always returning 1. This has been
fixed.

VOSDK

· Fixes a problem with DbServer objects that were not closed in code.
The existing code was trying to close the workarea from the destructor. But in .Net
the destructor runs in a separate thread and in that GC Thread there where no files
open...

· Removed unneeded calls to DbfDebug()

· The AdsSqlServer class is now added to the VORDDClasses assembly

RDD

· We have fixed a problem with parsing incorrect or empty dates

· We have fixed a problem with reading Dates in the Advantage RDD that could
cause a Heap error when reading dates.

· We have added several 'missing' functions for Advantage support that were in the
'Ace.Aef' for VO

· We have added support for Character fields > 255 characters

· DbSetScope() now moves the record pointer to the first record that matches the
new scope.

· DbCreate() for the DBFNTX driver with SetAnsi(TRUE) was creating a file with a
first byte of 0x07 (or 0x87) .
This no longer happens in the Xbase++, FoxPro and Harbour dialects because this
first byte is VO specific only

· Some FoxPro memo values are written with an extra 0 byte at the end. This extra
byte is now suppressed when reading these values.

· We have fixed a problem with the version numbers in CDX files not being updated
and also improved CDX locking.

· Xbase++ was not recognizing NTX indices when the tag name in the index header
was not in uppercase. This has been fixed.

· We have fixed a (performance and size) problem when creating CDX indexes.

· When opening a DBF file that does not have a codepage byte, we default to the
current Windows or DOS codepage, depending on the current SetAnsi() setting.

· Optimized reading numeric, date and logical columns

·

Visual Studio integration

· The WCF Service template has been fixed

· We have migrated the project system to the Asynchronous API. This should make
loading of solutions with a large number of X# projects a bit faster.

· Fixed a problem in the Keyword Case synchronization that could lock up the UI for
several seconds

· Fixed an exception in the BraceMatching code.

· Uncommenting a block of lines was sometimes leaving the comments in front of
empty lines. This has been fixed.

· We have improved the (XML) documentation lookup for types, methods, fields,
properties and parameters.

173 XSharp

© 2015- 2024 XSharp BV

· We have improved the type lookup between X# projects.

VOXPorter

· DbServer and FieldSpec entities are now also exported

· VOXPorter now also can genarate a separate project/application that contains
Windows Forms versions of the VO GUI windows found in the VO Applications.

· When running VOXPorter you now can choose to export to XIDE, Visual Studio or
Both.

Changes in 2.0.8.1 (Bandol GA 2.08a)

Compiler

· Fixed a recursion problem in the preprocessor

· MEMVAR-> and FIELD-> were no longer correcty detected This has been fixed.

· We have fixed several issues in dbcmd.xh

· Fixed a problem with return statements inside Lambda expressions.

· The = Expression() statements (FoxPro dialect) was not generating any code.
This has been fixed.

Runtime

· XPP.Abstract.NoMethod() and XPP.DataObject.NoMethod() were still expecting
the method name as 1st parameter.This has been fixed.

· StretchBitmap() was doing the same as ShowBitmap() because of an incorrect
parameter. This has been fixed.

Visual Studio integration

· Improved the Format-Document code

· Fixed a problem in the VS Parser when looking up the type for variables defined
with the VAR keyword which could send VS in an endless loop.

· The contents of the TEXT .. ENDTEXT block and the line after the \ and \\ tokens
now has its own color

174X# Documentation

© 2015- 2024 XSharp BV

Changes in 2.0.8 (Bandol GA 2.08)

Compiler

· The compiler had a problem with the "return" attribute target

· Errors inside the "statementblock" rule are now better detected and the compiler
will no longer report many errors after these for correct lines of code.

· Fixed a problem with Casts to logic

· Fixed a problem with undeclared variables used as counter for For Loops

· Improved the code generation for FIELDs, MEMVARs and undeclared variables for
prefix operation, postfix operations and assignments.

· Improved the code generation for method calls where the parameter is a ref or out
variable when default parameters are involved. The compiler now generates extra
temporary variables for these calls.

· In the dialects where this relevant the compiler now also supports ENDFOR as
alias for NEXT and FOR EACH as alias for FOREACH.

· Added support for the DO <proc> [WITH arguments] syntax

Runtime

· The DbCreate() function now creates a unique alias when the base filename of the
file to create is already opened as an alias

· The Numeric overflow checking for USUAL values now follows the overflow
checks of the main app

· DbUnLock() now accepts an (optional) record number as parameter

· XMLGetChild() was throwing an exception when no elements were found

· XMLGetChildren() was throwing an exception

· Fixed a problem in 2 rules inside "dbcmds.xh"

· The XSharpDefs.xh file now automatically includes "dbcmd.xh"

· Some datatype errors were reported incorrectly.

· The "NoMethod" method for late bound code was called with incorrect parameters.
This has been fixed.

· Fixed some problems with translating usuals with a NIL value to string or object.

· In Xbase++ the Set() function also accepts strings with the value "ON" or "OFF" for
logical settings. We are now allowing this too.

· Set(_SET_AUTOORDER) now accepts a numeric second parameter just like in
VO (Vulcan was using a Logic parameter)

· We have added some support classes to the FoxPro class hierarchy for the
FoxPro class support (Abstract, Custom and Collection). More classes will follow
later.

· Fixed a problem with transform and "@ez" picture.

175 XSharp

© 2015- 2024 XSharp BV

VOSDK

· Fixed a problem in the SQLSelect class when re-opening a cursor.

RDD System

· Fixed a problem reading Advantage MEMO fields

· Improved the error messages when an index cannot be opened due to an index
expression with an error (for example a missing function)

· We have added the option to install an event handler in the RDD system. See the
topic Workarea Events for more information.

· Skip, Gobottom and other workarea operations that change the current record will
no longer set EOF to FALSE for workareas with 0 records.

· Clearing the scope in an Advantage workarea would throw an exception when
there was no scope set. This has been fixed.

· Unlocking a record in an Advantage workarea would throw an exception when
there was no record locked. This has been fixed.

· DbSetRelation() was not working correctly. This has been fixed.

VS Integration

· Fixed a problem with the code generation for DbServer and FieldSpec entities

· Added support for the Import and Export buttons in the DbServer Editor

· Improved entity parsing inside the editor in the Xbase++ dialect.

· The VS Parser was not colorizing the UDC tokens (including ENDFOR) unless the
source file had preprocessor tokens itself. This has been fixed.

· Improved block detection for new END keywords.

· The VS Integration now recognized the class syntax for VFP type classes.

· Fixed a problem in the code that was checking to see which project system
"owns" the PRG extension.

· Added compiler option to the Project Property pages to suppress generating a
default Win32 manifest.

VOXporter

· VOXPorter was ignoring entities that were not properly prototyped in VO. This has
been fixed

FoxPro dialect

· We have added a compiler option /fox1 that controls the class hierarchy for
objects. With /fox1 enabled (the default in the FoxPro dialect) all classes must
inherit from the Custom class. The code generation for properties stores the
values for properties in a collection inside the Custom class. With /fox1- properties
will be generated as "auto" properties with a backing field.

· We have added support for FoxPro classes. See the topic FoxPro class syntax for
more information about what works and what doesn't work.

176X# Documentation

© 2015- 2024 XSharp BV

· We have added support for DIMENSION and DECLARE statements (which create
a MEMVAR initialized with an array)

Changes in 2.0.7 (Bandol GA 2.07)

Possible breaking change

· We have removed the #define CRLF from the standard header file. There is a
DEFINE CRLF in XSharp.Core now. If you are compiling against Vulcan and you
are seeing an error about a missing CRLF then you may want to add the following
to your code:
DEFINE CRLF := e”\r\n”

Compiler

· UDCs that were resulting in an empty list of tokens were triggering a compiler error
in the preprocessor. This has been fixed.

· Calling a method on an array would be translated to a ASend() with the method
name as parameter when the method does not exist in the underlying array class.
The compiler will generate a warning now when this happens,.

· The compiler was producing incorrect code for (USUAL) casts. This has been
fixed. In rare cases this may produce a compilation error. If that happens to you
then simply create a usual by calling the USUAL constructor: USUAL{somevalue}

· Fixed several problems with methods declared outside of a CLASS .. END CLASS

· In the FoxPro dialect NOT, AND, OR and XOR are now allowed as alternate
syntax for .NOT.,.AND., .OR. and .XOR.

· In the FoxPro dialect you can now include statements before the first entity in the
file. The compiler will recognize these and will automatically create a function with
the name of the source file and will add the code in these statements a body of this
function.

· The compiler now allows to cast an integer expression to logic when /vo7 is
enabled. The LOGIC(_CAST is always supported for expressions of type integer

· Incorrect use of language features (such as using a VOSTRUCT in the Core or
FoxPro dialect) is now detected earlier by the compiler leading to somewhat faster
compile times for incorrect code.

· The compiler now also initialized multi dimensional string arrays with an empty
string when /vo2 is enabled, like in the code below:
CLASS TestClass
 EXPORT DIM aDim[3,3] AS STRING
END CLASS

· In previous builds you could not set breakpoints on the source code line with a
SELF() or SUPER() call if this line was immediately after the CONSTRUCTOR().
This has been fixed.

· When a project contains "_DLL METHOD", "_DLL ASSIGN" or "_DLL
ACCESS" (after exporting from VO) then the compiler will now generate a more
meaningful errormessage.

177 XSharp

© 2015- 2024 XSharp BV

· The compiler will no longer produce hundreds of the same error messages when
a source file contains many of the same error. After 10 errors per source file the
compiler will only report unique error numbers. So if your source code has 20
different error messages then you will still see 20 errors reported, but if your
source contains the same error type 100 times then the list will be truncated after
10 errors.

· The compiler no longer allows code behind end tokens such as ENDIF or NEXT.
The standard header file 'XSharpDefs.xh' now includes rules that will eliminate
these tokens.

Runtime

· The ++ and -- operators for the usualtype were not working for Date and Datetime
values

· FErase() and FRename() now set FError() to 2 when the source file does not exist

· The File() function was throwing an exception for paths with invalid characters. It
now returns FALSE and sets the Ferror()

· Several specific numbers were producing incorrect Str() results. This has been
fixed.

· The case of the name of the Value property for several types was changed from
Value to VALUE. This caused problems for people that were interfacing with X#
code from C# code. The original case has been restored. This change has been
reversed.

· Under certain situations the error stack would not contain the complete list of
frames. This has been fixed.

· The size of the Close and Copy buttons of the Error Dialog has been enlarged so
there is more space for translated strings

· The Pad..() functions were returning a padded version of "NIL" for NIL values. This
was not compatible with Xbase++. They now return a string with all spaces. Btw:
VO throw an exception when you call Pad..() with a NIL value.

· Fixed a problem with the PadC() function for values > 1 character.

· We have changed the Val() function to be more compatible with Visual Objects

· The runtime contained a second overload for the Space() function that accepted
an Int parameter. This was causing problems in the macro compiler. This overload
has been removed. You may have to change your code because of that.

· Fixed a problem in EnforceType() and EmptyUsual() with the STRING type

· AEval and AEvalOld() now both pass the array index as second parameter to the
codeblock that is evaluated

RDD System

· Fixed a problem that EOF and BOF were not both set to true when opening an
empty DBF with an index

· Fixed a problem with DbSeek() and Found() for DBFNTX and DBFCDX

· The DBF class was not properly decoding field names and/or index expressions
that contain Ascii characters > 127 (field names like STRAßE)

· File dates were updated when a dbf was closed even when nothing was changed.
This has been fixed.

· The runtime now contains code that closes all open workareas at shutdown. This
should help to prevent DBF or index corruption.

178X# Documentation

© 2015- 2024 XSharp BV

· The Advantage RDD was automatically doing a GoTop after the index order was
changed. This no longer happens.

· The Advantage RDD now retries opening DBF and Index files a couple of times
before failing.

· Fixed a small incompatibility between DBFCDX and AXDBFCDX

VS Integration

· The Core Classlibrary template had a typo in a file name which caused it not to be
loaded correctly

· The code generator for the Windows Forms editor was duplicating USING
statements. This has been fixed. Duplicate using statements will be deleted when
a form is opened and saved in the designer.

· The compilation messages on the output window for the compile time and the
number of warnings and errors is now only shown for the build verbosity normal
and higher. The warnings and errors message is also shown for lower build
verbosity if there are compiler errors.

· The project system will no longer update the version number in the project file if the
project file was created with build 2.0.1 or later.

· Fixed a problem with setting and clearing the "Specific version" property for
Assembly References.

· The default templates for the VO compatible editors are now installed in the
XSharp\Templates folder and the editor uses this location as 'fallback' when you
don't have templates in your project

· The Properties folder is now placed as first child in the tree of a Project, and the
VO Binaries items are placed before resource items in the list of children of a
source item in the tree.

VOXporter

· VOXPorter now prefixes Debug tokens with @@

· VOXPorter now removes INSTANCE declaration for properties that are also
declared as ACCESS/ASSIGN

· VOXPorter now adds spaces between variable names that are delimited with
.AND. or .OR.. So "a.and.b" becomes "a .and. b"

Documentation

· We have "lifted" some of the documentation of the Visual Objects runtime
functions and added these to our runtime documentation. This is 'work in
progress', some topics will need some extra work.

179 XSharp

© 2015- 2024 XSharp BV

Changes in 2.0.6.0 (Bandol GA 2.06)

General

· We received a request to keep the version numbering simpler. For that reason this
new build is called Bandol 2.06 and the file versions for this build are also 2.06.
The assembly versions for the runtime assemblies are all 2.0, and we intend to
keep those stable as long as possible, so you will not be forced to recompile code
that depends on the runtime assemblies.

· Several fixes that were meant to be included in 2.0.5.0 were not included in that
build. This has been corrected in 2.0 6.0

Compiler

· A missing ENDTEXT keyword now produces an error XS9086

· Unbalanced textmerge delimiters produce a warning XS9085

· The TEXT keyword in the FoxPro dialect is now only recognized when it is the first
non whitespace token on a line. As a result of this you can use tokens like <text> in
Preprocessor commands again.

· The VO cast operations on literal strings no longer produce a compiler warning
about possible memory leaks.

Runtime
· Runtime errors in late bound code were always shown as

TargetInvocationException. The true cause of the error was hidden that way. We
are now unpacking the error and rethrowing the original error, including the
callstack that was leading to that error

· Some texts in the string resources were updated

· Calling the Str() function with a -1 value for length and/or decimals produced
results that were not compatible with VO. This was fixed.

· Fixed a problem with DBZap() and files with a DBT memo.

· In some situations EOF and BOF were not set to TRUE when opening an empty
DBF file. This has been fixed.

· PSZ values with an incorrect internal pointer are now displayed as "<Invalid
PSZ>(..)"

RDD System
· The code to read and write to columns in an Advantage workarea now uses

separate column objects, just like the code for the DBF RDD. This makes the
code a bit easier to understand and should make the code a bit faster.

VS Integration
· The text block between TEXT and ENDTEXT is now displayed in the same color

as literal strings

180X# Documentation

© 2015- 2024 XSharp BV

· The VO compatible Project Item templates no longer automatically add references
to your project

· Project files from version 2.01.0 and later will no longer be "touched" when opening
with this version of the X# project system, since there have been no changes to
the project file format since that build.

VOXporter
· The CATCH block in the generated Start function now calls ErrorDialog() to show

the errors. This uses the new language resources to display the full error with VO
compatible error information (Gencode, Subcode etc)

Changes in 2.0.5.0 (Bandol GA 2.01)

Compiler

· Blank lines after an END PROPERTY could confuse the compiler. This has been
fixed

· The TEXT .. ENDTEXT command has been implemented in the compiler (FoxPro
dialect only)

· The \ and \\ commands have been implemented (FoxPro dialect only)

· Procedures in the FoxPro dialect may now return values. Also the /vo9 options is
now enabled by default in the FoxPro dialect. The default return value for a
FUNCTION and PROCEDURE is now TRUE in the foxpro dialect and NIL in the
other dialects.

· Error messages no longer refer to Xbase types by their internal names
(XSharp.__Usual) but by their normal name (USUAL).

MacroCompiler

· Creating classes with a namespace prefix was not working. This has been fixed.

Runtime

· Fixed a problem with ArrayNew() and multiple dimensions

· When calling constructor of the Array class with a number the elements were
already initialized. This was not compatible with Vulcan.NET. There is now an
extra constructor whtich takes a logical parameter lFill which can be used to
automatically fill the array

· The text for the ERROR_STACK language resource has been updated

· Calling Str() with integer numbers was returning a slightly different result from VO.
This has been fixed.

· Added support functions for TEXT .. ENDTEXT and TextMerge and an output text
file.

· Fixed a problem in the DTOC() function

· You can now add multiple ImplicitNamespace attributes to an assembly

181 XSharp

© 2015- 2024 XSharp BV

· We have added several FoxPro system variables (only _TEXT does something at
this moment)

RDDs

· Zap and Pack operations were not properly setting the DBF file size

· An Append() in shared mode was not properly setting the RecCount

· Opening a file with one of the Advantage SQL RDDs was not working. This has
been fixed.

· Writing DateTime.Minvalue to a DBF would not write an empty date but the date
1.1.1 This has been fixed.

VO SDK

· Fixed a problem in ListView:EnsureVisible().

· Some questionable casts (such as the one that cause the previous problem) have
been cleaned up

Visual Studio Integration

· Parameter tips for constructor calls were off by one parameter. This has been
fixed.

· When looking for types, the XSharp namespace is now the first namespace that is
searched.

Changes in 2.0.4.0 (Bandol GA)

Compiler

· Fix a problem in assignment expressions where the Left side is an aliased
expression with a workarea in parentheses:
(nArea)->LastName := AnotherArea->LastName

· Multiline statements, such as FOR blocks, no longer generate Multiline breakpoints
in the debugger.

· Fixed a problem where blank lines or lines with 'inactive' preprocessor comments
after a class definition would generate a compiler error.

· Errors for implicit conversions between INT/DWORD and PTR now produce a
better error message when they are not supported.

· USUAL.ToObject() could not be called with the latebinding compiler option was
enabled. This has been fixed.

· Fixed an internal compiler error with untyped STATIC LOCALs.

· Fixed a problem with aliased expressions.

· Indexing PSZ values is no longer affected by the /az compiler option

182X# Documentation

© 2015- 2024 XSharp BV

MacroCompiler

· Fixed a problem with some aliased expressions

· The macro compiler now detects that you are overriding a built-in function in your
own code and will no longer throw an "ambigous method" exception but will
choose function from your code over functions defined in the X# runtime

Runtime

· FIxed several problems in the Directory() function

· Fixed problem with indexing PSZ values

· Added StackTrace property on the Error object so also errors caught in a BEGIN
SEQUENCE will have stack information.

· Fixed problems with "special" float values and ToString(), such as NaN,
PositiveInfinity

· Fixed a problem with RddSetDefault() with a null parameter

· DbInfo(DBI_RDD_LIST) was not returning a value. This has been fixed.

· We have updated many of the language resources, Also the Error:ToString() now
uses the language resources for captions like 'Arguments' and 'Description'.

· Low level file errors now include the callstack

· Fixed some problems in AsHexString()

· The DosErrString() no longer gets its messages from the language string tables.
The messages have been removed and also the related members in the
XSharp.VOErrors enum.

· Added a Turkish language resource.

RDD System

· Fix locking problem in FPT files

· Fixed several problems with OrdKeyCount() and filters, scopes and SetDeleted()
 setting

· Some DBF files have a value in the Decimals byte for field definitions for field types
that do not support decimals. This was causing problems. These decimals are
now ignored.

· Opening and closing a DBF without making changes was updating the time
stamp. This has been fixed.

· Fixed problems in Pack() and Zap()

· Fixed a problem where custom indexes were accidentally updated.

· Fixed several problems with OrdKeyCount() in combination with Filters,
SetDeleted() and scopes.

VO SDK Classes

· Most of the libraries now compile with "Late Binding" disabled for better
performance.
To help in doing this some typed properties have been added such as
SqlStatement:__Connection which is typed as SQLConnection.

183 XSharp

© 2015- 2024 XSharp BV

Visual Studio integration

· Fixed a problem in the Brace matching code

· Improved Brace matching for keywords. Several BEGIN .. END constructs have
now been included as well as CASE statements inside DO CASE and SWITCH,
RECOVER, FINALLY, ELSE, ELSEIF and OTHERWISE

· Fix a problem with adding and deleting references when unloaded or unavailable
references existed.

VOXPorter

· The program is now able to comment, uncomment and delete source code lines
from the VO code when exporting to XSharp.
You have to add comments at the end of the line. The following comments are
supported:

// VXP-COM : comments the line when exporting it
// VXP-UNC : uncomments the line
// VXP-DEL : deletes the line contents

example:
// METHOD ThisMethodDoesNotGetDefinedInVOcode() // VXP-UNC
// RETURN NIL // VXP-UNC

Changes in 2.0.3.0 (Bandol RC3)

Compiler

· Code generation for STATIC LOCALs of type STRING was not initializing the
variables to an empty string when /vo2 was selected. We have also improved
code generation for STATIC LOCALs when they are initialized with a compile time
constant

· In preparation for the support for variables passed by reference to
functions/methods with clipper calling convention we are now assigning back the
locals variables to the parameter array at the end of a function/method with clipper
calling convention.

· The compiler would not complain if you were assigning a value of one enum to a
variable of another enum. This has been fixed.

· Added support for the FoxPro '=' assignment operators. Other dialects also allow
the assignment operator but a warning is generated in the other dialects.

· Xbase++ classes inside BEGIN NAMESPACE .. END NAMESPACE were not
recognized. This has been fixed.

· Statements inside WITH blocks are no longer constrained to assignment
expressions and method calls. You can now use the WITH syntax for expressions
anywhere inside a WITH block. If the compiler can't find the WITH variable then it
will output a new error message (XS9082)

184X# Documentation

© 2015- 2024 XSharp BV

· Updated the Aliased Expression rules to make sure that compound expressions
properly respect the parentheses.

· The __DEBUG__ macro was not always set correctly. We have changed the
algorithm that sets this macro. When the DEBUG define is set then this macro
gets defined. When the NDEBUG define is set then this macro is not defined.
When both defines are absent then __DEBUG__ is NOT set.

· The compiler was allowing you to use the '+' operator between variables/
expressions of type string and logic. This is now flagged as an error.

MacroCompiler

· Fixed a problem with resolving Field names that were identical to keywords or
keyword abbreviations (for example DATE and CODE) and for Field names that
are equal to built-in function names (such as SET)

· Fixed a problem where a complicated expression evaluated with an alias prefix
was not evaluated correctly.

· The macro compiler initializes itself from the Dialect option in the runtime to
enable/disable certain behavior.

· The macro compiler now recognizes the "." operator for workarea access and
memvar access when running in the FoxPro dialect.

Runtime

· Added functions FieldPutBytes() and FieldGetBytes()

· Added function ShowArray()

· Added several defines that were missing, such as MAX_ALLOC and ASC_A.

· Added Crypt() overloads that accept BYTE[] arguments

· The ClassDescribe() method for DataObject classes (XPP dialect) now includes
properties and methods that were dynamically added.

· Fixed a problem with the RELEASE command for MemVars. This was also
releasing variables defined outside the current function / method.

· There is now also a difference between the FoxPro dialect and other dialects in the
behavior of the RELEASE command.
FoxPro completely deletes the variables, the other dialect set the value of the
variables to NIL.

· New PRIVATE memvars are initialized to FALSE in the FoxPro dialect. In the other
dialects they are initialized to NIL.

· Some numeric properties in the RuntimeState were giving a problem when a
numeric of one type was written and another numeric type was expected when
reading. This has been fixed.

· Fixed a problem with return NIL values from Macro compiled codeblocks.

· The parameter to DbClearScope() is now optional

· The USUAL type now allows to compare between values of type PTR and
LONG/INT64 The PTR value is converted to the appropriate Integral type and then
an Integral comparison is done.

· The USUAL type now also allows comparisons between any type and NIL.

· Casts from USUAL values to SHORT, WORD, BYTE and SBYTE are no longer
checked to be compatible with VO.

185 XSharp

© 2015- 2024 XSharp BV

RDD System

· Added support for different block sizes in DBFFPT.

· DBFFPT now allows to override the block size (when creating) from the users
code. Please note that block sizes < 32 bytes prevent the FPT from opening in
Visual FoxPro.

· Added support for reading various Flexfile memo field types, including arrays.

· Added support for writing to FPT files

· When creating FPT files we now also write the FlexFile header. Please note that
our FPT driver does not support "record recycling" for deleted blocks like FlexFile
does. We also only support writing STRING values to FPT files and Byte[] values.

· Added support for Visual FoxPro created CDX files that were created with the
COLLATE option. The RDD dll now contains collation tables for all possible
combinations of collation and CodePage.

· Added support for USUALs with a NIL value and the comparison operators (>, >=,
<, <=). These operators return FALSE, except the >= and <= operators which
return TRUE when both sides of the comparison are NIL.

· We exposed several Advantage related function and types. Also the function
AdsConnect60() was defined. We have not created functions for all available
functions in Ace32 and Ace64, but only the ones needed in the RDD.

· If you are missing a function in the ACE class, please let us know. All functions
should be available and accessible now in the Ace32 and Ace64 classes or in the
ACEUNPUB32 or ACEUNPUB64 classes.

· The ADS RDD was returning incorrect values for LOGIC fields.

· Fixed some problems with skipping in CDX indexes and scopes and filters.

· Executing DbGoTop() twice or DbGoBottom() twice for DBFCDX would confuse
the RDD. This has been fixed.

· Fixed a problem with Seeking() in an empty DBF file

· FieldPut for STRING fields in the Advantage RDD now truncates the fields to the
maximum length of the field before assigning the value

· Fixed a problem with UNIQUE CDX Indexes.

· You can now create VFP compatible DBF files with DBCreate(). To do so use the
following field types (apart from the normal CDLMN):

W Blob
Y Currency
B Double
T DateTime
F Float
G General
I Integer
P Picture
Q Varbinary
V Varchar
Special field flags can be indicated by adding a suffix to the type:
"0" = Nullable
"B" = Binary
"+" = AutoIncrement
So this creates a nullable date: "D0" and this creates an autoincremental
integer "I+".

186X# Documentation

© 2015- 2024 XSharp BV

Auto increment columns are initialized with a counter that starts with 1
and a step size of 1. You can change that by calling DbFieldInfo:

DbFieldInfo(DBS_COUNTER, 1, 100) // sets the counter
for field 1 to 100
 DbFieldInfo(DBS_STEP, 1, 2) // sets the step
size for field 1 to 2

· Fixed a locking problem with FPT files opened in shared mode

· Fixed several problems related to OrderKeyCount() and various settings of
Scopes and SetDeleted() in the DBFCDX RDD.

VO SDK Classes

· Fixed a problem in the DateTimePicker class when assigning only a time value.

· System classes and RDD classes have been cleaned up somewhat and now
compile in AnyCPU mode. So this means that you can use the DbServer class in
a 64 bit program !
The projects for these two libraries also no longer have the "Late Binding" compiler
option enabled. There is still some late bound code in these libraries but this code
now uses explicit late bound calls such as Send(), IVarGet() and IVarPut().

· Because of the change in the handling of __DEBUG__ some SDK assemblies are
not better optimized.

Visual Studio integration

· Added support for WITH .. END WITH blocks in the editor

· When generating Native Resources (RC files) the BuildSystem now sets a #define
__VERSION__. This will have the fileversion number of the XSharp.Build.DLL
without the dots. (2.1.0.0 will be written as "2100")

· The XSharp help item in the VS Help menu now opens the local Help (CHM) file

· Fixed a problem in the WCF service template

· Correction to the multi line indenting for code that uses attributes

· Code generation for new Event handlers now includes a RETURN statement, even
when VS does not add one to the statement list

· The intellisense option "Show completionlist after every character" has been
disabled since it was having a negative impact on performance and would also
insert keywords with @@ characters in front of them.

· Several changes to the code parsing for the Windows Forms editor. Comments
and Regions should now be saved and regenerated as well as attributes on
classes. Also code generation for images from project resources has been fixed
as well as parsing of static fields and enumerators declared in the same
assembly.
Please note. If you are using values from types defined in the same assembly as
the form then the assembly needs to be (re)compiled first before the form can be
successfully opened in the Windows Forms Editor.

· New methods generated from the Windows forms editors will now be generated
with a closing RETURN statement.

· We have made some improvements to the presentation of QuickInfo in the source
code editor.

187 XSharp

© 2015- 2024 XSharp BV

Tools

· VOXporter now also exports VERSIONINFO resources

Changes in 2.0.2.0 (Bandol RC 2)

Compiler

· File wide PUBLIC declarations (for MEMVARs) were incorrectly parsed as
GLOBALs. Therefore they were initialized with NIL and not with FALSE. They are
now generated correctly as public Memvars. The creation of the memvars and the
initialization is done in after the Init3 procedures in the assembly have run.

· Instance variable initializers now can refer other fields and are allowed to use the
SELF keyword. This is still not recommended. The order in which fields are
initialized is the order in which they are found in the source code. So make sure
the field initializers are defined in the right order in your code.

· AUTO properties are now also initialized with an empty string when /vo2 is
enabled.

· The compiler was allowing you to define instance variables for Interfaces. They
were ignored during code generation. Now an error message is produced when
the compiler detects fields on interfaces.

· When the compiler detects 2 ambiguous symbols with different types (for example
a LOCAL and a CLASS with the same name) then the error message now clearly
indicates the type for each of these symbols.

· Fixed an exception in the Preprocessor

· Added support for the FoxPro runtime DLL.

· The ANY keyword (an alias for USUAL) is no longer supported.

· Keywords that appear after a COLON (":") DOT (".") or ALIAS (->) operator are no
longer parsed as keyword but as identifier. This should solve issues with parsing
code that for example accesses the Date property of a DateTime class.

· We have added support for the WITH .. END WITH statement block:

LOCAL oPerson as Person
oPerson := Person{}
WITH oPerson
 :FirstName := "John"
 :LastName := "Doe"
 :Speak()
END WITH
You can also use the DOT (.) as prefix for the names. The only expressions
allowed inside WITH .. ENDWITH are assignments and method calls (like you can
see above)

· Added support for the FoxPro LPARAMETERS statement. Please not that a
function or procedure can only have a PARAMETERS keyword OR a

188X# Documentation

© 2015- 2024 XSharp BV

LPARAMETERS keyword OR declared parameters (names between parentheses
on the FUNCTION/PROCEDURE line)

· Added support for the FoxPro THIS keyword and .NULL. keyword

· We have added support for the FoxPro Date Literal format { 2̂019-06-21} and
FoxPro DateTime Literals { 2̂019-06-21 23:59:59}.

· Date literals and DateTime literals are now also supported in the Core dialect.
Date Literals will be represented as DateTime values in the Core dialect.

· The standard header file xsharpdefs.xh now conditionally includes header files for
the Xbase++ dialect and FoxPro dialect. These header files do not have much
content at this moment, but that will change in the coming months.

· When the compiler detects that some header files are included but that the defines
in these header files are also available as constants in references assemblies then
a warning will be generated and the include file will be skipped (XS9081)

· The compiler now supports an implicit function _ARGS(). This will be resolved to
the arguments array that is passed to functions/methods with clipper calling
convention. This can be used to pass all the arguments of a function/method to
another function/method.

· We have added the TEXT ... ENDTEXT command for the FoxPro dialect. The
string inbetween the TEXT and ENDTEXT lines is passed to a special runtime
function __TextSupport that will receive 5 parameters: the string, the merge,
NoShow, Flags and Pretext arguments. You will have to define this function
yourself for now. it will be included in the XSharp Foxpro runtime in a future
version.

· We have added support for END keywords for all entity types that did not have one
yet. The new end keywords are optional. They are listed in the table below. The
FoxPro ENDPROC and ENDFUNC keywords will be mapped to END
PROCEDURE and END FUNCTION with a UDC.

Start End

PROCEDURE END PROCEDURE

PROC END PROC

FUNCTION END FUNCTION

FUNC END FUNC

METHOD END METHOD

ASSIGN END ASSIGN

ACCESS END ACCESS

VOSTRUCT END VOSTRUCT

UNION END UNION

· The compiler now registers the Dialect of the main in the Dialect property of the
RuntimeState (Non Core dialects only)

MacroCompiler

· Fixed a problem with escaped literal strings

· Fixed a problem with implicit narrowing conversions

· Fixed a problem with macro compiled alias operations (Customer)->&fieldName

189 XSharp

© 2015- 2024 XSharp BV

Runtime

· Fixed a problem in the Round() function.

· Fixed a problem in the ExecName() function.

· Added FoxPro runtime DLL.

· Added XML support functions in the Xbase++ dialect runtime

· Added support for dynamic class creation in the Xbase++ dialect runtime.

· Fixed a problem in the Push-Pop workarea code for aliased expressions.

· converting a NULL to a symbol would cause an exception. This has been fixed.

RDD system

· Fixed several problems in the ADS RDD

· The DBFCDX RDD is now included

· The DBFVFP RDD is now included. This RDD can be used to access files with
DBF/FPT/CDX extension and support the Visual Foxpro field types, such as
Integer, Double, DateTime and VarChar. Reading files should be fully supported.
Writing should also work with the exception of the Picture and General formats and
with the exception of the AutoIncremental Integer fields. You can also use the RDD
to open the various "definition" files from VFP such as projects, forms and reports.
The RDD 'knows' about the different extensions for indexes and memos. You can
also open DBC files as normal tables. In a future version we will support the VFP
database functionality.

Visual Studio Integration

· You can now specify that multi line statements should indent on the 2nd and
subsequent lines.

· Type lookup for functions inside a BEGIN NAMESPACE .. END NAMESPACE did
not include the types in this namespace.

· Started intellisense for INLINE methods in the Xbase++ dialect

· Fixed several problems in intellisense

· Improved intellisense for VAR keywords declared in a FOREACH loop

· Several other (smaller) improvements.

Tools

· VOXporter now writes DEFINES in the RC files and no longer literal values.

· VOXporter: fix for module names with invalid chars for filenames

190X# Documentation

© 2015- 2024 XSharp BV

Changes in 2.0.1.0 (Bandol RC 1)

Compiler

· Added support for the so called IF Pattern Expression syntax, which consists of an
IS test and an assignment to a variable, prefixed with the VAR keyword:
IF x is Foo VAR oFoo
 ? oFoo:DoSomething()
ENDIF

The variable oFoo introduced in the expression will only be visible inside the IF
statement.
Of course you can also use the pattern on other places, such as ELSEIF blocks,
CASE statements, WHILE expressions etc:

IF x is Foo VAR oFoo
 ? oFoo:DoSomething()
ELSEIF x is Bar VAR oBar
 ? oBar:DoSomethingElse()
ENDIF

· Fixed a problem with method modifiers and generic methods

· Fixed a problem with partial classes with different casing and destructors

· Fixed a problem with Interfaces and methods with CLIPPER calling convention

· The compiler now generates an error (9077) when an ACCESS or ASSIGN
method has Type Parameters and/or Constraint clauses

· Fixed a problem with DEFINEs with specific binary numeric values. Also overflow
checking is now always of when calculating the result of numeric operations for
the values of a DEFINE.

· When a constant value was added or subtracted to a numeric value < 32 bits then
the result was seen as 32 bits by the compiler. This sometimes forced you to use
casts in your code. With this change that cast is no longer necessary.

· The compiler allowed you to concatenate non string values and strings and was
automatically calling ToString() on the non strings. This is no longer possible. The
compiler now generates an error (9078)when it detects this.

· We have added error trapping code to the compiler that should route internal
errors to compiler error XS9999. If you see such an error, please let us know.

· DIM arrays of literal strings are now initialized properly.

· There was a problem when switching between dialects when using the shared
compiler. It would sometimes no longer detect dialect specific keywords. This has
been fixed.

· Fixed a problem where incorrect code was producing an error "Failure to emit
assembly"

· Fixed a problem in code that uses _CAST to cast a 32 bits value to 16 bits

191 XSharp

© 2015- 2024 XSharp BV

· Fixed a problem with overloaded indexed properties where the index parameter in
a subclass has a different type than the index parameter in the super class.

· Changed implementation of several aliased operations (ALIAS->FIELD and
(ALIAS)->(Expression))

· Changed preprocessor handling of extended strings ((<token>))

· The Roslyn code was not marking some variables as 'assigned but not read' to be
compatible with the old C# compiler. We are now flagging these assignments with
a warning. This may produce a lot of warnings in your code that were not detected
before.
To support this we have received some requests to "open up" the support for 1
based indexes in the compiler. In the past the compiler would only allow 1 based
indexing for variables of type System.Array or of the XBase ARRAY Type.
We have now added a couple of interfaces to the runtime. If your type implements
one of these interfaces then the compiler will recognize this and allow you to use 1
based indexes in your code and then the compiler will automatically subtract 1
from the numeric index parameter. The XSharp ARRAY type and ARRAY OF type
now also implement (one of) these interfaces/
The interfaces are:
 INTERFACE IIndexer
 PUBLIC PROPERTY SELF[index PARAMS INT[]] AS USUAL GET SET
 END INTERFACE

 INTERFACE IIndexedProperties
 PROPERTY SELF[index AS INT] AS USUAL GET SET
 PROPERTY SELF[name AS STRING] AS USUAL GET SET
 END INTERFACE
 INTERFACE INamedIndexer
 PUBLIC PROPERTY SELF[index AS INT, name AS STRING] AS USUAL
GET SET
 END INTERFACE

Runtime

· Fixed some problems in the OrderInfo() function

· Fixed several problems with DB..() functions in the runtime

· Fixed several problems with the macro compiler

· Fixed a problem with the handling of default parameters in late bound calls to
methods

· Improved error messages for missing methods and/or properties in late bound
code.

· The Select() function was changing the current workarea. This has been fixed.

· Converting a USUAL to a STRING was not throwing the same exceptions as VO. It
was always calling ToString() on the USUAL. Now the behavior is the same as in
VO.

· F_ERROR has been defined as a PTR now and no longer as numeric

· CreateInstance can now also find classes defined in namespaces

· Fix problems with missing parameters in late bound code. Also added (limited)
support for calling overloaded methods and constructors in late bound code.

· Fixed problems with TransForm(), and several of the Str() functions.

· XSharp.Core is now fully compiled as Safe code.

192X# Documentation

© 2015- 2024 XSharp BV

· Fixed a problem with late bound assigns and access

· NIL<-> STRING comparisons are now compatible with Visual Objects

· Fixed problem with AEval() and missing parameters

· Added Set() function. Please be careful when using header files for _SET defines.
There are subtle differences between the definitions in Harbour, Xbase++ and
VO/Vulcan.
We recommend NOT to use the defines from the header file but to use the defines
that are defined inside the X# runtime DLLs

· Changed implementation of the functions used by the compiler for Aliased
operations

RDD system

· Added support for DBF character fields up to 64K.

· Implemented the DBFCDX RDD

· Fixed several problems related to the DBFNTX RDD

· The DBF RDD was using the incorrect locking scheme for Ansi DBF files. It now
uses the same scheme as VO and Vulcan.

· Macro compiled index expressions are not of the type _CodeBlock and not of the
type RuntimeCodeBlock (the RuntimeCodeblock is encapsulated inside the
_CodeBlock object).
That prevents problems when storing these expressions inside a USUAL

Visual Studio integration

· Fixed an exception that could occur when typing a VAR expression

· When the project system makes a backup of a project file, we are now making
sure that Readonly flags are cleared before writing to or deleting existing files.

· Reading intellisense data from C++ projects could send the intellisense engine into
an infinite loop. This has been fixed.

· The changes to the Form.Designer.prg are now written to disk immediately, to
make sure that changes to the form are recompiled if you press 'Run' or 'Debug'
from the window of the form editor

· Improved support for intellisense for the VAR keyword.

· Added support for FoxPro on the Project Properties page to prepare for the
Compiler and Runtime changes for FoxPro.

· .CH files are now also recognized as "X#" files in Visual Studio.

· You can now control the characters that select an entry from a Completion List.
For example the DOT and COLON now also select the current selected element.
The complete list can be found on the Tools-Options-TextEditor-XSharp-
Intellisense page.

· Assemblies added to a project would not be properly resolved until the next time
the project was loaded. This has been fixed.

· Fixed a problem in the codedom parser which feeds the windows form editor. You
can now inherit a form from another form in the same assembly. You will have to
compile the project first (of course).

· The .CH extension is now also registered as relevant for the X# project system.

· Changed auto indentation for #ifdef commands

· Fixed an exception that could occur during loading of project files with COM
references.

193 XSharp

© 2015- 2024 XSharp BV

· Added templates for class libraries in XPP and VO Dialect

· Sometimes a type lookup for intellisense was triggered inside a comments region.
This has been fixed.

Tools

· VOXPorter was not removing calling conventions when creating delegates. This
has been fixed

· VOXporter was sometimes generating project files with many duplicates of
resource items. This has been fixed.

· VOXporter now marks prefix identifiers that conflict with one of the new keywords
with "@@"

· The delay for the VOXporter welcome screen has been shortened.

Changes in 2.0.0.9 (Bandol Beta 9)

Compiler

· The Lexer (the part of the compiler that recognizes keywords, literals etc) has
been rewritten and is slightly faster.

· The compiler now supports digit separators for numeric literals. So you can now
write 1 million as:
1_000_000

· Fixed problem where static local variables were not initialized with "" even when
compiler option -vo2 was selected

· #ifdef commands using preprocessor macros such as __XSHARP_RT__ were
not working correctly.

· The Xbase++ dialect now also supports the 'normal' class syntax.

· We had changed the 'Entrypoint' algorithm in Beta 8. This has been restored now
and the -main command line option now works again as well. In stead the "body"
of the Start method is now encapsulated in an anonymous function.

· Duplicate include files no longer produce an error but a warning

· Fix for problem with default parameter values with 'L' or 'U' suffix

· Added compiler error when specifying default parameter values for
methods/functions with clipper calling convention

· DIM arrays of STRING were not initialized with "" when /vo2 was specified. This
has been fixed.

· Added support for Dbase style memory variables (MEMVAR, PUBLIC, PRIVATE,
PARAMETERS). See the MEMVAR topic in the help file for more information. This
is only available for certain dialects and also requires the /memvar commandline
option

· Added support for undeclared variables (this is NOT recommended!). This is only
available for certain dialects and requires the /memvar AND the /undeclared
commandline options

· Fixed a problem for comparisons between USUAL variables and STRING variables

194X# Documentation

© 2015- 2024 XSharp BV

· Fixed a problem with partial classes where the classname had different casing in
the various declarations

· Fixed a problem with numeric default parameters with L or U suffixes

· Fixed a problem with line continuation semi colons followed by a single line
comment with the multiline comments style.

· Fixed a problem with methods containing YIELD statements in combination with
compiler option /vo9

· When a visibility modifier was missing on a generic method then this method was
created as a private method. This has been fixed.

· When choosing between overloaded functions in XSharp.RT and XSharp.Core the
function in the XSharp.RT assembly would sometimes be chosen although the
overload in XSharp.Core was better

· CASE statements without CASE block but only a OTHERWISE block would crash
the compiler. This has been fixed and an warning about an empty CASE statement
has been added.

Runtime

· Several changes to the Macro compiler, such as the parsing of Hex literals, case
sensitivity of parameters (they are no longer case sensitive) and limited support for
function overloading.

· Several missing functions have been added, such as _Quit(),

· The return value of several Ord..() functions was incorrect. This has been fixed.

· Fixed a problem with CurDir() for the root directory of a drive

· Fixed a problem with calling Send() with a single parameter with the value
NULL_OBJECT.

· Solved problem with incorrect parameters for DiskFree() and DiskSpace()

· MemoRead() and MemoWrit() and FRead..() and FWrite..() now respect the
SetAnsi() setting like the functions in the VO Runtime.

· We have added 2 new functions to read/write binary files: MemoReadBinary() and
MemoWritBinary()

· Not all DBOI_ enum values had the same value as in Vulcan. This has been
solved.

· SetDecimalSep() and SetThousandSep() now also set the numeric separators in
the current culture.

· The USUAL -> STRING conversion now calls AsString()

· Added support for Dbase style dynamic memory variables (MEMVAR, PUBLIC,
PRIVATE, PARAMETERS). See the Memory Variables topic in the help file for
more information.

· The IsDate() function now also returns TRUE for USUALs of type DateTIme. There
is also a separate IsDateTime() function. We have also added IsFractional()
(FLOAT or DECIMAL) and IsInteger (LONG or INT64) and IsInt64()

· Added missing Cargo slot to the Error class. Also improved Error:ToString()

· Fix for problem in W2String()

· And many more small changes.

Visual Studio Integration

· We have added a new tab page in the Project Properties dialog: Dialect. This
contains dialect specific language options.

195 XSharp

© 2015- 2024 XSharp BV

· 2 options from the Build options page (which is configuration dependent) have
been moved to the Language page (which is build INdepedent), because that
makes more sense:
· Include Path

· NoStdDef

· We have also added a project property on the Language page to specify an
alternative standard header file (in stead of XSharpDefs.xh)

· The XSharp.__Array type was shown in the intellisense with the wrong name

· We have added entries on the Project Properties dialog pages to enable MEMVAR
support and to enable Undeclared variables

· Fixed a problem in the CodeDom provider (used by the Windows Form editor)
where fields with array types were losing their array brackets when writing back to
the source.

· When writing changes from the windows form editor we are no longer writing to
disk but to the opened (sometimes invisible) windows of the .designer.prg. This
should prevent warning messages about the .designer.prg file that was changed
outside Visual Studio

· Fixed a problem parsing source code where identifier names were starting with
'@@'

· The Debugger was showing UINT64 as typename for ARRAYs. This has been
fixed.

· Renaming forms in the Windows Forms editor was not working for forms with a
separate .designer.prg. This has been fixed.

· Fixed a (very old) problem where the OutPutPath property in the xsproj file was
sometimes set to $(OutputPath).

· Fixed an exception in the editor for empty source files or header files.

· Fixed an exception when the error list was created for errors without errorcode

· Commenting a single line in the editor will now always use the // comment format

Tools

· No changes in this release.

Changes in 2.0.0.8 (Bandol Beta 8)

Compiler

· The compiler source code has been upgraded to Roslyn 2.10 (C# 7.3). As a result
of that there are some new compiler options, such as /refout and we also support
the combination of the "PRIVATE PROTECTED" modifier that defines a type
member as accessible for subclasses in the same assembly but not for
subclasses in other assemblies

· We have added support for Xbase++ class declarations. See the Xbase++ class
declaration topic for more information about the syntax and what is supported and
what not.

196X# Documentation

© 2015- 2024 XSharp BV

· We have added support for simple macros with the &Identifier syntax

· We have added support for late bound property access:
o The <Expression>:&<Identifier> syntax.

This translates to IVarGet(<Expression>, <Identifier>).
o The <Expression>:&(<Expression2>) syntax.

This translates to IVarGet(<Expression>, <Expression2>).
o Both of these can also be used for assignments and will be translated to

IVarPut:
<Expression>:&<Identifier> := <Value>
This becomes IVarPut(<Expression>, <Identifier>, <Value>)

o All of these will work even when Late Binding is not enabled.

· We have added a new compiler options /stddefs that allows you to change the
standard header file (which defaults to XSharpDefs.xh)

· We have added a new preprocessor Match marker <#idMarker> which matches a
single token (all characters until the first whitespace character)

· When you select a dialect now, then the compiler will automatically add some
compiler macros. The VO dialect declares the macro __VO__, the Vulcan dialect
declares the macro __VULCAN__ the harbour dialect declares the macro
__HARBOUR__ and the Xbase++ dialect declares the macro __XPP__.

· When compiling against the X# runtime then also the macro __XSHARP_RT__ will
be defined.

· We have added a new warning when you pass a parameter without 'ref' modifier
(or @ prefix) to a method or function that expects a parameter by reference or an
out parameter.

· We have also added a warning that will be shown when you assign a value from a
larger integral type into a smaller integral type to warn you about possible overflow
problems.

Runtime

· This build includes a new faster macro compiler. It should be fully compatible
with the VO macro compiler. Some of the .Net features are not available yet in the
macro compiler.

· We moved most of the generic XBase code to XSharp.RT.DLL. XSharp.VO.DLL
now only has VO specific code. We have also added XSharp.XPP.DLL for XPP

· Fix Ansi2OEM problem with FRead3(), FWrite3() and FReadStr

· Added missing functions EnableLBOptimizations() and property Array:Count

· Fixed problem with latebound assign with CodeBlock values

· Fixed problem with AScan() and AEval() with missing parameters

· Changed error return codes for DirChange(), DirMake() and DirRemove()

· Send() was "swallowing" errors. This has been fixed

· Fixed a problem with assigning to multi dimensional arrays

· Fixed a problem with creating objects with CreateInstance() where objects are not
in the "global" namespace

· Fixed several problems in the RDD system and support functions.

· Fixed several problems in the late binding support, such as IsMethod, IsAccess,
IVarPut, IVarPutSelf etc.

· Fixed several problems with TransForm()

· Integer divisions for usuals containing integers now return either integers or else
fractional numbers depending on the compiler setting of the main app.

197 XSharp

© 2015- 2024 XSharp BV

· We fixed several conversions problems during late bound calls

· We have fixed several problems with the Val() and Str() functions.

· The internal type names for DATE and FLOAT have been changed to __Date and
__Float. If you rely on these type names please check your code !

· DebOut32 was not outputting data to the debug terminal if the runtime was
compiled in release mode. This has been fixed.

Visual Studio Integration

· Fixed filtering on 'current project' in the error list

· Type lookup for local variables was sometimes failing. This has been fixed

· Fixed a problem with Brace Matching that could cause an exception in VS

· Fixed a problem with Tooltips that could cause an exception in VS

· Fixed a problem with uncommenting that could cause an exception in VS

· New references added in VS would not always be included in the type search in
the editor. This has been fixed.

· Member prototypes for constructors now include the type name and curly braces

· We have started work on improved code completion for variables declared with
VAR

· We have started with support for code completion for members of Generic types.
This is not finished yet.

· PRG files that are not part of a X# project and not part of a Vulcan project are now
also colorized in the editor.

Tools

· VulcanXPorter was always adjusting the referenced VO libraries and was ignoring
the "Use X# Runtime" checkbox

· VOXPorter now has an option to copy the resources referenced in the AEF files to
the Resources subfolder in the project

· VOXPorter now also copies the cavowed, cavofed and cavoded template files to
the properties folders in your project.

Changes in 2.0.0.7 (Bandol Beta 7)

Compiler

· When calling a runtime function with a USUAL parameter the compiler now
automatically prefers methods or functions with "traditional' VO types over the
ones with enhanced .Net types. For example when there are 2 overloads, one that
takes a byte[] and another that takes a string, then the overload that takes a string
will get preference over the overload that takes a byte[].

· Resolved a problem with .NOT. expressions inside IIF() expressions

198X# Documentation

© 2015- 2024 XSharp BV

· Improved debugger break point generation for Invoke expressions (like
String.Compare())

· Fixed a pre-processor error for parameters for macros defined in a #define. These
parameters must have the right case now. Parameters with a different case will
not be resolved any longer.

· Fixed a pre-processor error where optional match patterns in pre-processor rules
were repeated. This is too complicated to explain here in detail <g>.

· The code generated by the compiler for Array operations now uses the new
interfaces declared in the X# runtime (see below).

Runtime

· We have added several missing functions, such as _GetCmdLine, Oem2AnsiA()
and XSharpLoadLibrary

· Fixed problems in CreateInstance, IVarGet, IVarPut(), CtoDAnsi() and more.

· Added VO Compatible overload for FRead4()

· No longer (cathed) exceptions are produced for empty dates

· Ferror() was not always return the error of a file operation. This has been fixed

· We have added a new FException() function that returns the last exception that
occurred for a low level file operation

· Casting a usual containing a PTR to a LONG or DWORD is now supported

· Some new interfaces have been added related to array handling. The compiler no
longer inserts a cast to Array inside the code, but inserts a cast to one of these
interfaces depending on the type of the index parameter. The USUAL type
implements IIndexer and IIndexProperties and dispatches the call to the objects
inside the usual when this objects exposes the interface. This is used for indexed
access of properties when using AEval or AScan on an ARRAY OF <type>
o XSharp.IIndexer
o XSharp.INamedIndexer
o XSharp.IIndexedProperties

SDK Classes

· We have added the Hybrid UI classes from Paul Piko (with permission from Paul)

Tools

· The Vulcan XPorter now also has an option to replace the runtime and SDK
references with references to the X# runtime

199 XSharp

© 2015- 2024 XSharp BV

Changes in 2.0.0.6 (Bandol Beta 6)

Compiler

· The compiler was sometimes still generating warnings for unused variables
generated by the compiler. This has been fixed.

· The compiler will now produce a warning that #pragmas are not supported yet
(9006)

· Added compiler macro __FUNCTION__ that returns the current function/method
name in original casing.

· Literal sub arrays for multidimensional arrays no longer need a type prefix when
compiling in the Core dialect

· Fixed problem with the Global class name that would happen when building the
runtime assemblies (these have a special convention for the global class names)

· When the calling convention of a method in an interface is different from the calling
convention of the implementation (CLIPPER vs Not CLIPPER) then a new error
(9067) will be generated by the compiler.

· The calling convention for _DLL functions and procedures is now optional and
defaults to PASCAL (stdcall)

· The namespace alias for using statements was not working in all cases.

· The compiler will now generate an error for code that incorrectly uses the
VIRTUAL and OVERRIDE modifiers.

· The compiler was throwing an exception for a specific kind of incorrect local
variable initializer with generic arguments. This has been fixed.

· Visibility modifiers on GET or SET accessors for properties were not working
correctly (INTERNAL, PRIVATE etc). This has been fixed.

· The compiler now handles PSZ(_CAST,...) and PSZ(..) differently. When the
argument is a literal string, then the PSZ will only be allocated once and stored in a
"PSZ Table" in your assembly. The lifetime of this PSZ is then the lifetime of your
app. When this happens then the new compiler warning XS9068 will be shown.
When the argument is a string stored in a local or global (or define) then the
compiler can't know the lifetime of the PSZ. It will therefore allocate the memory for
the PSZ with the StringAlloc() function. This ensures that the PSZ will not go out of
scope and be freed. If you use this a lot in your application then you may be
repeatedly allocating memory. We recommend that you avoid the use of the cast
and conversion operators for PSZs and take control of the lifetime of the PSZ
variables by allocating and freeing the PSZ manually. PSZ casts on non strings
(numerics or pointers) simply call the PSZ constructor that takes an intptr (this is
used on several spots in the Win32API library for 'special' PSZ values).

· Named arguments are now also supported in the Vulcan dialect. This may lead to
compiler errors if your code looks like the code below, because the compiler will
think that aValue is a named argument of the Empty() function.

IF Empty(aValue := SomeExpression())

200X# Documentation

© 2015- 2024 XSharp BV

· If you were inheriting a static class from another class then you would get a
compiler warning before. This is now a compiler error, because this had a side
effect where the resulting assembly contained a corrupted reference.

· The overload resolution code now chooses a type method/function over a
method/function with clipper calling convention.

· The Xbase++ dialect is now recognized by the compiler. For the time being it
behaves the same as Harbour. We have also added the compiler macro
__DIALECT_XBASEPP__ that will be automatically define to TRUE when
compiling in Xbase++ mode.

· Fixed a problem in the PDB line number generation that would cause incorrect line
numbers in the debugger

Visual Studio integration

· The source code editor was not always showing the correct 'active' region for
#defines defined in #include files.

· Opening a source file without entities (e.g. a header file) could result in an error
message inside VS.

· Fixed a null reference exception in the editor

· Fixed a problem when un-commenting code in the editor

· Improved load time performance for large solutions with many dependencies.

· Fixed a problem where the intellisense engine could lock a DLL that was used by a
project reference or assembly reference.

· Fixed a problem where missing references (for example COM references that
were not installed on the developers machine) could cause problems with the type
lookup when opening forms in the windows forms editor.

· Added an option to select the Harbour dialect on the project properties page.

The Build System

· The Build system did not recognize that begin NAMESPACE lines in source code
were commented out. This has been fixed.

VOXporter

· We have added an option to sort the entities in alphabetical order in the output file.

· We have added an option so you can choose to add the X# Runtime as reference
to your application (otherwise the Vulcan runtime is used)

Runtime

· The SetCentury setting was incorrect after calling SetInternational(#Windows).
This has been fixed.

· The Descend function for dates now returns a number just like in VO

· The functions ChrA and AscA have been renamed to Chr() and Asc() and the
original functions Chr() and Asc() have been removed. The original functions were
using the DOS (Oem) codepage and this is not compatible with Visual Objects.

· On several places in the runtime characters were converted from 8 bit to 16 bit
using the System.Encoding.Default codepage. This has been changed. We use
the codepage that matches the WinCodePage in the Runtimestate now. So by

201 XSharp

© 2015- 2024 XSharp BV

setting the Windows codepage in the runtime state you now also control the
conversions from Unicode to Ansi and back

· The Oem2Ansi conversion was incorrect for some low level file functions.

· We have changed several things in the Late Binding support

· All String - PSZ routines (String2PSz(), StringAlloc() etc) now use the Windows
Codepage to convert the unicode strings to ansi.

· If you library is compiled with 'Compatible String comparisons' but the main app
isn't, then the string comparisons in the library will follow the same rules as the
main app because the main app registers the /vo13 setting with the runtime. The
"compatible" stringcomparison routines in the runtime now detect that the main
app does not want to do VO compatible string comparisons and will simply call the
normal .Net comparison routines.
We therefore recommend that 3rd party products always use the Compatible
String comparisons in their code.

· Preliminary documentation for the runtime was generated from source code
comments and has been included as chapter in this documentation.

The VO SDK

· This build includes the first version of the VO SDK compiled against the X#
runtime. We have included the following class libraries
o Win32API
o System Classes
o RDD Classes
o SQL Classes
o GUI Classes
o Internet Classes
o Console Classes
o Report Classes

· All assemblies are named VO<Name>.DLL and the classes in these assemblies
are in the VO namespace.

· This SDK is based on the VO 2.8 SP3 source code. The differences between VO
2.8 SP3 and VO 2.8 SP4 will be merged in the source later,

· The Libraries for OLE, OleServer and Internet Server are not included. The
OleAutoObject class and its support classes is included in the XSharp.VO library.
OleControl and OleObject are not included.

· Preliminary documentation for these classes was generated from source code
comments and has been included as chapter in this documentation.

The RDD system

· This build includes the first version of the RDD system. DBF-DBT is ready now.
Other RDDs will follow in the next builds. Also most of the RDD related functions
are working in this build.

· This build also includes the first version of the Advantage RDD. With this RDD you
can access DBF/DBT/NTX files , DBF/FPT/CDX files and ADT/ADM/ADI files. The
RDD names are the same as the RDD names for Vulcan. (AXDBFCDX,
AXDBFNTX, ADSADT). We also support the AXDBFVFP format and the
AXSQLCDX, AXSQLNTX, AXSQLVFP. For more information about the differences
and possibilities of these RDD look in the Advantage documentation.
We have coded the Advantage RDD on top of the Advantage Client Engine. Our

202X# Documentation

© 2015- 2024 XSharp BV

RDD system detects if you are running in x86 or x64 mode and calls functions in
Ace32 or Ace64 accordingly.
To use Advantage you copy the support DLLs from an Advantage Vulcan RDD to
the folder of your application. Look at the Advantage docs for Vulcan to see the list
of the DLLs. The Advantage RDD is part of the standard XSharp.RDD.DLL which
therefore replaces the AdvantageRDD.Dll for Vulcan.

· The XSharp.Core DLL now also has RDD support. We have chosen NOT to
implement this in functions, but as static methods inside the CoreDb class. Old
code that uses the VoDb..() functions can be simply ported by changing "VoDb" to
"CoreDb."
The parameters and return values that are USUAL in VO and Vulcan are
implemented as OBJECT in the CoreDb class.
The ..Info() methods have 2 overloads. One that takes an Object and one that
takes a reference to an object.
The methods inside CoreDb return success or failure with a logical value like the
VODB..() functions in VO. If you want to know what the error was during the last
operation then you can access that with the method CoreDb._ErrInfoPtr() . This
returns the last exception that occurred in a RDD operation.

· At this moment the CoreDb class only has a FieldGet() that returns an object. We
will add some extra methods that return values in a specified type in the next build
(such as FieldGetString(), FieldGetBytes() etc). We will also add overloads for
FieldPut() that take different parameter types.

· The XSharp.VO DLL has the VoDb..() functions and the higher level functions such
as DbAppend(), EOF(), DbSkip() etc.
The VoDb..() functions return success or failure with a logical value. If you want to
know what the error was during the last operation then you can access that with
the method _VoDbErrInfoPtr() . This returns the last exception that occurred in a
RDD operation.

· You can mix calls to the VoDb..() functions and CoreDb...() methods. Under the
hood the VoDb..() functions also call the CoreDb methods.

· The higher level functions may throw an exception just like in VO. For example
when you call them on a workarea where no table is opened. Some functions
simply return an empty value (like Dbf(), Recno()). Others will throw an exception.
When you have registered an error handler with ErrorBlock() then this error
handler will be called with the error object. Otherwise the system will throw an
exception.

· Date values are returned by the RDD system in a DbDate structure, Float values
are returned in a DbFloat structure. These structures have no implicit conversion
methods. They do however implement IDate and IFloat and they can and will be
converted to the Date and Float types when they are stored in a USUAL inside the
XSharp.VO DLL. The DbDate structure is simply a combination of a year, month
and date. The DbFloat structure holds the value of fields in a Real8, combined with
length and the number of decimals.

· More documentation about the RDD system will follow later. Of course you can
also look at the help file and source code on GitHub.

203 XSharp

© 2015- 2024 XSharp BV

Changes in 2.0.0.5 (Bandol Beta 5)

Compiler

· The strong named key for assemblies with native resources was invalid. This has
been fixed

· When an include file was included twice for the same source (PRG) file then a
large number of compiler warnings for duplicate #defines would be generated.
Especially when the Vulcan VOWin32APILibrary.vh was included twice then over
15000 compiler warnings would be generated per source file where this happened.
This large number of warnings could lead to excessive memory usage by the
compiler. We are now outputting a compilation error when we detect that the same
file was included twice. We have also added a limit of 500 preprocessor errors per
source (PRG) file.

· A change in Beta 4 could result in compiler warnings about unused variables that
were introduced automatically by the X# compiler. This warning will no longer be
generated.

· The compiler now correctly stores some compiler options in the runtime state of
XSharp.

Runtime

· Fixed a problem in the Ansi2OEM and OEM2Ansi functions.

· Fixed a problem in the sorting for SetCollation(#Windows)

· Fixed a problem with string comparisons in runtime functions like ASort(). This
now also respects the new runtime property CompilerOptionVO13 to control the
sorting

Visual Studio integration

· The sorting of the members in the editor dropdown for members was on
methodname and propertyname and did not include the typename. When a source
file contained more than one type then the members would be mixed in the
members dropdown

Build System

· The default value for VO15 has been changed back from false to undefined.

204X# Documentation

© 2015- 2024 XSharp BV

Changes in 2.0.0.4 (Bandol Beta 4)

Compiler

· POSSIBLY BREAKING CHANGE: Functions now always take precedence
over same named methods. If you want to call a method inside the same class
you need to either prefix it with the typename (for static methods) or with the SELF:
prefix. If there is no conflicting function name then you can still call the method with
just its name. We recommend to prefix the method calls to make your code easier
to read.

· The compiler was accepting just an identifier without a INSTANCE, EXPORT or
other prefix and without a type inside a class declaration. It would create a public
field of type USUAL. That is no longer possible.

· Improved the positional keyword detection algorithm (this also affects the source
code editor)

· The || operator now maps to the logical or (a .OR. b) and not to the binary or
(_OR(a,b))

· The VAR statement now also correctly parses

VAR x = SomeFunction()

And will compile this with a warning that you should use the assignment operator
(:=).
We have added this because many people (including we) copy examples from VB
and C# where the operator is a single equals token.

· Error messages about conflicting types now include the fully qualified type name.

· The compiler no longer includes the width for literal Floats. This is compatible with
VO.

· A Default parameter of type Enum is now allowed.

Runtime

· Added several functions that were missing, such as __Str() and DoEvents()

· Fixed a problem in the macro compiler with non-english culctures.

· Added several overloads for Is..() functions that take a PSZ instead of a string,
such as IsAlpha() and IsUpper().

· Added some missing error defines, such as E_DEFAULT and E_RETRY.

· Fix for a problem with SubStr() and a negative argument

· Fix for a problem with IsInstanceOf()

· Fix for a problem with Val() and a hex value with an embedded 'E' character

· Added implicit conversions from ARRAY to OBJECT[] and back.

· Several changes to the code for Transform() and Unformat() to cover several
exotic picture formats

205 XSharp

© 2015- 2024 XSharp BV

· Changes to the code for SetCentury() to automatically also adjust the date format
(SetDateFormat())

· Fixes for the Str() family of functions in combination with SetFixed() and
SetDigitFixed().

Visual Studio integration

· Fixed a problem when building projects in the latest build of Visual Studio

· Several 'keywords' were not case synchronized before, such as TRUE, FALSE,
NULL_STRING etc,

· Keywords are not case synchronized on the current line as long as the user has
the cursor on them or immediately after them. That means that when you type
String and want to continue to change it to StringComparer then the formatter will
no longer kick in and change "String" to the keyword case before you have the
chance to complete the word.

· The Control Order dialog inside the form editor was not saving its changes.

· Added an option to include all entities from the editor, or just the members from the
current selected type in the right dropdown of the editor

· The editor was also matching braces inside literal strings and comments. This has
been fixed.

· Fixed a problem with the CodeDom parser where extended strings (strings
containing CRLF tokens or other special tokens) were parsed incorrectly. This
resulted in problems in the windows forms editor.

· The member resolution code in the editor was not following the same logic as the
compiler: When a function and a method with the same name exist it was
resolving to the method in stead of the function. This has been fixed.

· Fixed a problem when debugging in X64 mode.

· Fixed an exception when comparing source code files with SCC integration.

· Fixed several problems w.r.t. the XAML editor:
o Code is now generated with STRICT calling convention to avoid problems

when compiler option "Impliciting CLIPPER calling convention" is enabled
o WPF and other templates now include STRICT calling convention for the

same reason
o The XAML editor could not properly load the current DLL or EXE and had

therefore problems resolving namespaces and adding user controls to the
tool palette. This has been fixed.

· We have added an option to the Tools/Editor/XSharp/Intellisense options that allow
you to control how the member combobox in the editor works. You can choose to
only show methods & properties of the current type or all entities in the right
combobox. The left combobox always shows all types in the file.

· Some of the project and item templates have been updated. Methods and
constructors without parameters now have a STRICT calling convention. Also the
compiler option /vo15 has been explicitly disabled in templates for the Core dialect.

206X# Documentation

© 2015- 2024 XSharp BV

Changes in 2.0.0.3 (Bandol Beta 3)

Compiler

· When 2 method overloads have matching prototypes the compiler now prefers the
non generic one over the generic one

· Fixed an exception that could occur when compiling a single line of source code
with a preprocessor command in it.

Runtime

· Added Mod() function

· Added ArrayNew() overload with no parameters

· Fixed problem in __StringNotEquals() when length(RHS) > length(LHS) and
SetExact() == FALSE

· Added missing string resource for USUAL overflow errors

Visual Studio integration

· Improved keyword case synchronization and indenting. Also a source file is
'Keyword Case' synchronized when opened.

· Opening a source file by double clicking the find results window no longer opens a
new window for the same source file

· Improved type lookup speed for intellisense

· Fixed a problem that would prevent type lookup for types in the same namespace

· Fix for QuickInfo problem introduced in the latest Visual Studio 2017 builds

· QuickInfo tips are no longer shown in the debugger where they were overlapping
with debugger tooltips

· The comboboxes with methods and functions in the editor window no longer
shows parameter names and full type names. Now it shows the shortened type
names for the parameters

· These same comboboxes now show the file name for methods and properties
defined in another source file

· Fixed problem in the window editor with generating code for tab pages

Vulcan XPorter

· Project dependencies defined in the solution file were not properly converted

VO XPorter

· Fixed a problem where resource names were replaced with the value of a define

207 XSharp

© 2015- 2024 XSharp BV

Changes in 2.0.0.2 (Bandol Beta 2)

Compiler

· The compiler now transparently accepts both Int and Dword parameters for XBase
Array indices

· When the compiler finds a weakly typed function in XSharp.VO and a strongly
typed version in XSharp.Core then it will choose the strongly typed version in
XSharp.Core now.

· In the VO and Vulcan dialect sometimes an (incorrect) warning 'duplicate usings'
was displayed. This is now suppressed.

· The debugger information for the Start function has been improved to avoid
unnecessary step back to line 1 at the end of the code

· The debugger break point information for BEGIN LOCK and BEGIN SCOPE has
been improved

· The debugger break point information for multi line properties has been improved

· /vo6, /vo7 and /vo11 are now only supported in the VO/Vulcan dialect

Runtime

· Removed DWORD overloads for Array indexers

· Fixed overload problem for ErrString()

· Fixed overload problem for _DebOut()

· Fixed problems in DTOC() and Date:ToString()

· Fixed ASort() incompatibilities with VO

· Fixed memory blocks now get filled with 0xFF when they are released to help
detect problems

Visual Studio

· Fix 'Hang' in VS2017 when building

· Fix 'Hang' in VS2017 when a tooltip (QuickInfo) was displayed

· Fixed problem with debugging x64 apps

· You can no longer rename or delete the Properties folder

· Selecting 'Open' from the context menu on the the Properties folder now opens the
project properties screen

· Updated several icons in the Project Tree

· Enhancements in the Goto Definition

Build System

· Fix problem with CRLF in embedded resource commandline option

208X# Documentation

© 2015- 2024 XSharp BV

Changes in 2.0.0.1 (Bandol Beta 1)

Compiler

New features

· Added support for ARRAY OF language construct. See the Runtime chapter for
more information about this.

· Added support for the X# Runtime assemblies when compiling in the VO or Vulcan
dialects.

· Added support for the "Pseudo" function ARGCOUNT() that returns the # of
declared parameters in a function/method compiled with clipper calling convention.

· Added a new warning number for assigning values to a foreach local variable.
Assigning to USING and FIXED locals will generate an error.

Optimizations

· Optimized the code generation for Clipper calling convention functions/methods

· The /cf and /norun compiler options are no longer supported

· The preprocessor no longer strips white space. This should result in better error
messages when compiling code that uses the preprocessor.

· Some parser errors are now more descriptive

· Changed the method that is used to determine if we compile against CLR2 or
CLR4. The compiler checks at the location either system.dll or mscorlib.dll. When
this location is in a path that contains "v2", "2.", "v3" or "3." then we assume we are
compiling for CLR2. A path that contains "V4" or "4." is considered CLR4. The /clr
commandline option for the compiler is NOT supported.

· The preprocessor now generates an error when it detects recursive #include files.

Bug fixes

· Fixed a problem when using the [CallerMemberAttribute] on parameters when
compiling in Vulcan or VO Dialect

· Abstract properties should no longer generate a warning about a body

· You can now correctly use ENUM values as array indexes.

· Fixed a problem for Properties with PUBLIC GET and PRIVATE SET accessors.

· Fixed an issue where assigning an Interface to a USUAL required a cast to Object

· Fixed an issue where IIF expressions with literal types were returning the wrong
type (the L or U suffix was ignored)

· Fixed an issue where the declaration LOCAL x[10] was not compiled correctly.
This now compiles into a local VO Array with 10 elements.

Visual Studio Integration

· Build 1.2.1 introduced a problem that could cause output files to be locked by the
intellisense engine. This has been fixed

209 XSharp

© 2015- 2024 XSharp BV

· The editor parser had problems with nested types. This has been fixed

· Enum members were not included in code completion for enums inside X#
projects

· Some improvements in the code reformatting

· Added option on the Tools/Options for the editor to include keywords in the "All
tokens" completion list

· Fixed a problem where assemblies that could not be loaded to retrieve meta
information would be retried 'for ever'

· Fixed a problem with retrieving type information from assemblies that contained
both managed and unmanaged code.

· Added some properties for referenced assemblies to the IDE Properties window

· Fixed a problem with assembly references and the Windows Forms editor,
introduced in one of the latest Visual Studio 2017 updates

· When enabling XML output on the Project Properties window an incorrect filename
was shown for assemblies that contain a '.'in the assembly name.

· The editor parser now has better support for parameters of type REF and OUT

· Added support for 'Embed Interop Types' in the property windows for Assembly
References and COM references

· Fixed a problem where the codemodel was sometimes locking output DLLs for
Project references

Build System

· Fixed a problem with the naming of the XML documentation file.

Runtime

· Added XSharp.Core.DLL, XSharp.VO.DLL and XSharp.Macrocompiler.DLL.
Most runtime functions are implemented and supported. See the X# Runtime
chapter for more information

VO XPorter

· SDK related options have been removed. They will be moved to a new tool later.

Changes in 1.2.1

Compiler

· Fixed a problem where a compilation error resulted in the message "Failed to emit
module" without further information

· Fixed a problem with ++, -- += and similar operations in aliased expressions (like
CUSTOMER->CUSTNO++)

210X# Documentation

© 2015- 2024 XSharp BV

· Constructor initializers and Collection initializers were not working after a
constructor with parameters. That has been fixed.

· Fixed an issue with negative literal values stored in a USUAL when overflow
checking was enabled.

· For the CATCH clause now both the ID and the TypeName are optional. This
means that there are 4 variations.
You can only have one catch clause without type, since this defaults to the
System.Exception type. However, you can have many catch clauses without ID.

 CATCH ID AS ExceptionType
 CATCH ID // defaults to Exception type
 CATCH AS ExceptionType
 CATCH // defaults to Exception type

Visual Studio Integration

· Improved the speed of the background code scanning

· Improved the speed of the background parser inside the editor

· Fixed a problem in the codedom provider that is used by the windows forms editor

Changes in 1.2.0

Compiler

· You can now pass NULL for parameters declared by reference for compatibility
with VO & Vulcan.
We STRONGLY advise not to do this, unless you make sure that the function
expects this and does not assign to the reference parameter without checking for
a NULL reference first. This will only work when the /vo7 compiler option is
enabled.

· We have made some optimizations in the Lexer. The compiler should be a little
faster because of that

· We fixed a problem with the automatic constructor generation (/vo16) for classes
that inherit from classes defined in an external DLL

· When compiling with /vo2 any string fields assigned in a child class before the
super constructor was called would be overwritten with an empty string. The
generated code will now only assign an empty string when the string is NULL.
Note: we do not recommend to assign parent fields in the child constructor before
calling the super constructor. Manually coded default values for parent fields will
still overwrite values assigned in the child constructor before the SUPER call

· Fixed a problem with CHECKED() and UNCHECKED() syntax in the VO dialect

· Fixed a problem with choosing overloads for methods where an overload exists
with a single object parameter and also an overload with an object[] parameter.

· Added support to the parser for LOCAL STATIC syntax

211 XSharp

© 2015- 2024 XSharp BV

· Fixed a problem with compiler option /vo9 (Allow missing return values) and
procedures or methods that return VOID

· Improved debugger sequence point generation. The compiler no longer generates
'hidden' breakpoint information for startup and closedown code in the VO/Vulcan
dialects, and for expression statements no longer a double step is necessary.

· ACCESS and ASSIGN for partial classes could generate error messages without
source file name. This has been solved.
The compiler now generates slightly different code for these "partial" properties.
The Access and Assign are implemented as compiler generated methods and the
property getter and property setter now call these methods.

· The compiler was not recognizing the _WINCALL calling convention. This has
been fixed.

· The compiler now generates a warning when the #pragma command is used

Visual Studio Integration

· More performance improvements in the editor. Especially large source files with
incorrect code could slow down the editor.

· The editor parser no longer tries to parse include files repeatedly when these files
contain #defines only (like the Vulcan header files)

· The source code editor tried to show intellisense for words in a comment region.
That has been fixed.

· We have started work on Object Browser and Class Browser.

· Opening and closing of projects should be slightly faster

· The internal code model used by the editors now disposes its loaded information
when projects are closed and no projects need this information anymore. This
should reduce the memory usage of the X# project system

· Matching keywords, such as IF .. ENDIF and FOR .. NEXT should now be
highlighted in the editor

· If you select an identifier in the editor then that identifier will be highlighted in the
current method/function on all places where it is used

· We have added several features that you need to enable/disable on the
Tools/Options/Text Editor/XSharp/Intellisense dialog:
o The code completion in the editor also supports instance member

completion when a dot is pressed.
Please note that the compiler ONLY accepts this in the Core language, not
in the VO & Vulcan dialect. So the option has no effect inside projects with
other dialects.

o We have added some options to control the sorting of the DropDown
comboboxes in the editor, as well as if fields/instance variables should be
included in these comboboxes. When you do not sort, then the entries in
the dropdown box will be shown in the order in which they are found in the
source file.

o We have added the option to autocomplete identifiers when typing. This
includes locals, parameters, class fields, namespaces, types etc.

· Overridden methods in subclasses with the same signature as the parent
methods they override are no longer counted as overloads in completionlists

· A missing reference DLL could "kill" the intellisense engine. This no longer
happens. Of course the type info from a missing referenced DLL is not included.

212X# Documentation

© 2015- 2024 XSharp BV

· Properties and methods in the generated source files for XAML code (the .g.prg
files in the OBJ folder) are now also parsed and included in the completion lists in
intellisense and in the Class Browser and Object Browser windows.

VOXPorter

· The installer now includes the correct version of VOXPorter <g>

· VOXporter now supports the following commandline options:
/s:<source folder or aef>

/d:<destination folder>

/r:<runtime folder>

/nowarning

· Some code corrections were added for issues found in the GUI classes

· The template files can now also be found when VOXPorter is run from a different
working directory

Changes in 1.1.2

Compiler

· Added compiler warning for code that contains a #pragma

· Fixed a problem with iif() functions and negative literal values

Visual Studio Integration

· Fixed a slowness in the editor after typing a send (:) operator

· Enum values are now properly decoded in the debugger

· Fixed the CodeDom provider for handling literal FALSE values and negative
numbers. As a result, more (Vulcan created) winforms should open without
problems

· Some positional keywords (such as ADD and REMOVE) are no longer colored as
keyword in the editor for incomplete code when they appear after a colon ‘:’ or dot
‘.’;

VOXPorter

· Fixes for exporting the VO RDD Classes from the SDK

213 XSharp

© 2015- 2024 XSharp BV

Changes in 1.1.1

Compiler

· Fixed a problem with Debugger Breakpoints for DO CASE and OTHERWISE

· Fixed a problem with Debugger Breakpoints for sourcecode that is defined in
#included files

· Added support for the Harbour Global Syntax where the GLOBAL keyword is
optional

· Fixed a problem with FOR.. NEXT loops with negative step values

· In some situations the @@ prefix to avoid keyword conflicts was not removed
from workarea names or field names. This has been fixed

· In the VO/Vulcan dialect a warning (XS9015) was generated when a default
parameterless SUPER constructor call was automatically generated. This error
message is now suppressed. However a generated SUPER constructor call with
parameters still generates a warning.

· Prepared the compiler for Xbase type names and function names in the XSharp
Runtime

Preprocessor

· Fixed a crash in the preprocessor

· The preprocessor was generating an error "Optional block does not contain
a match marker" for blocks without match marker. This is now allowed.
(for example for the ALL clause in some of the Database UDCs)

· When the same include files was used by multiple source files, and different
sections of this file were included because of different #ifdef conditions, then the
preprocessor would get "confused". This has been fixed.

· Debugger file/line number information from source code imported from #include
files is not processed correctly.

Visual Studio Integration

· Fixed several issues with the Windows Form Editor

· The class declaration generated by the VO compatible editors now included the
PARTIAL modifier.

214X# Documentation

© 2015- 2024 XSharp BV

Changes in 1.1

Compiler

· Fixed a problem with Codeblocks used in late bound code after the release of X#
1.0.3

· Fixed a problem with overriding properties in a subclass that inherit from a class
where only the Assign (Set) or Access (Get) are defined.

· The compiler option /vo16: automatically generate VO Clipper constructors has
been implemented.

· Fixed a crash in the compiler for compiler errors that occur on line 1, column 1 of
the source file

· Fixed a problem where overflow checking was not following the /ovf compiler
option

· Fixed problem with public modifier for interface methods

· Added proper error message with unreachable fields in external DLLs

· Fixed a problem with debugger sequence points (debugger stepping)

· X# generated pdb files are now marked with the X# language GUID so they are
recognized as X# in the VS debugger

· DATETIME (26) and DECIMAL (27) are added as UsualType to the compiler in
preparation of the X# runtime that allows usuals of these types

· Compiler options /VO15 and /VO16 now produce an error message when used
outside the VO/Vulcan dialect

· Methods declared outside a class (VO style code) would declare a private class
and not a public class

· ASTYPE has been changed to a positional keyword

· Fixed a problem with the Chr() and _Chr() functions for literal numbers > 127

· Added support for the __CLR2__ and __CLR4__ compiler macros. The version is
derived from the folder name of mscorlib.dll and/or system.dll

· The Codeblock syntax was not working in the Core dialect.

· Some new keywords, such as REPEAT, UNTIL, CATCH, FINALLY,VAR, IMPLIED,
NAMESPACE, LOCK, SCOPE, YIELD, SWITCH etc are now also positional and
will only be recognized as keyword when at the start of a line or after a matching
other keyword.
This should help prevent cryptic error messages when these keywords are used
as function names.

Visual Studio

Source code editor

· Added Goto Definition for Functions and Procedures

· Improved Info tips for Functions and Procedures

· Improved case synchronization

215 XSharp

© 2015- 2024 XSharp BV

· Added first version of smart indenting

· Fixed lookup problems in the intellisense engine that could lock up VS

· Compiler Generated types are now suppressed from the completion lists.

· Added partial support for intellisense for LOCAL IMPLIED and VAR variables

· Added support for Format Document. This also sets the case for identifiers
according to the tools defined in the Tools/Options menu

· Performance improvements for the background file scanner. This scanner is also
paused during the build process to improve the compilation speed.

Project System and MsBuild

· Fixed a problem in the project files with conditioned property groups. Existing
projects will be updated automatically

· Added support for the /vo16 compiler option in MsBuild and the VS Project
Property pages.

· Fixed a problem with the /nostddef compiler option which was not working as
expected.

· Fixed a problem which would occur when entering resources or settings in the
project property dialog

· Fixed a problem with the /nostdlib compiler option

· License.Licx files are now added as "Embedded Resource"

· Fixed a problem with the automatic adding of License files

· When a project has a "broken reference" and a new reference is added with the
correct location, then the broken reference will be deleted and the new references
will be added instead.

· The MSBuild support DLL was unable to find the location of the compiler and
native resource compiler when running inside a 64 bit process

Form Editor

· Improved Windows Form Editor support for types defined in project references.
We will now detect the location of the output files for these projects, like the C#
and VB project systems.

· The Code parser for the Form Editor was having problems with untyped methods.
This has been fixed.

VO Window and Menu Editor

· The code generator for the Window and Menu editor will delete old unused defines.

· Changed the item template for VO windows to fix a problem when adding an event
handler to a window that has not been saved yet

· The code generator for the Window editor was not outputting a style for
WS_VISIBLE. This has been fixed.

Debugger

This build introduces a first version of the XSharp debugger support
· The Visual Studio debugger now shows the language X# in the callstack window

and other places
· Functions, Methods and procedures are now displayed in the X# language style in

the callstack window
· Compiler generated variables are no longer shown in the locals list

· The locals list now shows SELF in stead of this

216X# Documentation

© 2015- 2024 XSharp BV

· X# predefined types such as WORD, LOGIC etc are shown with their X# type
names in the locals window

Testing

· Added support for the Test Explorer window

· Added templates for unit testing with XUnit, NUnit and Microsoft Test

Other

· Added warning when Vulcan was (re)installed after XSharp, which could cause a
problem in the Visual Studio integration

· The VS Parser was marking Interfaces as structure in stead of interface. This has
been fixed.

· The tool XPorter tools have better names in the VS Tools Menu

· The VS Background parser gets suspended while looking up type information to
improve the intellisense speed

· Several changes were made to the templates that come with X#

XPorter

· Fix problem in propertygroup conditions.

VOXPorter

· Generate clipper constructors is now disabled by default

· Fixed a problem in the VS Template files.

Changes in 1.0.3

Compiler

· Fixed a problem with the index calculation for Vulcan Arrays indexed with a usual
argument

· Fixed a problem with the generation of automatic return values for code that ends
with a begin sequence statement or a try statement

· Optimized the runtime performance for literal symbols.
The compiler now generates a symbol table for the literal symbols and each literal
symbol used in your app is only created once.
You may experience a little delay at startup if your app uses a LOT (thousands) of
literal symbols. But the runtime performance should be better.

· Added a compiler error for code where numerics are casted to an OBJECT with
the VO compatible _CAST operator.
This is no longer allowed:
LOCAL nValue as LONG
LOCAL oObject as OBJECT

217 XSharp

© 2015- 2024 XSharp BV

nValue := 123
oObject := OBJECT(_CAST, nValue)

Changes in 1.0.2

Compiler

· Added support for XML doc generation. We support the same tags that the C#
compiler and other .Net compiler support.

· Improved some parser errors.

· Created separate projects for portable and non portable (.Net framework 4.6) for
the compiler and scripting

· Fixed the code generation for conversion from USUAL to a known type. Now the
same error is generated that Vulcan produces when the object type in the usual
does not match the type of the target variable

· When declaring a type with the same name as the assembly now a compiler error
is generated with a suggested work around.

· Fixed a strange compiler message when using a PTR() operation on a method call

· Indexed access to bytes in a PSZ is now 1 based like in VO when the VO dialect is
used. The Vulcan dialect needs 0 based index access like Vulcan.

· The error message for compound assignments of FLOAT and USUAL has been
removed. The compiler now contains a workaround for the problem in the Vulcan
Runtime

· For ambiguous code where the compiler has to choose between a Function call
and a static method call in any other class, the compiler now chooses the function
call over the method call (Vo and Vulcan dialect). The warning will still be
generated.

· When passing a variable by reference with the @ sign the compiler will now check
to see if the declared type of the function/method parameter matches the type of
the local variable.

· Some compiler warnings for unused variables were being suppressed in the
VO/Vulcan dialect. They are activated again.

Scripting

· The scripting was not working in release 1.01

Visual Studio Integration

· QuickInfo could generate a 'hang' in the VS editor. This has been fixed

· Added quickinfo for globals and defines

· Added completionlists for globals and defines

· Added VO Form editor to edit vnfrm/xsfrm files and generate the code and
resources

218X# Documentation

© 2015- 2024 XSharp BV

· Added VO Menu editor to edit vnmnu/xsmnu files and generate the code and
resources

· Added VO DbServer editor and VO Fieldspec editor to edit vndbs/xsdbs and
vnfs/xsfs files and generate the code and resources

· Added keyword and identifier case synchronization.

· Fixed a problem where typing SUPER(in the editor could throw an exception

· Prebuild and Postbuild entries in the project file are now configuration specific

· Added support for XML Doc generation in the project system

· Fixed a 'hang' that could occur with Visual Studio 2017 version 15.3 and later

VO Xporter

· Fixed a problem when importing certain VO 2.7 AEF files

· Fixed a problem with acceptable characters in the solution folder name

· VO Form and menu entities are also included in the xsproj file

· Added an option to the INI files to specify the Vulcan Runtime files location (
)

Changes in General Release (1.0.1.1)

Compiler

· Fixed a problem with VERY old versions of the Vulcan Runtime

· Variables declared as DIM Byte[] and similar are now Pinned by the compiler

· [Return] attribute was not properly handled by the compiler. This has been fixed

· Compound Assignment (u+= f or -=) from USUAL and FLOAT were causing a
stackoverflow at runtime caused by a problem in the Vulcan Runtime. These
expressions now generate a compiler error with the suggestion to change to a
simple assignment (u := u + f)

Visual Studio Integration

· Project References between XSharp Projects were also loaded as
assemblyreference when resolving types. This could lead to speed problems and
unnecessary memory usage

· Improved the speed of the construction of Completion Lists (such as methods and
fields for a type).

· We have also added Completion List Tabs, where you can see fields, properties,
methods etc. on separate tabs. You can enable/disable this in the
Tools/Options/Text Editor/XSharp/Intellisense options page.

219 XSharp

© 2015- 2024 XSharp BV

VO XPorter

· We have added a check to make sure that the default namespace for a X# project
cannot contain a whitespace character

Changes in General Release (1.0.1)

New Features

· We have added support for ENUM Basetypes (ENUM Foo AS WORD)

· We have added a separate syntax for Lambda Expressions

· We have added support for Anonymous Method Expressions

· Typed local variables can now also be used for PCALL() calls

· Methods with the ExtensionAttribute and Parameters with the ParamArrayAttribute
attributes now compile correctly, but with a warning

Compiler

· Fixed a problem with a late bound assign of a literal codeblock

· Resolved several name conflicts

· Improved several of the error messages

· Fixed compilation problem for Properties with only a SET accessor

· Fixed a crash in a switch block with an if .. endif statement

· Fix problem with virtual instance methods and structures

· Fixed name conflict foreach variables used in Array Literals

· Changed resolution for Functions and static methods with the same name.
In the VO/Vulcan dialect functions take precedence over static methods. If you
want to call the static method then then you need to prefix the method call with the
classname.

· There is a separate topic in this documentation now that describes the syntax
differences and similarities between Codeblocks, Lambda Expressions and
Anonymous Method Expressions.

· Fixed incorrect error message for Start() function with wrong prototype.

· When an ambiguity is detected between a function and a static method then a
warning is displayed

Visual Studio

· Added parameter tips for Functions and methods from "Using Static" classes

· Added parameter tips for Clipper Calling Convention functions and methods

· Added support for generics in Intellisense

· Intellisense will show keywords in stead of native type names (WORD in stead of
System.UInt16 for example)

220X# Documentation

© 2015- 2024 XSharp BV

· Parameter tips are now shown when a opening '(' or '{' is typed as well as when
the user types a comma ','.

· Parameter tips will show REF OUT and AS modifiers

· Added intellisense for COM references, both for normal COM references as well
as for Primary Interop Assemblies. Also members from implemented interfaces
are now included in intellisense code completion (this is very common for COM).

· Improved intellisense for Project References from other languages, such as C#
and VB.

· Added intellisense for Functions in referenced projects and referenced Vulcan
and/or X# assemblies

· Suppress "special type names" in intellisense lists

· Added support for "VulcanClassLibrary" attribute to help find types and functions

· Errors from the Native Resource compiler are now also included in the error list

· Fixed problem with parameter tips for Constructors

· Added memberlist support for X# type keywords such as STRING, REAL4 etc.

· Fixed several issues with the Windows Form editor in relation to ActiveX controls

· Added a menu option to start the VO Xporter tool

· Added background scanning for dependent items, to make sure that newly
generated code is scanned and available for intellisense.

· Several changes to the Windows Forms editor and project system:
o Added support for adding ActiveX controls
o Added support for Form Inheritance. Our forms are also visible in the C#

Inherited form wizard
o Added support to add our Windows Forms Custom Controls to the

ToolBox in Visual Studio
o Some performance enhancements in the Codedom Parser that is used by

the Windows Form Editor. You should notice this for larger forms.
· Fixed several crashes reported by users

· Native Resource files (.rc) now open in the Source code editor

· Improved background parsing speed

· Improved keyword colorization speed

· Improved handling of Type and Member dropdowns in the editor

Tools

· Added a first version of the VO Xporter tool

· The installer now registers .xsproj files, .prg, .ppo. .vh, .xh and .xs files so they will
be opened with Visual Studio

Documentation

· We have added some chapters on how to convert your VO AEF and/or PRG files
to a XIDE project and/or a Visual Studio solution.

221 XSharp

© 2015- 2024 XSharp BV

Changes in 0.2.12

Scripting

· We have added the ability to use X# scripts. Some documentation about how this works
can be found here. You can also find scripting examples in the
c:\Users\Public\Documents\XSharp\Scripting folder

Compiler

All dialects

· The compiler is now based on the Roslyn source code for C# 7.

· Accesses and Assigns with the same name for the same (partial) class in
separate source files are now merged into one property. This will slow down the
compiler somewhat. We recommend that you define the ACCESS and ASSIGN in
the same source file.

· Added support for repeated result markers in the preprocessor

· We have added the compiler macro __DIALECT_HARBOUR__

· Fixed the name resolution between types, namespaces, fields, properties,
methods, globals etc. The core dialect is very close to the C# rules, the other
dialect follows the VO rules.

· Some warnings for ambiguous code have been added

· _Chr() with untyped numeric values would crash. This has been fixed.

· We made some changes to the character literal rules. For the VO and Harbour
dialect there are now other rules then for Core and Vulcan. See the help topic for
more information

VO and Vulcan Dialect

· Several VO compatibility issues have been fixed

· The QUIT, ACCEPT, WAIT, DEFAULT TO and STORE command are now removed
from the compiler and defined in our standard header file "XSharpDefs.xh" which is
located in the \Program Files(x86)\XSharp\Include folder. These commands are not
compiled in the core dialect

· Added support for CONSTRUCTOR() CLASS MyClass and DESTRUCTOR CLASS
MyClass (in other words, outside the CLASS .. ENDCLASS construct

· The # (not equal) operator is now recognized when used without space before the
keywords NIL, NULL_STRING, NULL_OBJECT etc. so #NIL is not seen as the
symbol NIL but as Not Equal To NIL

· SizeOf and _TypeOf were special tokens in VO and could not be abbreviated. We
have changed the X# behavior to match this. This prevents name conflicts with
variables such as _type.

222X# Documentation

© 2015- 2024 XSharp BV

· We have added support for DLL entrypoints with embedded @ signs, such as
"CAVOADAM.AdamCleanupProtoType@12"

· (DWORD) (-1) would require the unchecked operator. This is now compatible with
Vulcan and generates a DWORD with the value System.Uint32.MaxValue.

· STATIC VOSTRUCT now gets compiled as INTERNAL VOSTRUCT. This means
that you cannot have the same structure twice in your app. Why would you want to
do that ?

· Fixed several cases of "incorrect" code that would be compiled by VO, such as a
codeblock that looks like:

cb := { |x|, x[1] == 1 }
Note the extra comma.
This now compiled into the same codeblock as:

cb := { |x| x[1] == 1 }
· The /vo16 compiler option has been disabled for now (does not do anything)

because it had too many side effects.

Visual Studio Integration

· Deleted files and folders are moved them to the Trash can.

· Fixed an intellisense problem in the XAML editor

· Added support for Code Completion between different X# projects

· Added support for Code Completion and other intellisense features for source
code in VB and C# projects

· Added support for parameter info

Documentation

· We have added (generated) topics for all undocumented compiler errors. Some
topics only contain the text that is shown by the compiler. More documentation will
follow. Also some documentation for the X# Scripting has been added.

Changes in 0.2.11

Compiler

All dialects

· Improved some error messages, such as for unterminated strings

· Added support for the /s (Syntax Check only) command line option

· Added support for the /parseonly command line option which is used by the
intellisense parser

· Added some compiler errors and warnings for invalid code

· The preprocessor did not properly handle 4 letter abbreviations for #command and
#translate. This has been fixed

· Fixed some problems found with the preprocessor

223 XSharp

© 2015- 2024 XSharp BV

· We switched to a new Antlr parser runtime. This should result in slightly better
performance.

· Changed the way literal characters and strings are defined:
o In the Vulcan dialect a literal string that is enclosed with single quotes is a

char literal. Double quotes are string literals
o In the Core and VO dialect a literal string that is enclosed with single quotes

is a string literal. Double quotes are also string literals.
To specify a char literal in Core and VO you need to prefix the literal with a
'c':

 LOCAL cChar as CHAR
 cChar := c'A'

· Changed the way literal characters and strings are defined:

· sizeof() and _sizeof() no longer generate a warning that they require 'unsafe'
code, when compiling for x86 or x64. When compiling for AnyCpu the warning is
still produced.

· When the includedir environment variable was not set then the XSharp\Include
folder would also not be found automatically.

VO/Vulcan Compatibility

· Added /vo16 compiler option to automatically generate constructors with Clipper
calling convention for classes without constructor

Harbour Compatibilty

· Started work on the Harbour dialect. This is identical with the VO/Vulcan dialect.
The only difference so far is that the IIF() expressions are optional

Visual Studio

New features / changed behavior:

· Added Brace Matching

· Added Peek definition (Alt-F12)

· All keywords are not automatically part of the Completionlist

· Fixed a member lookup problem with Functions and Procedures inside a
Namespace

· Increased background parser speed for large projects

· Fixed type lookup for fields and properties from parent classes

· Fixed problem where CSharp projects could not find the output of a XSharp project
reference

· The Intellisense parser now properly used all current projects compiler options.

· Prevent crashes when the X# language buffer is fed with "garbage" such as C#
code

224X# Documentation

© 2015- 2024 XSharp BV

Installer

· The local template cache and components cache for VS2017 was not cleared
properly this has been fixed.

· Added code to properly unregister an existing CodeDomProvider when installing

Documentation

· Several empty chapters are now hidden.

· Added description of the templates

Changes in 0.2.10

This build focuses on the last remaining issues in the VO and Vulcan compatibility and
adds a lot of new features to the Visual Studio integration.

Compiler

VO/Vulcan Compatibility

· We have completed support for the DEFINE keyword. The type clause is now
optional. The compiler will figure out the type of the define when no type is
specified.
The DEFINEs will be compiled to a Constant field of the Functions class, or a
Readonly Static field, when the expression cannot be determined at compile time
(such as for Literal dates or symbols).

· We have extended the preprocessor . It now has support for #command,
#translate, #xcommand and #xtranslate. Also "Pseudo function" defines are
supported, such as :

#define MAX(x,y) IIF((x) > (y), (x), (y))

This works just like a #xtranslate, with the exception that the define is case
sensitive (unless you have enabled the "VO compatible preprocessor" option
(/vo8).
The only thing that is not working in the preprocessor is the repeated result
marker.

· In VO/Vulcan mode the compiler now accepts "garbage" between keywords such
as ENDIF and NEXT and the end of the statement, just like the VO compiler.
So you no longer have to remove "comment" tokens after a NEXT or ENDIF. This
will compile without changes in the VO and Vulcan dialect:

 IF X == Y
 DoSomething()
 ENDIF X == Y

225 XSharp

© 2015- 2024 XSharp BV

or
 FOR I := 1 to 10
 DoSomething()
 NEXT I
We do not recommend this coding style, but this kind of code is very common...

· Fixed an issue with recognition of single quoted strings. These were always
recognized as CHAR_CONST when the length of the string was 1. Now they are
treated as STRING_CONST and the compiler backend has been adjusted to
convert the STRING literals to CHAR literals when needed.

· In VO and Vulcan dialect when the compiler option /vo1 is used then RETURN
statements without value or with a return value of SELF are allowed for the Init()
and Axit() methods. Other return values will trigger a compiler warning and will be
ignored.

New features / changed behavior:

· The compiler now produces an error when a source file ends with an
unterminated multi line comment

· Added ASTYPE expression, similar to the AS construct in other languages. This
will assign a value of the correct type or NULL when the expression is not of the
correct type:

VAR someVariable := <AnExpression> ASTYPE <SomeType>

· The Chr() and _Chr() functions are now converted to a string or character literal
when the parameter is a compile time constant

· Compilation speed for assemblies with larger numbers of functions, procedures,
defines, globals or _dll functions has been improved.

· _DLL FUNCTIONS now automatically are marked with CharSet.Auto

· Fixed some inconsistencies between Colon (:) and Point (.) interoperability and the
super keyword

· Fixed several compiler issues reported by FOX subscribers and other users.

Visual Studio

New features / changed behavior:

· Tested and works with the release version of Visual Studio 2017

· We have added support for regions inside the VS editor. At this moment most
"entities" are collapsible as well as statement blocks, regions and lists of usings,
#includes and comments.

· We have added support for member and type drop downs in the VS Editor

· We have added support for Code completion in the VS editor

· We have added support for Goto definition in the VS Editor

· Errors detected by the intellisense scanner are now also included in the VS error
list.

· We have added help links to the errors in the VS error list. The help links will bring
you to the appropriate page on the X# website. Not all the help pages are complete
yet, but at least the infrastructure is working.

· We have added support for snippets and included several code snippets in the
installer

226X# Documentation

© 2015- 2024 XSharp BV

· We have made several changes to the project properties dialogs
o The pre and post build events are now on a separate page for the Project

Properties. These are now also not defined per configuration but are
shared between the various configurations.
If you want to copy output results to different folders for different
configurations you should use the $(Configuration) and $(Platform)
variables

o We have moved the Platform and Prefer32Bits properties to the Build
page to make them configuration dependent

o Fixed a problem with casing of the AnyCPU platform which would result in
duplicate items in the VS Platform combobox

o Added support for ARM and Itanium platform types
o Some properties were saved in project file groups without a platform

identifier. This has been fixed
o We have added a project property to control how Managed file resources

are included: Use Vulcan Compatible Managed Resources
When 'True' then resources files are included in the assembly without
namespace prefix. When 'False' then the resource files are prefixed with
the namespace of the app, just like in other .Net languages, such as C#

· We have fixed some code generation problems

· The parser that is used in the Windows Forms editor now also properly handles
background images. Both images in the resx for the form and also background
images in the shared project resources

· We have added Nuget support for our project system.

· We have made several changes to fix problems in project files
o The project system now silently fixes problems with duplicate items
o Fixed a problem with dependencies between xaml files and their

dependent designer.prg files and other dependent files
o Fixed a problem with dependent items in sub folders or in a folder tree

that includes a dot in a folder name.
o Fixed a problem in the WPF template

· Fixed a refresh problem when deleting a references node

· Added implementation of the OAProject.Imports property, which is used by
JetBrains

XPorter

· Fixed a problem converting WPF style projects

Changes in 0.2.9

Compiler

With this build you can compile the Vulcan SDK without changes, except for some
obvious errors in the Vulcan SDK that Vulcan did not find!

227 XSharp

© 2015- 2024 XSharp BV

We consider the Vulcan Compatibility of the compiler finished with the current
state of the compiler. All Vulcan code should compile without proble now.

VO/Vulcan Compatibility

New features / changed behavior:

· All Init procedures are now properly called at startup. So not only the init
procedures in the VOSDK libraries but also init procedures in other libraries and
the main exe

· Changed the method and type resolution code:
o A method with a single object parameter is now preferred over a method

with an Object[] parameter
o When both a function (static method) exists and an instance method we

will now call the static method in code inside methods that does not have a
SELF: or SUPER: prefix.

o In situations where the @ operator is used to pass variables by reference.
o To make it more compatible with Vulcan for overloads with different

numeric types.
o To prefer a method with specific parameters over a method with usual

parameters
o To avoid problems with Types and Namespaces with the same name.
o To prefer a method with an OBJECT parameter over the one with

OBJECT[] parameters when only 1 argument is passed
o When 2 identical functions or types are detected in referenced assemblies

we now choose the one in the first referenced assembly like Vulcan does,
and generate warning 9043

· The sizeof operator now returns a DWORD to be compatible with VO and Vulcan.

· Added support for EXIT PROCEDURES (PROCEDURE MyProcedure EXIT).
These procedures will automatically be called during program shutdown, just
before all the global variables are cleared.
The compiler now generates an $Exit function for each assembly in which the exit
procedures will be called and the reference globals in an assembly will be cleared.
In the main app a $AppExit() function is created that will call the $Exit functions in
all references X# assemblies. When a Vulcan compiled assembly is referenced,
then all the public reference globals will be cleared from the $AppExit() function.

· Added support for PCALL and PCALLNATIVE

· Added support for several Vulcan compatible compiler options:
o /vo1 Allow Init() and Axit() for constructor and destruction
o /vo6 Allow (global) function pointers. DotNet does not "know" these. They

are compiled to IntPtr. The function information is preserved so you can
use these pointer in a PCALL()

o /ppo. Save the preprocessed compiler output to a file
o /Showdefs Show a list of the defines and their values on the console
o /showincludes Show a list of the included header files on the console
o /verbose Shows includes, source file names, defines and more. on the

console
o DEFAULT TO command
o ACCEPT command
o WAIT command

· Several code generation changes:

228X# Documentation

© 2015- 2024 XSharp BV

o Changed the code generation for DIM elements inside VOStruct arrays
because the Vulcan compiler depends on a specific naming scheme and
did not recognize our names.

o Improved the code generation inside methods with CLIPPER calling
convention.

Bug fixes

· Implicit namespaces are now only used when the /ins compiler option is enabled.
In Vulcan dialect the namespace Vulcan is always included.

· Fixed several problems with the @ operator and VOSTRUCT types

· Fixed a problem with DIM arrays of VOSTRUCT types

· Fixed a problem with LOGIC values inside VOSTRUCT and UNION types

· Fixed several problems with the VOStyle _CAST and Conversion operators.

· Fixed several numeric conversion problems

· Fixed several problems when mixing NULL, NULL_PTR and NULL_PSZ

· Fixed several problems with the _CAST operator

· Fixed several problems with PSZ Comparisons. X# now works just like Vulcan and
VO and produces the same (sometimes useless) results

· Fixed a problem with USUAL array indexes for multi dimensional XBase Arrays

· Fixed codeblock problems for codeblocks where the last expression was VOID

· Changed code generation for NULL_SYMBOL

· Preprocessor #defines were sometimes conflicting with class or namespace
names. For example when /vo8 was selected the method
System.Diagnostics.Debug.WriteLine() could not be called because the DEBUG
define was removing the classname. We have changed the preprocessor so it will
no longer replace words immediately before or after a DOT or COLON operator.

· Fixed a compiler crash when calling static methods in the System.Object class
when Late Binding was enabled

· Fixed String2Psz() problem inside PROPERTY GET and PROPERTY SET

· And many more changes.

All dialects

New features / changed behavior:

· Several code generation changes:
o The code generation for ACCESS and ASSIGN has changed. There are no

longer separate methods in the class, but the content of these methods is
now inlined in the generated Get and Set methods for the generated
property.

o Optimized the code generation for IIF statements.
o The debugger/step information has been improved. The debugger should

now also stop on IF statements, FOR statements, CASE statements etc.
· Indexed access to properties defined with the SELF keyword can now also use the

"Index" property name

· Functions and Procedures inside classes are not allowed (for now)

· RETURN <LiteralValue> inside an ASSIGN method will no longer allocate a
variable and produce an warning

· Several keywords are now also allowed as Identifier (and will no longer have to be
prefixed with @@):

229 XSharp

© 2015- 2024 XSharp BV

Delegate, Enum, Event, Field, Func, Instance, Interface, Operator,
Proc, Property, Structure, Union, VOStruct and many more
As a result the following is now valid code (but not recommended):

FUNCTION Start AS VOID
 LOCAL INTERFACE AS STRING
 LOCAL OPERATOR AS LONG
 ? INTERFACE, OPERATOR
 RETURN

You can see that the Visual Studio language support also recognizes that INTERFACE
and OPERATOR are not used as keywords in this context

Bug fixes

· Fixed a problem with the REPEAT UNTIL statement

· Fixed a crash for code with a DO CASE without a matching END CASE

· Fixed several issues for the code generation for _DLL FUNCTIONs and _DLL
PROCEDUREs

· Fixed a problem (in the Roslyn code) with embedding Native Resources in the
Assembly.

· Fixed a problem with the _OR() and _AND() operators with more than 2
arguments.

· Added support for Pointer dereferencing using the VO/Vulcan Syntax : DWORD(p)
=> p[1]

· Fixed several problems with the @ operator

· When two partial classes had the same name and a different casing the compiler
would not properly merge the class definitions.

· Fixed a crash when a #define in code was the same as a define passed on the
commandline

· Indexed pointer access was not respecting the /AZ compiler option (and always
assumed 0 based arrays). This has been fixed

· Fixed a problem with the caching of preprocessed files, especially files that contain
#ifdef constructs.

· Fixed a problem which could occur when 2 partial classes had the same name but
a different case

· Fixed a compiler crash when a referenced assembly had duplicate namespaces
that were only different in Case

· Fixed problems with Functions that have a [DllImport] attribute.

· Error messages for ACCESS/ASSIGN methods would sometimes point to a
strange location in the source file. This has been fixed.

· Fixed a problem with Init Procedures that had a STATIC modifier

· Fixed a problem in the preprocessor when detecting the codepage for a header
file. This could cause problems reading header files with special characters (such
as the copyright sign ©)

· And many more changes.

Visual Studio Integration

· Added support for all compiler options in the UI and the build system

· Fixed problems with dependent file items in subfolders

· The Optimize compiler option was not working

230X# Documentation

© 2015- 2024 XSharp BV

· The 'Clean' build option now also cleans the error list

· Under certain conditions the error list would remain empty even though there were
messages in the output pane. This has been fixed.

· The <Documentationfile> property inside the xsproj file would cause a rebuild from
the project even when the source was not changed

· Earlier versions of XPorter could create xsproj files that would not build properly.
The project system now fixes this automatically

· Fixed a problem with the build system and certain kind of embedded managed
resources

Documentation

· We have added many descriptions to the commandline options

· We have added a list of the most common compiler errors and warnings.

Changes in 0.2.8

Compiler

VO/Vulcan Compatibility

· Default Parameters are now handled like VO and Vulcan do. This means that you
can also have date constants, symbolic constants etc as default parameter

· String Single Equals rules are now 100% identical with Visual Objects. We found
one case where Vulcan does not return the same result as Visual Objects. We
have chosen to be compatible with VO.

· When compiling in VO/Vulcan mode then the init procedures in the VO SDK
libraries are automatically called. You do not have to call these in your code
anymore
Also Init procedures in the main assembly are called at startup.

· The /vo7 compiler option (Implicit casts and conversions) has been implemented.
This also includes support to use the @ sign for REF parameters

· You can now use the DOT operator to access members in VOSTRUCT variables

· We have fixed several USUAL - Other type conversion problems that required
casts in previous builds

· The compiler now correctly parses VO code that contains DECLARE METHOD,
DECLARE ACCESS and DECLARE ASSIGN statements and ignores these

· The compiler now parses "VO Style" compiler pragma's (~"keyword" as white-
space and ignores these.

· Fixed a problem where arrays declared with the "LOCAL aSomething[10] AS
ARRAY" syntax would not be initialized with the proper number of elements

· Fixed a problem when calling Clipper Calling Convention constructors with a single
USUAL parameter

231 XSharp

© 2015- 2024 XSharp BV

· Attributes on _DLL entities would not be properly compiled. These are recognized
for now but ignored.

· Fixed several numeric conversion problems

New features

· We have added support for Collection Initializers and Object Initializers

· Anonymous type members no longer have to be named. If you select a property as
an anonymous type member then the same property name will be used for the
anonymous type as well.

· Missing closing keywords (such as NEXT, ENDIF, ENDCASE and ENDDO) now
produce better error messages

· IIF() Expressions are now also allowed as Expression statement. The generated
code will be the same as if an IF statement was used

 FUNCTION IsEven(nValue as LONG) AS LOGIC
 LOCAL lEven as LOGIC
 IIF(nValue %2 == 0, lEven := TRUE, lEven := FALSE)
 RETURN lEven

We really do not encourage to hide assignments like this, but in case you have used this
coding style,it works now <g>.

· AS VOID is now allowed as (the only) type specification for PROCEDUREs

· We have added a .config file to the exe for the shared compiler that should make it
faster

· The XSharpStdDefs.xh file in the XSharp is now automatically included when
compiling. This file declares the CRLF constant for now.

· Include files are now cached by the compiler. This should increase the compilation
speed for projects that depend on large included files, such as the
Win32APILibrary header file from Vulcan

· When a function is found in an external assembly and a function with the same
name and arguments is found in the current assembly, then the function in the
current assembly is used by the compiler

· Compiler error messages for missing closing symbols should have been improved

· Compiler error messages for unexpected tokens have been improved

Bug fixes

· Several command-line options with a minus sign were not properly handled by the
compiler

· Fixed several crashes related to assigning NULL_OBJECT or NULL to late bound
properties have been fixed

· Partial class no longer are required to specify the parent type on every source
code location. When specified, the parent type must be the same of course.
Parent interfaces implemented by a class can also be spread over multiple
locations

· We have fixed a crash that could happen with errors/warnings in large include
files

· Abstract methods no longer get a Virtual Modifier with /vo3

· Fixed a problem with virtual methods in child classes that would hide parent class
methods

232X# Documentation

© 2015- 2024 XSharp BV

· Automatic return value generation was also generating return values for ASSIGN
methods. This has been fixed.

· We fixed a problem with the Join Clauses for LINQ Expressions that would cause
a compiler exception

· The /vo10 (compatible iif) compiler option no longer adds casts in the Core dialect.
It only does that for the VO/Vulcan dialect

Visual Studio Integration

We have changed the way the error list and output window are updated. In previous
version some lines could be missing on the output window, and the error code column
was empty. This should work as expected now.
· We have merged some code from some other MPF based project systems, such

as WIX (called Votive), NodeJS and Python (PTVS) to help extend our project
system. As a result:
o Our project system now has support for Linked files
o Our project system now has support for 'Show All Files' and you can now

Include and Exclude files. This setting is persisted in a .user file, so you
can exclude this from SCC if you want.

o We have made some changes to support better 'Drag and Drop'

· We have fixed several issues with regard to dependent items

· When you include a file that contains a form or user control, this is now recognized
and the appropriate subtype is set in the project file, so you can open the windows
forms editor

· We are now supporting source code generation for code behind files for .Settings
and .Resx files

· The combobox in the Managed Resource editor and Managed Settings tool to
choose between internal code and public code is now enabled. Selecting a
different value in the combobox will change the tool in the files properties.

· The last response file for the compiler and native resource compiler are now
saved in the users Temp folder to aid in debugging problems.

· The response file now has each compiler option to a new line to make it easier to
read and debug when this is necessary.

· The code generation now preserves comments between entities (methods)

· We fixed several minor issues in the templates

· When the # of errors and warnings is larger than the built-in limit of 500, then a
message will be shown that the error list was truncated

· At the end of the build process a line will be written to the output window with the
total # of warnings and errors found

· The colors in the Source Code Editor are now shared with the source code editors
for standard languages such as C# and VB

· When you have an inactive code section in your source code, embedded in an
#ifdef that evaluates to FALSE then that section will be visibly colored gray and
there will be no keyword highlighting. The source code parser for the editor picks
up the include files and respects the path settings. Defines in the application
properties dialog and the active configuration are not respected yet. That will follow
in the next build.

233 XSharp

© 2015- 2024 XSharp BV

Changes in 0.2.7.1

Compiler

· The compiler was not accepting wildcard strings for the AssemblyFileVersion
Attribute and the AssemblyInformationVersion attribute. This has been fixed

· The #Pragma commands #Pragma Warnings(Push) and #Pragma
Warnings(Pop) were not recognized. This has been fixed.

· The compiler was not recognizing expressions like
global::System.String.Compare(..). This has been fixed

Visual Studio Integration

· Dependent items in subfolders of a project were not recognized properly and could
produce an error when opening a project

· Fixed a problem in the VulcanApp Template

· The Windows Forms Editor would not open forms in a file without begin
namespace .. end namespace. This has been fixed

· Source code comments between 'entities' in a source file is now properly saved
and restored when the source is regenerated by the form editor

· Unnecessary blank lines in the generate source code are being suppressed

· The XPorter tool is now part of the Installation

· Comments after a line continuation character were not properly colored

· Changed the XSharp VS Editor Color scheme to make certain items easier to read

· New managed resource files would not be marked with the proper item type. As a
result the resources would not be available at runtime. This has been fixed.

· Added 'Copy to Output Directory' property to the properties window

Setup

· The installer, exe files and documentation are now signed with a certificate

Changes in 0.2.7

Compiler

New features:

· Added support for the VOSTRUCT and UNION types

234X# Documentation

© 2015- 2024 XSharp BV

· Added support for Types as Numeric values, such as in the construct
IF UsualType(uValue) == LONG

· Added a FIXED statement and FIXED modifier for variables

· Added support for Interpolated Strings

· Empty switch labels inside SWITCH statements are now allowed. They can share
the implementation with the next label.
Error 9024 (EXIT inside SWITCH statement not allowed) has been added and will
be thrown if you try to exit out of a loop around the switch statement.
This is not allowed.

· Added support for several /vo compiler options:
- vo8 (Compatible preprocessor behavior). This makes the preprocessor defines
case insensitive. Also a define with the value FALSE or 0 is seen as 'undefined'
- vo9 (Allow missing return statements) compiler option. Missing return values are
also allowed when /vo9 is used.
Warnings 9025 (Missing RETURN statement) and 9026 (Missing RETURN value)
have been added.
- vo12 (Clipper Integer divisions)

· The preprocessor now automatically defines the macros __VO1__ until __VO15__
with a value of TRUE or FALSE depending on the setting of the compiler option

· The FOX version of the compiler is now distributed in Release mode and much
faster. A debug version of the compiler is also installed in case it is needed to aid
in finding compiler problems.

Changed behavior

· The compiler generated Globals class for the Core dialect is now called
Functions and no longer Xs$Globals.

· Overriding functions in VulcanRTFuncs can now be done without specifying the
namespace:
When the compiler finds two candidate functions and one of them is inside
VulcanRTFuncs then the function that is not in VulcanRTFuncs is chosen.

· Warning 9001 (unsafe modifier implied) is now suppressed for the VO/Vulcan
dialect. You MUST pass the /unsafe compiler option if you are compiling unsafe
code though!

· Improved the error messages for the Release mode of the compiler

Bug fixes

· RETURN and THROW statements inside a Switch statement would generate an
'unreachable code' warning. This has been fixed

· Fixed several problems with mixing signed and unsigned Array Indexes

· Fixed several problems with the FOR .. NEXT statement. The "To" expression will
now be evaluated for every iteration of the loop, just like in VO and Vulcan.

· Fixed several compiler crashes

· Fixed a problem with implicit code generation for constructors

· Fixed a visibility problem with static variables inside static functions

Visual Studio Integration

· Fixed a problem that the wrong Language Service was selected when XSharp and
Vulcan.NET were used in the same Visual Studio and when files were opened
from the output window or the Find Results window

235 XSharp

© 2015- 2024 XSharp BV

· Fixed some problems with 'abnormal' line endings in generated code

· Fixed a problem in the Class Library template

· Fixed a problem with non standard command lines to Start the debugger

Changes in 0.2.6

Compiler

· Added alternative syntax for event definition. See EVENT keyword in the
documentation

· Added Code Block Support

· Implemented /vo13 (VO compatible string comparisons)

· Added support for /vo4 (VO compatible implicit numeric conversions)

· Aliased expressions are now fully supported

· Fixed a problem with the &= operator

· Fixed several crashes for incorrect source code.

· Fixed several problems related to implicit conversions from/to usual, float and date

· Indexed properties (such as String:Chars) can now be used by name

· Indexed properties can now have overloads with different parameter types

· Added support for indexed ACCESS and ASSIGN

· Fixed a problem when calling Clipper Calling Convention functions and/or methods
with a single parameter

· Fixed a crash with defines in the preprocessor

· _CODEBLOCK is now an alias for the CODEBLOCK type

· Fixed a crash for properties defined with parentheses or square brackets, but
without actual parameters

Visual Studio Integration

· Completed support for .designer.prg for Windows.Forms

· Fixed an issue in the CodeDom generator for generating wrappers for Services

· The XSharp Language service will no longer be used for Vulcan PRG files in a
Side by Side installation

· Editor performance for large source files has been improved.

· All generated files are now stored in UTF, to make sure that special characters are
stored correctly. If you are seeing warnings about code page conversions when
generating code, then save files as UTF by choosing "File - Advanced Save
Options", and select a Unicode file format, from the Visual Studio Menu.

236X# Documentation

© 2015- 2024 XSharp BV

Changes in 0.2.51

Visual Studio Integration & Build System

· The Native Resource compiler now "finds" header files, such as
"VOWin32APILibrary.vh" in the Vulcan.NET include folder. Also the output of the
resource compiler is now less verbose when running in "normal" message mode.
When running in "detailed" or "diagnostics" mode the output now also includes the
verbose output of the resource compiler.

Compiler

· Fixed a problem that would make PDB files unusable

· The error "Duplicate define with different value" (9012) has been changed to
warning, because our preprocessor does a textual comparison and does not "see"
that "10" and "(10)" are equal as well as "0xA" and "0xa". It is your responsibility of
course to make sure that the values are indeed the same.

· Exponential REAL constants were only working with a lower case 'e'. This is now
case insensitive

· Made several changes to the _DLL FUNCTION and _DLL PROCEDURE rules for
the parser. Now we correctly recognize the "DLL Hints " (#123) and also allow
extensions in these definitions. Ordinals are parsed correctly as well, but produce
an error (9018) because the .Net runtime does not support these anymore. Also
the Calling convention is now mandatory and the generated IL code includes
SetLastError = true and ExactSpelling = true.

· Fixed a problem with the ~ operator. VO and Vulcan (and therefore X#) use this
operator as unary operator and as binary operator.
The unary operator does a bitwise negation (Ones complement), and the binary
operator does an XOR.
This is different than C# where the ~ operator is Bitwise Negation and the ^
operator is an XOR (and our Roslyn backend uses the C# syntax of course).

Changes in 0.2.5

Visual Studio Integration

· Fixed a problem where the output file name would contain a pipe symbol when
building for WPF

· Fixed a problem with the Item type for WPF forms, pages and user controls

· The installer now has an option to not take away the association for PRG, VH and
PPO items from an installed Vulcan project system.

237 XSharp

© 2015- 2024 XSharp BV

· Added support for several new item types in the projects

· Added support for nested items

· Added several item templates for WPF, RC, ResX, Settings, Bitmap, Cursor etc.

Build System

· Added support for the new /vo15 command line switch.

· Added support for compiling native resources.

Compiler

· A reference to VulcanRT and VulcanRTFuncs is now mandatory when compiling
in VO/Vulcan dialect

· Added support for indexed access for VO/Vulcan Arrays

· Added support for VO/Vulcan style Constructor chaining (where SUPER() or
SELF() call is not the first call inside the constructor body)

· Added support for the &() macro operator in the VO/Vulcan dialect

· Added support for the FIELD statement in the VO/Vulcan dialect
o The statement is recognized by the compiler
o Fields listed in the FIELD statement now take precedence over local

variables or instance variables with the same name
· Added support for the ALIAS operator (->) in the VO/Vulcan dialect, with the

exception of the aliased expressions (AREA->(<Expression>))
· Added support for Late bound code (in the VO/Vulcan dialect)

o Late bound method calls
o Late bound property get
o Late bound property set
o Late bound delegate invocation

· Added a new /vo15 command line option (Allow untyped Locals and return types):
By default in the VO/Vulcan dialect missing types are allowed and replaced with
the USUAL type.
When you specify /vo15- then untyped locals and return types are not allowed and
you must specify them.
Of course you can also specify them as USUAL

· The ? and ?? statement are now directly mapped to the appropriate VO/Vulcan
runtime function when compiling for the VO/Vulcan dialect

· We now also support the VulcanClassLibrary attribute and VulcanCompilerVersion
attribute for the VO & Vulcan dialect.
With this support the Vulcan macro compiler and Vulcan Runtime should be able
to find our functions and classes

· The generated static class name is now more in par with the class name that
Vulcan generates in the VO & Vulcan dialect.

· Added several implicit conversion operations for the USUAL type.

· When accessing certain features in the VO & Vulcan dialect (such as the USUAL
type) the compiler now checks to see if VulcanRTFuncs.DLL and/or
VulcanRT.DLL are included.
When not then a meaningful error message is shown.

· Added support for the intrinsic function _GetInst()

· Fixed a problem with case sensitive namespace comparisons

· Fixed a problem with operator methods

238X# Documentation

© 2015- 2024 XSharp BV

· Added preprocessor macros __DIALECT__, __DIALECT_CORE__,
__DIALECT_VO__ and __DIALECT_VULCAN__

· The _Chr() pseudo function will now be mapped to the Chr() function

· Added support for missing arguments in arguments lists (VO & Vulcan dialect
only)

· Fixed a crash when calculating the position of tokens in header files

· The installer now offers to copy the Vulcan Header files to the XSharp Include
folder

· Added support for skipping arguments in (VO) literal array constructors

Documentation

· Added the XSharp documentation to the Visual Studio Help collection

· Added reference documentation for the Vulcan Runtime

Changes in 0.2.4

Visual Studio Integration

· Double clicking errors in the error browser now correctly opens the source file and
positions the cursor

· Fixed several problems in the project and item templates

· The installer now also detects Visual Studio 15 Preview and installs our project
system in this environment.

Build System

· Fixed a problem with the /unsafe compiler option

· Fixed a problem with the /doc compiler option

· Treat warnings as error was always enabled. This has been fixed.

Compiler

· Added support for Lambda expressions with an expression list
LOCAL dfunc AS System.Func<Double,Double>
dfunc := {|x| x := x + 10, x^2}
? dfunc(2)

· Added support for Lambda expressions with a statement list
LOCAL dfunc AS System.Func<Double,Double>

dfunc := {|x|

? 'square of', x

RETURN x^2

}

· Added support for the NAMEOF intrinsic function
FUNCTION Test(cFirstName AS STRING) AS VOID

FUNCTION Test(cFirstName AS STRING) AS VOID

239 XSharp

© 2015- 2024 XSharp BV

IF String.IsNullOrEmpty(cFirstName)

THROW ArgumentException{"Empty argument", nameof(cFirstName)}

ENDIF

· Added support for creating methods and functions with Clipper calling convention (VO
and Vulcan dialect only)

· Using Statement now can contain a Variable declaration:
Instead of:
 VAR ms := System.IO.MemoryStream{}

 BEGIN USING ms
 // do the work

END USING

You can now write
BEGIN USING VAR ms := System.IO.MemoryStream{}

// do the work
END USING

· Added support for /vo10 (Compatible IIF behavior). In the VO and Vulcan dialect the
expressions are cast to USUAL. In the core dialect the expressions are cast to
OBJECT.

New language features for the VO and Vulcan dialect

· Calling the SELF() or SUPER() constructor is now allowed anywhere inside a
constructor (VO and Vulcan dialect only). The Core dialect still requires
constructor chaining as the first expression inside the constructor body

· Added support for the PCOUNT, _GETFPARAM and _GETMPARAM intrinsic
functions

· Added support for String2Psz() and Cast2Psz()

· Added support for BEGIN SEQUENCE … END

· Added support for BREAK

Fixed several problems:

· Nested array initializers

· Crash for BREAK statements

· Assertion error for generic arguments

· Assertion on const implicit reference

· Allow ClipperCallingConvention Attribute on Constructors, even when it is marked
as ‘for methods only’

· Fixed a problem with Global Const declarations

· __ENTITY__ preprocessor macro inside indexed properties

Changes in 0.2.3

Visual Studio Integration

· We have changed to use the MPF style of Visual Studio Integration.

240X# Documentation

© 2015- 2024 XSharp BV

· We have added support for the Windows Forms Editor

· We have added support for the WPF Editor

· We have added support for the Codedom Provider, which means a parser and
code generator that are used by the two editors above

· The project property pages have been elaborated. Many more features are
available now.

· We have added several templates

Build System

· Added support for several new commandline options, such as /dialect

· The commandline options were not reset properly when running the shared
compiler. This has been fixed.

· The build system will limit the # of errors passed to Visual Studio to max. 500 per
project. The commandline compiler will still show all errors.

Compiler

· We have started work on the Bring Your Own Runtime support for Vulcan. See
separate heading below.

· The __SIG__ and __ENTITY__ macros are now also supported, as well as the
__WINDIR__, __SYSDIR__ and __WINDRIVE__ macros

· The debugger instructions have been improved. You should have a much better
debugging experience with this build

· Several errors that indicated that there are visibility differences between types and
method arguments, return types or property types have been changed into
warnings. Of course you should consider to fix these problems in your code.

· The #Error and #warning preprocessor command no longer require the argument
to be a string

· The SLen() function call is now inlined by the compiler (just like in Vulcan)

· The AltD() function will insert a call to "System.Diagnostics.Debugger.Break"
within a IF System.Diagnostics.Debugger.IsAttached check

· Several compiler crashes have been fixed

· Added support for the PARAMS keyword for method and function parameters.

· Fixed a problem for the DYNAMIC type.

BYOR

· XBase type names are resolved properly (ARRAY, DATE, SYMBOL, USUAL etc)

· Literal values are now resolved properly (ARRAY, DATE, SYMBOL)

· NULL_ literals are resolved properly (NULL_STRING follows the /vo2 compiler
option, NULL_DATE, NULL_SYMBOL)

· The /vo14 compiler option (Float literals) has been implemented

· The compiler automatically inserts a "Using Vulcan" and "using static
VulcanRtFuncs.Functions" in each program

· You MUST add a reference to the VulcanRTFuncs and VulcanRT assembly to
your project. This may be a Vulcan 3 and also a Vulcan 4 version of the Runtime.
Maybe Vulcan 2 works as well, we have not tested it.

· Calling methods with Clipper calling convention works as expected.

241 XSharp

© 2015- 2024 XSharp BV

· Methods/Functions without return type are seen as methods that return a USUAL

· If a method/function contains typed and typed parameters then the untyped
parameters are seen as USUAL parameters

· Methods with only untyped parameters (Clipper calling convention) are not
supported yet

· The ? command will call AsString() on the arguments

Changes in 0.2.2

Visual Studio Integration

· Added more project properties. One new property is the "Use Shared Compiler"
option. This will improve compilation speed, but may have a side effect that some
compiler (parser) errors are not shown in details.
If you experience this, then please disable this option.

· Added more properties to the Build System. All C# properties should now also be
supported for X#, even though some of them are not visible in the property dialogs
inside VS.

· Added a CreateManifest task to the Build System so you will not get an error
anymore for projects that contain managed resources

· The performance of the editor should be better with this release.

· Marking and unmarking text blocks as comment would not always be reflected in
the editor colors. This has been fixed.

Compiler

· We have added a first version of the preprocessor. This preprocessor supports
the #define command, #ifdef, #ifndef, #else, #endif, #include, #error and #warning.
#command and #translate (to add user defined commands) are not supported yet.

· Missing types (in parameter lists, field definitions etc) were sometimes producing
unclear error messages. We have changed the compiler to produce a "Missing
Type" error message.

· We rolled the underlying Roslyn code forward to VS 2015 Update 1. Not that you
see much of this from the outside <g>, but several fixes and enhancements have
made their way into the compiler.

· Added a YIELD EXIT statement (You can also use YIELD BREAK).

· Added an (optional) OVERRIDE keyword which can be used as modifier on virtual
methods which are overridden in a subclass.

· Added a NOP keyword which you can use in code which is intentionally empty (for
example the otherwise branch of a case statement. The compiler will no longer
warn about an empty block when you insert a NOP keyword there.

· The On and Off keywords could cause problems, because they were not
positional (these are part of the pragma statement). This has been fixed.

· _AND() and _OR() expressions with one argument now throw a compiler error.

· The compiler now recognizes the /VO14 (store literals as float) compiler switch (it
has not been implemented yet).

242X# Documentation

© 2015- 2024 XSharp BV

· Added a ** operator as alias for the ^ (Exponent) operator.

· Added an "unsupported" error when using the Minus operator on strings.

· Fixed a "Stack overflow" error in the compiler that could occur for very long
expressions.

· The right shift operator no longer conflicts with two Greater Than operators, which
allows you to declare or create generics without having to put a space between
them.
(var x := List<Tuple<int,int>>{}

Changes in 0.2.1

Visual Studio Integration

· Added and improved several project properties

· Fix a problem with the "Additional Compiler Options"

· Improved coloring in the editor for Keywords, Comments etc. You can set the
colors from the Tools/Options dialog under General/Fonts & Colors. Look for the
entries with the name "XSharp Keyword" etc.

· Added Windows Forms Template

Compiler

· Several errors have been demoted to warnings to be more compatible with
VO/Vulcan

· Added support for Comment lines that start with an asterisk

· Added support for the DEFINE statement. For now the DEFINE statement MUST
have a type
DEFINE WM_USER := 0x0400 AS DWORD

· Fixed problem with Single Line Properties with GET and SET reversed

· Several fixes for Virtual and Non virtual methods in combination with the /VO3
compatibility option

Changes in 0.1.7

· The "ns" (add default namespace to classes without namespace) has been
implemented

· The "vo3" compiler option (to make all methods virtual) has been implemented

· Fixed an issue where the send operator on an expression between parentheses
was not compiling properly

· Relational operators for strings (>, >=, <, <=) are now supported. They are
implemented using the String.Compare() method.

243 XSharp

© 2015- 2024 XSharp BV

· Fixed a problem with local variables declared on the start line from FOR .. NEXT
statements

· Added first version of the documentation in CHM & PDF format

· Added several properties to the Visual Studio Project properties dialog to allow
setting the new compiler options

· Fixed a problem in the Targets files used by MsBuild because some standard
macros such as $(TargetPath) were not working properly

· XIDE 0.1.7 is included. This version of XIDE is completely compiled with XSharp !

· The name of some of the MsBuild support files have changed. This may lead to
problems loading a VS project if you have used the VS support from the previous
build. If that is the case then please edit the xsproj file inside Visual Studio and
replace all references of "XSharpProject" with "XSharp" . Then safe the xsproj file
and try to reload the project again

· The WHILE.. ENDDO (a DO WHILE without the leading DO) is now recognized
properly

Changes in 0.1.6

· This version now comes with an installer

· This version includes a first version of the Visual Studio Integration. You can edit,
build, run and debug inside Visual Studio. There is no "intellisense" available.

· The compiler now uses 1-based arrays and the “az” compiler option has been
implemented to switch the compiler to use 0-based arrays.

· The "vo2" compiler option (to initialize string variables with String.Empty) has been
implemented

· Please note that there is no option in the VS project properties dialog yet for the az
and vo2 compiler options. You can use the "additional compiler options" option to
specify these compiler options.

· The text "this" and "base" in error messages has been changed to "SELF" and
"SUPER"

· Error of type “visibility” (for example public properties that expose private or internal
types) have been changed to warnings

· Fixed a problem with TRY … ENDTRY statements without CATCH clause

· The compiler now has a better resolution for functions that reside in other (X#)
assemblies

· Fixed a problem which could lead to an "ambiguous operator" message when
mixing different numeric types.

Changes in 0.1.5

· When an error occurs in the parsing stage, X# no longer enters the following
stages of the compiler to prevent crashes. In addition to the errors from the parser
also an error 9002 is displayed.

244X# Documentation

© 2015- 2024 XSharp BV

· Parser errors now also include the source file name in the error message and
have the same format as other error messages. Please note that we are not
finished yet with handling these error messages. There will be improvements in
the format of these error messages in the upcoming builds.

· The compiler will display a “feature not available” (8022) error when a program
uses one of the Xbase types (ARRAY, DATE, FLOAT, PSZ, SYMBOL, USUAL).

· Fixed an error with VOSTRUCT and UNION types

· Fixed a problem with the exclamation mark (!) NOT operator

Changes in 0.1.4

· Several changes to allow calculations with integers and enums

· Several changes to allow VO compatible _OR, _AND, _NOT an _XOR operations

· Fix interface/abstract VO properties

· Insert an implicit “USING System” only if not explicitly declared

· Error 542 turned to warning (members cannot have the same name as their
enclosing type)

· Changes in the .XOR. expression definition

· Fix double quote in CHAR_CONST lexer rule

· Allow namespace declaration in class/struct/etc. name (CLASS Foo.Bar)

· Fix access/assign crash where identifier name was a (positional) keword:
ACCESS Value

· Preprocessor keywords were not recognized after spaces, but only at the start of
the line. This has been fixed.

· Prevent property GET SET from being parsed as expression body

· Fix default visibility for interface event

· Unsafe errors become warnings with /unsafe option, PTR is void*

· Fix dim array field declaration

· Initial support of VO cast and VO Conversion rules (TYPE(_CAST, Expression)
and TYPE(Expression)). _CAST is always unchecked (LONG(_CAST, dwValue))
and convert follows the checked/unchecked rules (LONG(dwValue))

· Fixed problem with codeblock with empty parameter list

· Fixed problems with GlobalAttributes.

· An AUTO property without GET SET now automatically adds a GET and SET
block

· Allow implicit constant double-to-single conversion

Changes in 0.1.3

· Change inconsistent field accessibility error to warning and other similar errors

· Added commandline support for Vulcan arguments. These arguments no longer
result in an error message, but are not really implemented, unless an equivalent
argument exists for the Roslyn (C#) compiler. For example: /ovf and /fovf are both

245 XSharp

© 2015- 2024 XSharp BV

mapped to /checked, /wx is mapped to /warnaserror. /w should not be used
because that has a different meaning /warning level). /nowarn:nnnn should be
used in stead

· Fixed problem where the PUBLIC modifier was assigned to Interface Members or
Destructors

· Prevent expression statements from starting with CONSTRUCTOR() or
DESTRUCTOR()

· Added support for ? statement without parameters

· The default return type for assigns is now VOID when not specified

· Added support for “old Style” delegate instantiation

· Added support for Enum addition

· Added an implicit empty catch block for TRY .. END TRY without catch and finally

· Added support for the DESCENDING keyword in LINQ statements

· Added support for VIRTUAL and OVERRIDE for Properties and Events

· Prevent implied override insertion for abstract interface members

· Fixed a problem where System.Void could not be resolved

· Fixed problem with Property Generation for ACCESS/ASSIGN

· Fixed problem with Abstract method handling

Changes in 0.1.2.1

· Added default expression

· Fixed problem with events

· Fixed some small lexer problems

· Fixed problem with _DLL FUNCTION and _DLL PROCEDURE

Changes in 0.1.2

· Fixed problem with handling escape sequences in extended strings

· Fixed issue in FOR.. NEXT statements

· Fixed a problem with SWITCH statements

· Fixed a problem with the sizeof() operator

· Fixed a problem in the REPEAT .. UNTIL statement

· Fixed a problem in TRY .. CATCH .. FINALLY .. END TRY statements.

· Fixed issue in Conditional Access Expression (Expr ? Expr)

· Allow bound member access of name with type args

· Fixed problem in LOCAL statement with multiple locals

· Fixed a problem when compiling with debug info for methods without a body

· Optimized the Lexer. This should increase the compile speed a lot

· Fixed a problem in the code that reports that a feature is not supported yet

· Fixed a problem when defining Generic types with a STRUCTURE constraint

246X# Documentation

© 2015- 2024 XSharp BV

· Compiler macros (__ENTITY__, __LINE__ etc) were causing a crash. For now the
compiler inserts a literal string with the name of the macro.

· Build 0.1.1 did not contain XSC.RSP

· Fixed a problem where identifiers were not recognized when they were matching a
(new) keyword

247 XSharp

© 2015- 2024 XSharp BV

1.3 Migrating apps from VO to X#

In this topic we will discuss how to migrate applications from VO to X# with the aid of the
VO XPorter tool from X#.
When you want to do this we strongly recommend you to start small. We will therefore
start with a few VO example programs and describe the steps to take and the changes
that need to be made after the conversion.

The examples

The examples on the following pages show you a step by step introduction to migrating
your apps.
For each example there will be an example supplied with the installer of X#. The examples
come with a "before" and "after" folder.

248X# Documentation

© 2015- 2024 XSharp BV

1.3.1 Example 1: The VO Explorer Example

Please note: This example assumes that you have installed X# with the default installation
options, and that the X# runtime is installed in the GAC.
If you have not done that then the example won't run. Please see the chapter about this in
this documentation

As first example of XPorting VO apps we take the VO Explorer example.
Start the VO Xporter program and point it to the VO Explorer example:

On my machine the VO installation is in the C:\Cavo28SP3 folder. That may be different
on your machine of course.
I have not changed any or the xPort options. The options are:

Option Description

RemoveClassClause Remove the “Class Clause” for methods and
accesses/assigns. This will group all methods inside a
CLASS .. END CLASS block and then the CLASS clause at
the method level is no longer required

ChangeInitAxitToCtorDto
r

Init and Axit are reserved method names in VO. In DotNet
these names are often used by classes. Vulcan and X# have
introduced new keywords CONSTRUCTOR and
DESTRUCTOR. This option automatically renames the Init
and Axit Methods. Example:

249 XSharp

© 2015- 2024 XSharp BV

METHOD Init(oOwner) CLASS MyClass

becomes

CONSTRUCTOR(oOwner)

RemoveDeclareMethod If you used strong typing in VO you needed to add DECLARE
METHOD statements and/or DECLARE ACCESS and
DECLARE ASSIGN. The X# compiler still recognizes these
statements but no longer requires them

RemoveExportLocalClau
se

This option removes the EXPORT LOCAL clause that may
be included in method declarations in VO code, but is ignored
in X#

AllClassesArePartial Partial classes is a mechanism in Vulcan and X# that allows
you to split a class over multiple source files. That may be
convenient if your classes have become very big or if you
want to separate generated code from hand written code (like
what the Windows Forms Editor in Visual Studio does). You
can choose to make all Xporter classes partial. We have
disabled this because there is a (small) performance penalty
when you use this. Especially if you have split the Accesses
and Assigns from your class over separate files.

AddMissingConstructors VO allows you to declare a class without Init method /
Constructor. In .Net this is also allowed., but then the
compiler assumes you have a class with a constructor
without parameters. This option will automatically generate
missing constructors. Note that also the X# compiler
supports emitting missing constructors even if they are not
specified in the code, when the /vo16 compatibility option is
enable. So this Xporter option is not necessary anymore and
has been depreciated.

IgnoreDuplicateDefines If you select this then duplicate defines will simply be ignored
and not written to the output files.

Don’tGenerateEmptyFile
s

Each module from your VO application will become a source
file in X#. This option will suppress the generation of empty
source files

AdjustCallbackFunctions Some (advanced) VO code contains callback functions
where the address of a function is passed to another function
and will get called. The Windows API uses that a lot, for
example for enumerating windows or printers. That
mechanism will not work in .Net. This option will change your
code and will help you to get a working solution.

ExportOnlyDefines This option allows you to generate a DLL with only the defines
from the AEF(s) or files you have selected. That may be

250X# Documentation

© 2015- 2024 XSharp BV

useful if you have ported your code before with the Vulcan
Transporter and want to get rid of the header files with the
defines.

Sort Entities by name This will sort all entities on name, Methods will be sorted
inside the CLASS.. ENDCLASS and functions will be sorted
as well

Use XSharp Runtime When you select this (the default) then your app will be
compiled against the X# runtime. Otherwise we will use the
Vulcan runtime (which is not included with our product)

Copy Resources to
Project folder

When you select this option then all BMP, ICO, CUR etc
resources that are used in resource entities in your app will
be copied to a Resources subfolder inside your project.

Replace Resource
Defines with Values

This controls the way that the numeric identifiers associated
with menu options and control identifiers on forms are
exported to the external resource files

Check For IVar and
Property Conflicts

In Visual Objects, it is allowed to have ACCESS/ASSIGN
methods that have the same name with IVars (usually
INSTANCE vars) of the same class. This is not allowed in
.Net, so if this option is enabled, the Xporter will detect this
and will prefix the IVar names with an underscore ("_").

Ignore code inside
#ifdef...#endif

As a means of preparing Visual Objects code to be ported to
X#, it is common practice to provide a VO version and a X#
version of the same code in the VO version of the source
code, surrounded by #ifdef __XSHARP__ ... #else ... #endif
preprocessor directives. When this option is set, Xporter
does not touch any code that is surrounded by those
directives.

The XPorter will allow you to select a destination folder and names for your Visual Studio
solution and project files.
After pressing xPort you will see the following folder s
C:\XporterOutput\Examples\Explorer
C:\XporterOutput\Examples\Explorer\Explorer
C:\XporterOutput\Examples\Explorer\Explorer\Resources
C:\XporterOutput\Examples\Explorer\Explorer\Properties
The first folder is the so called “Solution” folder
The subfolder contains the project and its files.
If you had selected multiple AEF files then each AEF would have its own subfolder under
the Solution Folder
The solution folder contains the files:

File Contains

Explorer.sln VS Solution file

Explorer.viproj XIDE project file

The project folder contains the files

251 XSharp

© 2015- 2024 XSharp BV

File Contains

Customer Explorer.prg Module source code

Data Servers.prg Module source code

Explorer Shell.prg Module source code

Explorer.viapp XIDE Application file

Explorer.xsproj VS Project file

Help
About.HelpAboutDialog.r
c

Form resource used by VS

Help
About.HelpAboutDialog.x
sfrm

Form "binary" used by VS

Help About.prg Module source code

Help About.rc Form resource used by XIDE

Icons.ICONONE.rc Icon resource used by VS

Icons.ICONTWO.rc Icon resource used by VS

Icons.prg Module source code

Icons.rc Icon resources used by XIDE

Menus.CustomerExplore
rMenu.rc

Menu resource used by VS

Menus.CustomerExplore
rMenu.xsmnu

Menu "binary"

Menus.CustomerExplore
rMenu_Accelerator.rc

Menu accelerators resource used by VS

Menus.EMPTYSHELLME
NU.rc

Menu resource used by VS

Menus.EMPTYSHELLME
NU.xsmnu

Menu binary

Menus.EMPTYSHELLME
NU_Accelerator.rc

Menu accelerator resource used by VS

Menus.OrdersListViewM
enu.rc

Menu resource used by VS

Menus.prg Module source code

Menus.rc Menu resources for XIDE

Start.prg Module source code

To compile and build the project we open the file Explorer.SLN in Visual Studio. Inside
Visual Studio it looks like:

252X# Documentation

© 2015- 2024 XSharp BV

The arrows in front of several modules show that there are subitems in these modules.
Those subitems contain the Form, Menu and Icon resources.
Now let’s try to build the solution inside Visual Studio. (Menu option Build – Build Solution)
This compiles the application and builds a debuggable version in the c:
\XporterOutput\Explorer\Debug folder. You will see that this folder contains an EXE, PDB
(debug symbols) and copies of the VO runtime libraries:
Explorer.exe
Explorer.pdb
SDK_Defines.dll
VOGUIClasses.dll
VORDDClasses.dll
VOSystemClasses.dll
VOWin32APILibrary.dll
XSharp.VO.dll
XSharp.RT.dll
XSharp.Core.dll
Now can try to run the app. This works, but as soon as we select the File/Open menu
option we will get a runtime error. After some resizing the screen looks similar to this

The error message is clear: the app uses the splitwindow control and this requires the
splitwindow support DLL.
This DLL is located in the Redist folder of your VO installation. Simply copy the
“Cato3spl.dll” file from your VO Redist folder to the output folder as well as the
MSVCRT.DLL and try again.
You can also add the DLLs to your project (Add Existing Item, and point to the DLLs in the

253 XSharp

© 2015- 2024 XSharp BV

Redist folder). This will copy them to the project folder. Then set the build action for the 2
DLLs to None and the “Copy to Output Directory” property to “Preserve Newest”. When
you now build your app the DLL will be copied to the right folder.
After that the code will run just like it did in VO with no code changes!
Let’s have a closer look at what the xPorter has done:
· Each module in VO has become a PRG file in the X# project

· Source code has been grouped by class and put in a CLASS .. END CLASS construct

· Init methods have been renamed to CONSTRUCTOR

· Compiler macros such as "%CavoSamplesRootDir%\Explorer\" have been replaced
with literal values: "C:\cavo28SP3\Samples\Explorer\"

· Recourses have become “children” of the source file where they were defined

· Locations for resources have also been changed %CavoSamplesRootDir%
\Explorer\TWO.ICO has been changed to ICONTWO Icon C:
\cavo28SP3\Samples\Explorer\TWO.ICO.
Also the RESOURCE keyword has been removed.

· The binaries for the forms and menus have not been included in this version of the
XPorter (Beta 11). That will change.

· The Start file has the biggest change. In VO there was a method in there App:Start().
However the App class is not defined in this application but part of the GUI Classes.
There was also no Start function in the App. VO would call the Start function in the GUI
classes and would merge the App:Start() method in the application with the rest of the
App class in the GUI Classes.
This is not allowed in .Net. Classes cannot be spread over more than one assembly
(the .Net name for of a Library, EXE or DLL).
Therefore the XPorter has created a new class (xApp) and moved the Start method to
this Xapp class. It has also added a Start() function which instantiates the App class and
calls the Start method inside XApp. You can also see in the example below that a TRY ..
CATCH .. END TRY construct is added which captures the errors that are not catched
anywhere else and shows an error message in an ErrorBox object. This is the errorbox
that was shown before because the CATO3SPL.DLL was missing.

· Finally the Start function is marked with an attribute (The word between the square
brackets). In this case the attribute is [STAThread] which means that the main function
(and therefore the whole app) needs to run in Single Threaded Appartment mode. This
is important if your app uses external code such as OCX/ActiveX controls.

-
· If you look closer to the solution explorer in Visual Studio and click on the References
node in the tree you will see that the example has references to the Vulcan runtime and
the VO Class libraries as well as the SDK defines library that was included with the
XPorter.
· If you open the project properties you will see on the General page that the selected

dialect is “Visual Object” , on the Dialect page are most VO options are set and on the

254X# Documentation

© 2015- 2024 XSharp BV

Build page the platform target is x86 (because the GUI classes are designed to run in
x86 mode) and several warnings have been suppressed. These warnings are:

Number Meaning

162 Suppresses a warning about Unreachable code

618 Suppresses a warning about the use of obsolete functions,
such as CollectForced

649 Suppresses a warning about unused private and/or internal
fields.

9025 Suppresses a warning about missing return statements

9032 Suppresses a warning about return values inside ASSIGN
methods and/or constructors/destructors

9043 Suppresses a warning about ambiguous code, which could
happen if two assemblies define a function with the same
name.

In this particular example only warning 618 is generated by the compiler because the
CustomerExplorer:Close() method calls CollectForced. After commenting out that line you
can remove all the “suppressed” warnings from the app and it will compile without any
warnings.
You will find the "code before" and "code after" in the XSharp Examples folder

255 XSharp

© 2015- 2024 XSharp BV

1.3.2 Example 2: The VOPAD Example

This example converts the VOPAD AEF file from the C:
\cavo28SP3\Samples\Controls\Richedit folder.
After converting it with the same options as the 1st example we will have a folder structure
like
C:\XporterOutput\Examples\VoPad
C:\XporterOutput\Examples\VoPad\VoPad

File Contains

VoPad.sln VS Solution file

VoPad.viproj XIDE project file

The project folder contains the files

File Contains

!Readme!.prg Module source code

image.IMAGE.rc Image resource for VS

image.prg Module source code

image.rc Image resource for XIDE

Manifest.CREATEPROC
ESS_MANIFEST_RESO
URCE_ID.rc

Manifest resource for VS

Manifest.prg Module source code

Manifest.rc Manifest resource for XIDE

PadHelp
About.HelpAbout.rc

Help about resource for VS

PadHelp
About.HELPABOUT.xsfr
m

Help about form Binary for VS

PadHelp
About.POWVOBMP.rc

Splash resource for VS

PadHelp About.prg Module source code

PadHelp About.rc Help resources for XIDE

PadMenus.StandardPad
Menu.rc

Menu resource for VS

PadMenus.StandardPad
Menu.xsmnu

Menu binary for VS

PadMenus.StandardPad
Menu_Accelerator.rc

Accelerator resource for VS

256X# Documentation

© 2015- 2024 XSharp BV

PadMenus.prg Module source code

PadMenus.rc Resources for XIDE

PadShell.IDI_VOPADICO
N.rc

App Icon resource for VS

PadShell.prg Module source code

PadShell.rc App Icon resource for XIDE

PadStart.prg Module source code

PadWin.oMarginDialog.r
c

Form resource for VS

PadWin.oMarginDialog.x
sfrm

Form binary for VS

PadWin.prg Module source code

PadWin.rc Form resource for XIDE

Vopad.viapp XIDE Application

Vopad.xsproj VS Project

Open the project in VS and compile. You will see the following errors / warnings

PadWin.prg(473,1): warning XS1030: #warning: 'The following method did not include
a CLASS declaration'
PadWin.prg(480,1): warning XS1030: #warning: 'The following method did not include
a CLASS declaration'
PadHelp About.prg(78,3): error XS9046: Cannot assign to 'font' because it is a
'method'
PadHelp About.prg(81,8): error XS0119: 'TextControl.Font(params __Usual[])' is a
method, which is not valid in the given context
PadHelp About.prg(88,3): error XS9046: Cannot assign to 'font' because it is a
'method'
PadHelp About.prg(91,8): error XS0119: 'TextControl.Font(params __Usual[])' is a
method, which is not valid in the given context
PadWin.prg(166,19): error XS1061: 'RichEdit' does not contain a definition for
'RTFChangeFont' and no extension method 'RTFChangeFont' accepting a first argument
of type 'RichEdit' could be found (are you missing a using directive or an assembly
reference?)

Let's examine this by double clickig on the errors / warnings:
First the warnings. These are generated by a #warning preprocessor statement inserted
by XPorter because it found problems in your code:
· There was an ACCESS FilterIndex CLASS SaveAsDialog in the source. This adds an

access to a class in the GUI Classes. This is not allowed in .Net.
The XPorter has created a special subclass of SaveAsDialog to hold this extra property.
Fortunately this ACCESS is no longer needed because it has been added to the GUI
Classes already.
So we can completely de lete that code.

· There was a method RTFChangeFont CLASS RichEdit. The same problem as the
SaveAsDialog:FilterIndex. In this case the method is necessary. It has been moved to a
subclass of RichEdit already. However since the original code still points to the RichEdit
class there could be a runtime problem because this method is not part of the richedit

257 XSharp

© 2015- 2024 XSharp BV

class.
There are 2 possible solutions here:
1. Change the method to an extension method
2. Change the code that uses the RichEdit class to use the changed class

Option 1 is the best here since we are not using any private or protected properties of
the RichEdit class here. To achieve that change the code from

 CLASS RichEdit_external_class INHERIT RichEdit
 METHOD RTFChangeFont()
 etc

to

 STATIC CLASS RichEditExtensions
 STATIC METHOD RTFChangeFont(SELF oEdit as RichEdit) AS VOID
 LOCAL oFontDlg AS StandardFontDialog
 oFontDlg := StandardFontDialog{oEdit:Owner}
 oFontDlg:FontColor := oEdit:TextColor
 oFontDlg:Font := oEdit:ControlFont
 oFontDlg:Show()
 oEdit:TextColor := oFontDlg:FontColor
 oEdit:ControlFont := oFontDlg:Font
 END CLASS

Note

The Extension Method works great to enhance existing classes, but has one
disadvantage: The Vulcan Runtime will not pick up these extension methods for late
bound code.That is not a problem in this example but may be a problem elsewhere.

Now we have added an extension method that can be used like a normal method.
This change also solves the error in PadWin.prg
Then look at the other problems: they all have to do with a Font property in the TextControl
class. Unfortunately the VO class libraries have both a Font() method and a Font()
Access/Assign for the TextControl class. Having a method and a property with the same
name is not allowed in .Net.
When the VO Gui classes were ported to Vulcan the decision has been made to rename
the Font property to Controlfont. So we need to make that change. Simply double click on
the errors and change

:Font

to

:ControlFont

(4 times)
After that the code should compile and run. Clicking the Font button on the toolbar should
show the font dialog (from the RTFChangeFont extension method)

258X# Documentation

© 2015- 2024 XSharp BV

Some of the changes that were made to the code (omitting the ones that were also in
example 1):
· Manifest.prg is empty but included because it had a dependent resource.

You will find the "code before" and "code after" in the XSharp Examples folder

259 XSharp

© 2015- 2024 XSharp BV

1.3.3 Example 3: The Pizza Example

Our 3rd migration example is the Pizza Example. You can find this in the
Samples\Controls\Buttons folder in your VO Installation.
I have selected the same output folder (C:\XporterOutput\Examples\) and the XPorter will
create a Pizza subfolder with the contents of the AEF and a Pizza solution in the
Examples folder.
There is no real need to list the files again. You get the idea.
After opening Pizza.sln inside visual Studio and compiling you will find the following
problems:

The problem is:
· The original VO program had an output name 'PIZZA.EXE'.

· The X# compiler uses the same logic as the Vulcan compiler and creates a static class
called Pizza.Exe.Functions that will hold the functions in the application, the globals and
(new for X#) the defines.

· The application also has an image called 'PIZZA'.

· When we compile this app there is now a conflict between the class named PIZZA and
the namespace Pizza (from the class Pizza.Exe.Functions).

· This is something that is not recommended by the DotNet standard. Vulcan ignores this
and allows both a class Pizza and a namespace Pizza. X# follows the .Net guidelines
more closely.

· There are 2 solutions to this problem:
o Rename the image class Pizza (inside Images.prg)
o Rename the output filename. To rename the output filename open the Project Settings

(from the Project menu) and set the Assembly Name on the "General" page. You
could rename the assembly to PizzaApp and it will solve the problem

· In this case I choose to rename the PIZZA image. So open Images.PRG and rename

 CLASS PIZZA INHERIT Bitmap

to

 CLASS ImgPIZZA INHERIT Bitmap

· Then recompile again. Now one problem is left:
C:\XporterOutput\Examples\Pizza\Order Dialog.prg(165,25): error XS0246: The type
or namespace name 'PIZZA' could not be found (are you missing a using directive
or an assembly reference?)

· This is the place where the Pizza image is used in the example app. To change this,
open the Order Dialog window (Order Dialog.ORDERDIALOG.xsfrm). Select the button
on the bottom left and change the "Image" text in the property window from Pizza to
ImgPizza. Save the form. The code will be regenerated as well.

· If you look at the order dialog rc file after the changes you will see that the file has been
marked with a header that this code was generated. Also #defines have been added for

260X# Documentation

© 2015- 2024 XSharp BV

all windows styles used in the form. The resource is "self contained" so there is no
dependency on any external file in the resource file.

· Recompile and the program compiles.

· When we run the program we see that it works as expected:

You will find the "code before" and "code after" in the XSharp Examples folder

261 XSharp

© 2015- 2024 XSharp BV

1.3.4 Example 4: Ole Automation - Excel

For the 4th example we will not use a standard example from Visual Objects but will
create a new sample app in Visual Objects to remote control Excel and to write data to an
Excel Sheet.
I found the following example in the Comp.Lang.Clipper.Visual-Objects newsgroup (which
I changed a little bit for this example).
· Create a new terminal application in Visual Objects and copy and paste the code below

into the app.
· Open the application Properties and add the Ole Library.

· Also rename the app to "ExcelTest".

· Now open the start module and copy the code.

· Compile and run, and you will find an xls file in the C:\ExcelTest folder.

FUNCTION Start()
LOCAL oExcel AS OBJECT
LOCAL oWorkBooks AS OBJECT
LOCAL oWorksheet AS OBJECT
LOCAL oRange AS OBJECT
LOCAL cFile AS STRING
cFile := "C:\ExcelTest\example.xls"
DirMake("C:\ExcelTest")
oExcel:=OLEAutoObject{"Excel.Application"}
oExcel:Visible:=FALSE // Don't show the EXCEL execute
oExcel:DisplayAlerts:=FALSE // Don't show messages
oWorkBooks:=oExcel:Workbooks
oWorkBooks:add() //open a new worksheet
oWorkSheet:=oExcel:ActiveSheet // active the first sheet
oRange:=oWorkSheet:[Range,"A1","A1"] // A1 cell
oRange:SELECT()
oRange:FormulaR1C1:="Hello my text"
oExcel:ActiveWorkBook:SaveAs(cFile,56,"","",;
 FALSE,FALSE) //"56" save the file in work book of EXCEL 97-
2003 (Excel 8)

oWorkBooks:Close()
oExcel:Quit()
WAIT

RETURN NIL

· Export the AEF to "C:\ExcelTest\ExcelTest.AEF"

· Run the VOExporter and export the code.

· After opening the solution inside Visual Studio you will also get an application with one
source file (Start.prg). The source is almost identical with one difference. The line :

262X# Documentation

© 2015- 2024 XSharp BV

oRange:=oWorkSheet:[Range,"A1","A1"] // A1 cell

has been changed to

oRange:=oWorkSheet:Range["A1","A1"] // A1 cell

· Note that the name Range is now in front of the Square brackets.
Range is a so called "Indexed property" of the worksheet. Visual Objects uses a "funny"
syntax for this.
X# uses the same syntax that most other languages do. The property looks like an array
(the square brackets) .

· Now compile the app in X#. You will get the following errors:

Let's look at these errors:
· The last errors in the list indicate that the Start method is not correct. This is because

the Start function in .Net has to either be a VOID function or a function that returns an
INT. In this case no return type has been declared, so X# thinks you want to create a
function that returns a USUAL. Change the prototype of the start function to:

FUNCTION Start() AS VOID

and remove the NIL return value from the RETURN statement.

· Now 2 errors remain. These indicate that X# does not know how to convert the array
index from string to int. This is on the line with the range assignment.
The code above uses 'Late Binding', so the types are not known at compile time. X#
does not know if the Range property from the Worksheet object is an indexed property
or if it returns an array. It assumes that it returns an array and wants to specify the array
index which is numeric (and subtract one because Visual Objects uses 1 based arrays
where .Net uses 0 based arrays).

· The best way to fix this is to use strong typing and use the Generated Class wrappers
for Excel.
In Visual Objects you would use the 'Automation Server' tool to generate such a class
wrapper. In .Net there is a similar tool. The easiest way to achieve this is to add a
reference to Excel to the references of the application:

· Right Click on "References" in the solution Explorer and Choose "Add Reference"

· In the 'Add Reference' dialog, choose the COM tabpage

· Locate the "Microsoft Excel nn.m Object Library". On my machine that is Excel 16.0.

263 XSharp

© 2015- 2024 XSharp BV

· Click Ok.

· This will add an entry to your References list with the name
"Microsoft.Office.Interop.Excel". This is a generated type library that contains class
definitions for all types inside Excel.

· Now go into your code, add a Using statement for the namespace of the Excel classes
and change "AS OBJECT" to the right types:

 USING Microsoft.Office.Interop.Excel
 FUNCTION Start() AS VOID
 LOCAL oExcel AS Application
 LOCAL oWorkBooks AS Workbooks
 LOCAL oWorksheet AS Worksheet
 LOCAL oRange AS Range

· Also change the call to create the Main Excel object:
oExcel:=ApplicationClass{}

· Your code is now strongly typed, so you should also get intellisense if you try to select a
member from one of these objects, such as oExcel:Workbooks.

· Compile and run the code . It works as expected.

· You may want to change the value 56 in the SaveAs line to the appropriate enum value:
xlFileFormat.xlExcel8

· Now run the app again and everything works as expected.

· If you look in the folder where the EXE is generated you will see both ExcelTest.Exe and
Microsoft.Office.Interop.Excel.dll, the type library

264X# Documentation

© 2015- 2024 XSharp BV

Note 1

If you are wondering why we declare oExcel as Application but use ApplicationClass to
instantiate the object, here is the reason:
Application is the interface, ApplicationClass is the actual class that implements the
Application interface. This is a model that you will see for most Automation Servers.

Note 2

Many people have asked for a way to implement OLE Events. With the X# code and the
generated type library this is very easy.
Add the following code to the start method to define a BeforeSave and AfterSave event

oExcel:WorkbookBeforeSave += OnBeforeSave
oExcel:WorkbookAfterSave += OnAfterSave

and add the following functions

FUNCTION OnBeforeSave (oWb AS Workbook, SaveAsUI AS LOGIC, Cancel
REF Logic) AS VOID
? "OnBeforeSave", oWb:Path, oWb:Name, SaveAsUI
RETURN

FUNCTION OnAfterSave (oWb AS Workbook, Success AS LOGIC) AS VOID
? "OnAfterSave", oWb:Path, oWb:Name, Success
RETURN

And run the example again. You will see that both functions are called. Before the save the
path and name are not set properly, afterwards they are set to the values specified in the
code
Some versions of Excel do not support the WorkbookAfterSave event. In that case
you will get a compile time error

Note: If you run this code through the debugger and set a break
point in the OnBeforeSaveAs you will see that the callstack
in these events is a little bit weird:
there is no Start() function inside this callstack (I have
disabled the 'Just My code option', otherwise you would only
see the line with OnBeforeSave())

265 XSharp

© 2015- 2024 XSharp BV

That is because these events are called on a separate thread. If you look at the
Threads window in VS (Debug - Windows - Threads) you will see that:

Note 3

If you look closely in the Add References dialog you may also find other occurrences of
the Excel library (on the .Net tab). On my machine these are:

These are so called "Primary Interop Assemblies" (PIAs), pre-compiled assemblies, for
different Excel versions. You can use these as well. These assemblies are installed with
the Office Developers Tools for Visual Studio. On my machine they are located in
subfolders of "c:\Program Files (x86)\Microsoft Visual Studio 14.0\Visual Studio Tools for
Office\PIA" .

You will find the "code before" and "code after" in the XSharp Examples folder

266X# Documentation

© 2015- 2024 XSharp BV

1.3.5 Example 5: OCX - The Email Client Example

This example shows how to migrate an application that uses an ActiveX/OCX Control.
We are using the Email example from Visual Objects that you can find in the Examples
folder, subfolder Email.
The problem that we can expect here is that the X# Runtime (and also Vulcan rumtime)
does not support ActiveX controls.
So lets try to solve this.
· First run VOXporter and create a Visual Studio solution from the AEF

· Compile and run in Visual Studio.

· We will get 2 messages:

The first message shows the biggest problem in this example. The second message was
inserted by the Xporter to warn us that the original code was adding a method to a class
that exists inside the VO Gui classes.
Lets fix these problems quickly to be able to compile the app. We will add the OCX Later:
· Click on the warning. You will see that the XPorter has added a CLASS

ToolBar_external_class that inherits from Toolbar. The original code was trying to
add the ShowButtonmenu method to the existing Toolbar class.

· We can solve this problem, that we have also seen in the VOPAD example by either
adding an Extension Method or by subclassing the Toolbar class.

· Just like in the VOPAD example I prefer the extension method.

· Change the class name and method declaration. We will create 2 overloads, because
the symTb parameter is optional:

STATIC CLASS ToolBarExtensions
 STATIC METHOD ShowButtonMenu(SELF tbSelf as Toolbar, nButtonID
as LONG, oButtonMenu as Menu) AS VOID
 tbSelf:ShowButtonMenu(nButtonID, oButtonMenu, #MAINTOOLBAR)
 RETURN
STATIC METHOD ShowButtonMenu(SELF tbSelf as Toolbar, nButtonID as
LONG, oButtonMenu as Menu,symTb as Symbol) AS VOID

· Remove the Default() line and replace SELF in the body of the original ShowButtonMenu
with tbSelf

· We will also have to make some changes to the code that calls this method. This is due
to the fact that the code calls ShowButtonMenu on the Toolbar access from the window
class. This Toolbar access is untyped and therefore returns a USUAL..
So locate the 2 lines with SELF:ToolBar:ShowButtonMenu and change that to

((Toolbar) SELF:ToolBar):ShowButtonMenu. You cannot use the oToolbar field of
the Window class, because the DataWindow class will return the Toolbar from its
framewindow in stead of its own toolbar.
In the improved VO SDK that we will include with our X# runtime we will solve this
problem by strongly typing properties such as Window:Toolbar.
Maybe you would be tempted to add the Extension methods to the USUAL type, so you

267 XSharp

© 2015- 2024 XSharp BV

would not have to add the casts to the code that calls ShowButtonMenu.
That will compile, but unfortunately will produce a problem at runtime. The X# compiler
(like the Vulcan and VO Compilers) knows that the USUAL type is special and will not try
to emit a method call, but will produce code that calls Send() on the usual to call its
method. And the Vulcan Runtime does not handle extension methods inside the Send()
function.

· We can confirm that this works later when we press the "Reply" button on the toolbar.
That should bring up the menu with "Reply to Sender" and "Reply to All"

Now it is time to fix the ActiveX/OCX problem
· Click on the error about OleControl.

· As a quick workaround we will change the code and let webbrowser inherit from
MultiLineEdit. That gives us a control that will certainly work. We will implement the OCX
later. To do so go to the Class Webbrowser.PRG and change the INHERIT clause. It
says INHERIT OleControl now. Change that to INHERIT MultiLineEdit.

· Compile again and now some other errors will be shown. 2 of these mention the type
cOleMethod. Goto this code by double clicking the error.

· You will see the Quit method of the Webbrowser class. This code uses an internal
class and internal methods from the VO OLE Classes. Comment out the contents of
this method for now.

· Compile again and you will see that only a few errors are left. Some of these are the
same as the error in the VOPAD Example and require that we change the Font property
to ControlFont. Correct that.

· One error points to an incorrect '+' operator: in the line

cTemp += +"; "+ cEntry

· This is an obvious error in the original VO code that was never picked up by the VO
Compiler. Remove the + before the double quote

· The last error comes from the constructor of the Webbrowser class. It is calling the
CreateEmbedding method from the OleControl. This method does not exist in the
MultiLineEdit class, so we comment it out for now. We will deal with the Webbrowser
later.

· The rest of the code should compile without problems after commenting out the call to
SELF:CreateEmbedding().

· You should be able to run the app now.

· There will be a runtime error if you try to open the Address Book because it uses the
Databrowser control which depends on Cato3Cnt.dll. Fix this by copying the cato3*.dll
and msvcrt.dll from the Cavo28\Redist folder to your output folder.

· Recompile and run the example. I twill now produce an error inside the Display method
of the Webbrowser class (DisplayHtml if you have used the Email example from VO 2.8
SP4).
This method takes the content of the email, writes it to disk and calls the Navigate
method of the Webbrowser control (late bound, using the Send() function of VO). This
will not work.
Since we have changed the webbrowser control and made it a multi line edit we can
change this behavior. Instead of writing the email text to disk we can simply assign it to
the TextValue property of the MultiLineEdit. So comment out the body of the Display
method (do not throw the code away we will need it later) and replace it with:

268X# Documentation

© 2015- 2024 XSharp BV

SELF:TextValue := cText

· After that the sample should run without problems. You can also display the emails. Of
course it will not show HTML properly but that is the next step.

How to add the ActiveX to the code

The VO compatible GUI classes inside Vulcan do not support ActiveX Controls. Windows
Forms however has great support for ActiveX Controls.
We will use the ActiveX support from Windows Forms to add the ActiveX control to the
example.
There are 2 possibilities here:
1. Replace the whole Email Display window with a Windows Forms window
2. Use a trick to use Windows Forms to show the ActiveX control and merge that control

into our VO GUI app
The first solution is by far the easiest to understand, but we will have to create a whole
new window and we will have to change the calling code as well.
We leave it up to you to make the choice for your own apps.
In this example we will the choose the second approach.

Create a Windows Forms Window to display the email

For this method we use a Windows.Forms.Form window as "Host" for the ActiveX control.
We will instantiate that window and will grab the windows handle to the control and link
that windows handle with our VO GUI window.
To do this you must take the following steps:
· Right Click on the project icon in the solution explorer and select "Add New Item"

· This brings up a list of possible new items. Choose the icon for Windows Forms Form,
give it a meaningful name, such as "EmailDisplayForm.prg" and click Add.

· This will open the Form Designer window.

· Open the ToolBox. The webbrowser control will not be in there.

· Right click on an empty area in the toolbox and select "Choose Items...". This will bring
up a dialog where you can control the contents of the ToolBox.

· Select the "COM Components" Tab and scroll down until you see the Microsoft Web
Browser control:

· Tick the checkbox in front of the control and press Ok. This should add the ActiveX to
the toolbox:

· You can drag the control to a different place in the Toolbox if you are not happy with
where it landed.

269 XSharp

© 2015- 2024 XSharp BV

· Now drag the Control from the ToolBox to the form. There is no need to size or move
the control.

· Visual Studio will add two references to our project. These are:
o AxSHDocVw, a type library that contains that code for the actual ActiveX control
o SHDocVw, a type library that contains code for the supporting automation server

interfaces and classes
· The form editor will add a field named axWebBrowser1 to the form. This field is of the

type AxSHDocVw.AxWebBrowser.
· Goto the property window and change the Modifiers Field to change it from Private to

it Public (Export).
That will make the field accessible outside of the webBrowserHost class

· Save the code, and close the form

· Now goto the Webbrowser class

· Add the following using clauses to the top of the file:

 using Email
 using AxShDocVw
 using ShDocVw

The first using is the namespace where the webBrowserHost window is generated. The
second namespace is the namespace of the generated ActiveX and the third namespace
if that of the other types that we need, such as enums and events.
· Add the following 2 fields (no need to elaborate I think):

 EXPORT oHost as webBrowserHost
 EXPORT oWebBrowser as AxWebBrowser

· Goto the constructor of the Webbrowser class and add the following lines of code (in
stead of the CreateEmbedding() that we commented out before)

SELF:oHost := webBrowserHost{} // Create the host
window, do not show !
SELF:oWebBrowser := SELF:oHost:axWebBrowser1 // Get the ActiveX
on the form
SetParent(oWebBrowser:Handle, self:Handle()) // Using Windows
API "steal" its handle and link to the MLE
SELF:oWebBrowser:Visible := TRUE // make the webbrowser
visible
SELF:Okay := TRUE

· And add the following methods to make sure that the ActiveX has the same with and
height as the MultiLineEdit that is its owner and to make sure it is properly destroyed,

METHOD Resize(oEvent)
 LOCAL oDim as Dimension

270X# Documentation

© 2015- 2024 XSharp BV

 SUPER:Resize(oEvent)
 oDim := SELF:Size
 IF oDim:Width > 0
 SELF:oWebBrowser:SuspendLayout()
 SELF:oWebBrowser:Location := System.Drawing.Point{0,0}
 SELF:oWebBrowser:Size :=
System.Drawing.Size{oDim:Width,oDim:Height}
 SELF:oWebBrowser:ResumeLayout()
 ENDIF
 RETURN NIL

METHOD Destroy()
 SUPER:Destroy()
 SELF:oWebBrowser:Dispose()
 SELF:oHost:Dispose()
 RETURN NIL

· And we need to "restore" the old behavior to display the HTML in the browser window,
that we commented out before.
So goto the WebBrowser:Display() method (DisplayHtml for VO 2.8 SP4) and restore
the old code and change

Send(SELF, #Navigate, cFileName)

into

SELF:oWebBrowser:Navigate(cFileName)

so you change this into an early bound method call
· To finish our work, browse through the source of the webbrowser class and find lines

that call Navigate, such as

Send(SELF, #Navigate, "#top")

and change these to early bound method calls:

SELF:oWebBrowser:Navigate("#top")

And look for lines like:

Send(SELF, #ExecWB, OLECMDID_PRINT, OLECMDEXECOPT_DODEFAULT, NIL,
NIL)

and change these to early bound method calls using enums in the type library. Also
remove the NIL values:

271 XSharp

© 2015- 2024 XSharp BV

SELF:oWebBrowser:ExecWB(OLECMDID.OLECMDID_PRINT,
OLECMDEXECOPT.OLECMDEXECOPT_DODEFAULT)

· That wraps it up. Everything works now, including the PrintPreview and Print
functionality.

· Of course you can now also use the activeX events and respond to them.
You have to do that the .Net way. Something like this:

SELF:oWebBrowser:NavigateComplete2 += NavigateComplete2

and then the implementation

METHOD NavigateComplete2(sender AS OBJECT, e AS
DWebBrowserEvents2_NavigateComplete2Event) AS VOID
 SELF:Owner:StatusBar:SetText("Showing file:"
+e:uRL:ToString())

You will find the "code before" and "code after" in the XSharp Examples folder

272X# Documentation

© 2015- 2024 XSharp BV

1.4 The X# Runtime

In X# version 2 - Bandol we have introduced the X# runtime.

In this chapter we would like to give you an overview of the design decisions that we
made, what the runtime looks like, where you can find which types and functions etc.
We will also list here the features that are not supported yet.

Introduction

When we designed the X# compile and X# Runtime we had a few focus points in mind:
· The language and runtime should be VO compatible whenever possible. We know that

the Vulcan devteam made some decisions not to support certain features from VO, but
we decided that we would like to be as compatible as technically possible.

· We want our runtime to be fully Unicode and AnyCPU. It should run on any platform and
also both in x86 and x64 mode. That has caused some challenges because VO is Ansi
(and not Unicode) and also X86. In VO you can cast a LONG to a PTR. That will not
work in X64 mode because a LONG is 32 bits and a PTR 64 bits

· We want the code to compile in "Safe" mode. No unsafe code when not strictly needed.
The biggest problem / challenge here is the PTR type. With a PTR you can access
memory directly and read/write from memory, even if you don't "own" that memory.
However the same PTR type is also used as "unique identifier" for example in the low
level file i/o and in the GUI classes for Window and Control handles. These PTR values
are never used to read/write memory but are like object references. We have decided to
use the .Net IntPtr type for this kind of handles. Of course the compiler can transparently
convert between PTR and IntPtr.

· We want to prove that the X# language is a first class .Net development language. That
is why we decided to write the X# runtime in X#. By doing that we also create a large
codebase to test the compiler. So that is a win - win situation.

· We want the runtime to be thread safe. Each thread has its own "global" state and its
own list of open workareas. When a new thread is started it will inherit the state of the
main thread but will not inherit the workareas from the main thread

· At this moment the X# Runtime is compiled against .Net Framework 4.6.

Assemblies in the X# Runtime

If you want to know in which Assembly a function or type is defined then your "best friend"
is the documentation. We are using a tool to generate the documentation, so this is
always correct.
Some subsystems have functions XSharp.Core DLL and in XSharp.VO.DLL as well.

Component Description Dialect used Framewor
k Version

XSharp.Core.DLL This is the base DLL of the X#
Runtime.

X# Core 4.6

273 XSharp

© 2015- 2024 XSharp BV

Component Description Dialect used Framewor
k Version

XSharp.Data.DLL This DLL contains support code
for .Net SQL based data access
and for SQL based cursors

X# Core 4.6

XSharp.RT.DLL This DLL is required for all
dialects apart from Core

X# non - core 4.6

XSharp.RT.Debugge
r.DLL

This DLL contains the functions
and windows for the Runtime
Debugger

X# core 4.6

XSharp.VO.DLL This DLL adds features to the
runtime that are needed for the
VO and Vulcan dialects.

X# VO and X#
Vulcan

4.6

XSharp.XPP.DLL This DLL adds features to the
runtime that are needed for the
Xbase++ dialect.

X# XPP 4.6

XSharp.VFP.DLL This DLL adds features to the
runtime that are needed for the
FoxPro dialect.

X# FoxPro 4.6

XSharp.Macrocompil
er.DLL

This DLL is the X# "fast" macro
compiler.

X# Core 4.6

XSharp.MacroCompi
ler.Full.DLL

This DLL is the X# "full" macro
compiler.

X# Core 4.6

XSharp.RDD.DLL This DLL contains the various
RDDs implemented for X#.

X# Core 4.6

VO SDK Class libs:
VOConsoleClasses.
dll
VOGUIClasses.dll
VOInternetClasses.d
ll
VORDDClasses.dll
VOReportClasses.dl
l
VOSQLClasses.dll
VOSystemClasses.
dll
VOWin32APILibrary.
dll

These DLLs represent the class
libraries from Visual Objects

X# VO and X#
Vulcan

4.6

Missing or incomplete Features

274X# Documentation

© 2015- 2024 XSharp BV

Feature Description Expected when

Some runtime functions are
not supported yet:
Crypt functions (Crypt(),
CryptA())
Encoding functions
(B64Enc.., UUEnc..,
GetChunkBase64 etc)

These functions will most
likely be added in one of the
next betas. For now they will
throw a
notimplementedexception
when you use them

275 XSharp

© 2015- 2024 XSharp BV

1.4.1 XSharp.Core

This is the base DLL of the X# Runtime. It contains:
• Common interfaces, such as IDate, IFloat, ICodeBlock, IMacroCompiler, used by other

X# components
• Runtime functions that use standard .Net datatypes such as SLen(), AllTrim(), SLen().
· The Runtime State (SetDeleted() , SetExact() etc)

· The Workarea information

· The nation resources and collations.
• RDD related functions that do not depend on XBase types as DATE, USUAL and

FLOAT.
· The low level File/IO
This assembly can be used in all dialects of X#

276X# Documentation

© 2015- 2024 XSharp BV

1.4.2 XSharp.Data

This DLL contains support code for .Net SQL based data access and for SQL based
cursors (VFP)
The DLL also has data aware classes and functions that return DataTables or
DataSources based on workareas/cursors

277 XSharp

© 2015- 2024 XSharp BV

1.4.3 XSharp.RT

This DLL adds the following features to the runtime:
· XBase specific types , such as DATE, ARRAY, USUAL, PSZ, SYMBOL etc

· CodeBlock type (base class for compile time codeblocks)

· _CodeBlock type (base class for macro compiled codeblocks)

· Runtime functions that accept parameters of these types.

· Memory related functions (MemAlloc, MemFree etc)

· Terminal IO functions (QOut(), Accept, Wait).

· RDD Related functions that have optional parameters or parameters of XBase Type

· Functions to compile and evaluate macros (MComp, MExec)

· Late binding functions such as Send(), IVarGet() etc

· VObject type

· OLEAutoObject type
This assembly should be linked in when you compile for anything other than the Core

dialect

278X# Documentation

© 2015- 2024 XSharp BV

1.4.4 XSharp.RT.Debugger.DLL

This DLL adds the the runtime Debugger functions and windows:
· DbgShowGlobals()

· DbgShowWorkareas()

· DbgShowMemvars()

· DbgShowSettings()

279 XSharp

© 2015- 2024 XSharp BV

1.4.5 XSharp.VO

This DLL adds some specific types and functions that are unique to the VO and Vulcan
dialect. Functions such as
QueryRtRegInt()
QueryRtRegString()
MB..()

Also many obsolete functions from VO are in this DLL.

This DLL also contains the classes
ErrorDialog
NameArg
OleAutoObject
OleAutoObjectFromFile
OleDateTime
VObject

280X# Documentation

© 2015- 2024 XSharp BV

1.4.6 XSharp.XPP

This DLL adds some specific types and functions that are unique to the Xbase++ dialect
and also many of the Xbase++ defines.
Functions such as
ClassCreate
ClassDestroy()
ClassObject()
XMLDocOpenFile()
XMLDocSetAction()
etc.

Also some Xbase++ specific types such as
Abstract
ClassObject

281 XSharp

© 2015- 2024 XSharp BV

1.4.7 XSharp.VFP

This DLL adds some specific types and functions that are unique to the FoxPro dialect

Functions such as
CreateObject()
etc.

282X# Documentation

© 2015- 2024 XSharp BV

1.4.8 XSharp.VFP.UI

This DLL contains forms and controls that are used by applications converted from
FoxPro to X# with the VFP Exporter.

283 XSharp

© 2015- 2024 XSharp BV

1.4.9 XSharp.Macrocompiler

This DLL is the X# "fast" macro compiler. The Macro compiler is written in C# and has a
hardcoded dependency on XSharp.Core.

Please note that there is no link between XSharp.RT.DLL and
XSharp.Macrocompiler.DLL. When you compile a macro then the runtime will try to locate
the macro compiler with the method listed below.
You can override this mechanism by calling SetMacroCompiler() with the type of the class
that implements the macro compiler. This type should implement the
XSharp.IMacroCompiler interface. If you want to use the standard macro compiler then
you need to add a reference to XSharp.MacroCompiler.dll and add the following code to
the startup code of your application:

SetMacroCompiler(typeof(XSharp.Runtime.MacroCompiler))

If you don't do this then the runtime will try to locate the macro compiler in the following
locations:
· The directory where the XSharp.RT.DLL is loaded from

· The directories in the path. If you use this then make sure that the assemblies listed
below are in the same folder as XSharp.MacroCompiler.DLL

· The Global Assembly Cache (GAC). If you use this mechanism then make sure that the
assemblies listed below are also in the GAC.

This assembly depends on:
· XSharp.Core.DLL

Note

The XSharp installer adds the Macro compiler and the assemblies it depends on to the
GAC so you will be able to run your apps without adding the macro compiler to the
references list of your application. Please make sure you include the macro compiler in
your installer when deploying your applications.

284X# Documentation

© 2015- 2024 XSharp BV

1.4.10 XSharp.Macrocompiler.Full.DLL

This DLL is the X# "full" macro compiler. The Macro compiler is created as a class
wrapper on top of the X# scripting engine

We are working on a smaller and faster macro compiler. More news about that will follow.

Please note that there is no link between XSharp.VO.DLL and
XSharp.Macrocompiler.DLL. When you compile a macro then the runtime will try to locate
the macro compiler with the method listed below.
You can override this mechanism by calling SetMacroCompiler() with the type of the class
that implements the macro compiler. This type should implement the
XSharp.IMacroCompiler interface. If you want to use the full macro compiler in stead of the
standard (fast) macro compiler then you need to add a reference to
XSharp.MacroCompiler.Full.dll and add the following code to the startup code of your
application:

SetMacroCompiler(typeof(XSharp.MacroCompiler))

If you don't do this then the runtime will try to locate the standard macro compiler in the
following locations:
· The directory where the XSharp.R.DLL is loaded from

· The directories in the path. If you use this then make sure that the assemblies listed
below are in the same folder as XSharp.MacroCompiler.DLL

· The Global Assembly Cache (GAC). If you use this mechanism then make sure that the
assemblies listed below are also in the GAC.

This assembly depends on:
· XSharp.Scripting.DLL

· XSharp.CodeAnalysis.DLL

· System.Collections.Immutable

· System.Reflection.Metadata

Note

The XSharp installer adds the Macro compiler and the assemblies it depends on to the
GAC so you will be able to run your apps without adding the macro compiler to the
references list of your application. Please make sure you include the macro compiler in
your installer when deploying your applications.

285 XSharp

© 2015- 2024 XSharp BV

1.4.11 XSharp.RDD

This DLL contains the various RDDs that come with X#:
· DBFNTX (including DBT memos)

· DBFCDX (Including FPT memos)

· DBFVFP = DBFCDX with support for additional Visual FoxPro datatypes.

You can also uses "limited" RDDs with do not have all the functionality:
· CAVODBF or DBF: Just DBF Files

· DBFDBT: DBF files with DBT memos, no index support

· DBFFPT: DBF files with FPT memos, no index support

The Advantage RDDs (require external advantage DLLs, such as ACE32, ACE64,
adsloc32.dll, adsloc64.dll etc)
· ADSADT

· AXDBFCDX

· AXDBFNTX

· AXDBFVFP

· Advantage.ADSADT

· Advantage.AXSQLCDX

· Advantage.AXSQLNTX

· Advantage.AXSQLVFP

In one of the coming releases we will add support for:
· DBFMEMO = DBF + NTX + DBV

· DBFBLOB = DBF without associated DBF file

· DELIM

· SDF

and may be, if there is enough interest:
DBFNSX = DBF + SMT + NSX

286X# Documentation

© 2015- 2024 XSharp BV

1.4.12 Installation in the GAC

The default behavior of the X# installer is to register the X# runtime in the GAC. The
following files are registered there

· XSharp.Core.DLL

· XSharp.Data.DLL

· XSharp.RT.DLL

· XSharp.VO.DLL

· XSharp.XPP.DLL

· XSharp.VFP.DLL

· XSharp.RDD.DLL

· XSharp.Macrocompiler.DLL

· VOConsoleClasses.dll

· VOGUIClasses.dll

· VOInternetClasses.dll

· VORDDClasses.dll

· VOReportClasses.dll

· VOSQLClasses.dll

· VOSystemClasses.dll

· VOWin32APILibrary.dll

Some components are dynamically loaded at runtime and do not have to added as
references to your application:
· XSharp.RDD.DLL

· XSharp.Macrocompiler.DLL

The X# runtime tries to locate these assemblies in the GAC and in the directory where the
application is installed.
If you are not installing the runtime to the GAC, then you must make sure that these two
DLLs are available in your application folder. Otherwise you will get a runtime error when
these DLLs are needed.

287 XSharp

© 2015- 2024 XSharp BV

1.4.13 Who is who in the X# team

The founders of the X# project started the X# project in the summer of 2015.
They have ample experience with the xBase language. They all worked on the Visual
Objects and/or Vulcan.NET development teams, and some of them have created 3rd
party additions to Visual Objects and/or Vulcan.NET or created tools for VO and Vulcan
developers.

They are in alphabetical order:

Name Country Email Role in the X#
development team

Fabrice Foray France fabrice@xsharp.eu Visual Studio
integration,
examples, tutorials

Nikos Kokkalis Greece nikos@xsharp.eu (Macro) Compiler

Chris Pyrgas Greece chris@xsharp.eu Support, tools,
examples, tutorials,
runtime

Robert van der Hulst The Netherlands robert@xsharp.eu Management,
Compiler, Runtime,
Visual Studio
integration,
Documentation

If you are interested in participating in the development of X# please contact us and let us
know what your area of expertise is. There are plenty of things to do !

288X# Documentation

© 2015- 2024 XSharp BV

1.4.14 XBase Types

The table below shows the type mapping between XBase types in X#.
All types in the namespace XSharp are implemented in XSharp.VO.DLL and are only supported when
NOT compiling in the Core dialect

XBase Type Implemented in type

ARRAY XSharp.__Array

ARRAY OF <t> XSharp.__ArrayBase <T>

BINARY XSharp.__Binary

BYTE System.Byte

CHAR System.Char

CODEBLOCK XSharp.CodeBlock

_CODEBLOCK XSharp._CodeBlock

DATE XSharp.__VODate

CURRENCY XSharp.__Currency

DATETIME System.DateTime

DECIMAL System.Decimal

DWORD System.UInt32

DYNAMIC System.Dynamic

FLOAT XSharp.__VOFloat

INT / LONG / LONGINT System.Int32

INT64 System.Int64

LOGIC System.Boolean or XSharp.__WinBool

OBJECT System.Object

PSZ XSharp.__Psz

PTR System.IntPtr

REAL4 System.Float

REAL8 System.Double

SHORT / SHORTINT System.Int16

STRING System.String

SYMBOL XSharp.__Symbol

UINT64 System.UInt64

USUAL XSharp.__Usual

VOID System.Void

289 XSharp

© 2015- 2024 XSharp BV

WORD System.UInt16

1.4.14.1 Array Of Type

This type is used for typed arrays. It has been introduced in the X# Runtime. The internal
typename is XSharp.__ArrayBase
The code below shows how you can use it.
Many of the existing XBase runtime functions that accept arrays now also accept an
ARRAY OF.
Runtime functions that expect a codeblock for Arrays expect a Lambda expression for
ARRAY OF.
The difference is that the parameters to the Lambda expression will be typed, so there is
no late binding necessary.
Parameters to a Codeblock are always of type usual and therefore either require Late
Binding support or need to be casted to the right type inside the codeblock.
We have also introduced a special multi dimensional syntax. Given the example below
you can also get the first name of the first developer in the array by using the following
syntax:

 cFirst := aDevelopers[1, "FirstName"]

This may be useful when you work with existing generated code and the existing code
was using a define for the elements in the multi dimensional array.
If you had a (generated) define like

DEFINE DEVELOPER_FirstName := 1

then you can change the code generator and generate this in stead

DEFINE DEVELOPER_FirstName := "FirstName"

The code that uses the define can remain unchanged

 cFirst := aDevelopers[1, DEVELOPER_FirstName]

Example code

FUNCTION Start AS VOID
// declare typed array of developer objects
LOCAL aDevelopers AS ARRAY OF Developer
// Initialize the array with the "normal" array syntax
aDevelopers := {}
// AAdd also supports typed arrays
AAdd(aDevelopers, Developer { "Chris","Pyrgas"})
AAdd(aDevelopers, Developer { "Nikos", "Kokkalis"})

290X# Documentation

© 2015- 2024 XSharp BV

AAdd(aDevelopers, Developer { "Fabrice", "Foray"})
AAdd(aDevelopers, Developer { "Robert", "van der Hulst"})
// AEval knows that each element is a developer
AEval(aDevelopers, { d => Console.WriteLine(d)})
// ASort knows the type and passes the correct types to the lambda
expression.
// The compiler and runtime "know" that x and y are Developer
objects and will produce early bound code
ASort(aDevelopers, 1, ALen(aDevelopers), { x, y => x:LastName <
y:LastName})
// Foreach knows that each element is a Developer object
FOREACH VAR oDeveloper IN aDevelopers

 ? oDeveloper:LastName, oDeveloper:FirstName
NEXT
RETURN

CLASS Developer
 PROPERTY FirstName AS STRING AUTO
 PROPERTY LastName AS STRING AUTO
 CONSTRUCTOR()
 RETURN
 CONSTRUCTOR (cFirst AS STRING, cLast AS STRING)
 FirstName := cFirst
 LastName := cLast
 METHOD ToString() AS STRING
 RETURN Firstname+" " + LastName
END CLASS

1.4.14.2 Array Type

This implements the so called "ragged" arrays.
The internal typename is XSharp.__Array

The ARRAY type is a dynamic array of USUAL values. Each element of the array may
contain another array, so arrays can be multidimensional.

Implementation

The ARRAY type is implemented in the class XSharp.__Array.
The Usualtype of ARRAY has the value 5

1.4.14.3 CodeBlock

This is the parent class for compile time codeblocks.
There is also a subclass _CodeBlock which is the parent class for macro compiled
(runtime) codeblocks
The internal type names are XSharp.CodeBlock and XSharp._CodeBlock

The codeblock type was introduced in the XBase language in the Clipper days.

291 XSharp

© 2015- 2024 XSharp BV

They can be seen like unnamed functions. They can have 0 or more parameters and
return a value.
The most simple codeblock that returns a string literal looks like this

FUNCTION Start() AS VOID
LOCAL cb AS CODEBLOCK
cb := {|| "Hello World"}
? Eval(cb)
WAIT

RETURN

To use a codeblock you call the Eval() runtime function
Codeblocks are not restricted to fixed expressions, because they can use parameters.
The following codeblock adds 2 parameters.

FUNCTION Start() AS VOID
LOCAL cb AS CODEBLOCK
cb := {|a,b| a + b}
? Eval(cb, 1,2)
? Eval(cb, "Helllo ", "World")
WAIT
RETURN

As you can see in the example, we can both use numeric parameters here or string
parameters. Both work. That is because the parameters to a codeblock are of the so
called USUAL type. They can contain any value. Of course the following will fail because
the USUAL type does not support multiplying strings:

FUNCTION Start() AS VOID
LOCAL cb AS CODEBLOCK
cb := {|a,b| a * b}
? Eval(cb, 1,2)
? Eval(cb, "Helllo ", "World")
WAIT
RETURN

More complicated codeblocks

Codeblocks are not restricted to single expressions.
They may also contain a (comma seperated) list of expressions. The value of the last
expression is the return value of the codeblock:

FUNCTION Start() AS VOID
LOCAL cb AS CODEBLOCK

292X# Documentation

© 2015- 2024 XSharp BV

cb := {|a,b,c| QOut("value 1", a) , QOut("value 2", b),
QOut("value 3", c), a*b*c}
? Eval(cb,10,20,30)
WAIT
RETURN

XSharp has also introduced codeblocks that contain of (lists of) statements:

FUNCTION Start() AS VOID
LOCAL cb AS CODEBLOCK
cb := {| a,b,c|
 ? "value 1" ,a
 ? "value 2" ,b
 ? "value 3" ,c
 RETURN a*b*c
 }
? Eval(cb,10,20,30)
WAIT
RETURN

Please note

· The first statement should start on a new line after the
parameter list

· There should be NO semi colon after the parameter list.

· The statement list should end with a RETURN statement.

Implementation

The CODEBLOCK type is implemented in the abstract class XSharp.Codeblock
The Usualtype of CODEBLOCK has the value 9.

In your code you will never have objects of type XSharp.Codeblock.
Compile time codeblocks are translated into a subclass of XSharp.Codeblock
Runtime (macro compiled) codeblocks are translated into a subclass of the class
XSharp._Codeblock which inherits from Codeblock.
Depending on the type of the runtime codeblock this is either an instance of the
MacroCodeblock class or of the MacroMemVarCodeblock class (when the macro creates
dynamic memory variables)

1.4.14.4 Date Type

This structure holds year, month, day in 32 bits. For date calculations it uses the
System.DateTime calculation logic. There are implicit converters between Date and
DateTime.
The internal type name for this type is XSharp.__Date

The DATE type is an integral type that stores a date value.

293 XSharp

© 2015- 2024 XSharp BV

The DATE is internally stored in 3 fields (DAY, MONTH and YEAR) that occupy a total of
32 bits in memory.

Implementation

The DATE type is implemented in the structure XSharp.__Date
The Usual type of DATE is 2.

1.4.14.5 Binary Type

This implements the FoxPro binary type
The internal typename is XSharp.__Binary

The BINARY type is represented a series of bytes.

· Binary literals are written as 0h12345678abcdef

· The value behind 0h is a sequence of hex numbers. Each pair of hex numbers (nibble)
represents 1 byte. There must be an even number of 'nibbles'.

· The binary literals are encoded in an array of bytes. In the Core dialect the binary literals
are represented as a byte[]. In the other dialects the binary literals are a new type
(XSharp.__Binary) which can be specified as the new BINARY keyword.

· The UsualType() of BINARY is 29.

· The XSharp.__Binary type has operators to add a string to a binary and add a binary to a
string.
Binary + String will return a Binary
String + Binary will return a String
Binary + Binary will return a Binary.
There are also comparison operators on the Binary type (>, <, >=, <=). These will use
the string comparison routines that are defined with SetCollation() with the exception
that an = comparison with a single equals operator does not return TRUE when the
Right hand side is shorter than the Left hand side and the first bytes match.

· Conversions from Binary to String are done with the Encoding.GetBytes() and
Encoding.GetString() functions for the current Windows Encoding.
That means that on single byte code pages each character in the string will result in one
byte and each byte will result in one character.
For multibyte code pages (Chinese, Japanese, Korean etc) some characters will result
in more than one byte and some byte pairs will result in a single character.

· There are implicit operators that convert a BINARY to a byte[] and back. There are also
implicit operators that convert a Binary to a String and back.

· When compiling with the Vulcan Runtime then the byte[] array is stored in a USUAL
value for the non core dialects.

Implementation

The BINARY type is implemented in the class XSharp.__Binary
The Usualtype of BINARY has the value 29

1.4.14.6 Currency Type

This implements the FoxPro Currency type
The internal typename is XSharp.__Currency

· The currency type stored numbers with a precision of 4 decimals. Internally it contains a
.Net decimal value, rounded to 4 decimals.

294X# Documentation

© 2015- 2024 XSharp BV

·

Implementation

The CURRENCY type is implemented in the structure XSharp.__Currency
The Usual type of CURRENCY is 28.

1.4.14.7 Float Type

This structure is a combination of a REAL8 (System.Double) and a width and # of
decimals.
It is not a reference type like in VO.
The internal type name for this type is XSharp.__Float

The FLOAT type is a type that stores a 64-bit floating point value, along with formatting
information. The precision and range of a FLOAT are the same as that from a REAL8,
since the value of the float is stored in a REAL8.

Implementation

The FLOAT type is implemented in the structure XSharp.__Float
The Usual type of FLOAT is 3.

1.4.14.8 Logic Ttype

For normal use the logic type is mapped to System.Boolean.
Inside VOSTRUCT and UNION the XSharp.__WinBool is used because this is a 4 byte
value just like the Win32 api expects.

The LOGIC keyword represents the .Net Boolean type. This type can have either of two
values: true, or false.

If you have members of type LOGIC in VOSTRUCT or UNION types then these will not be
represented with .Net Boolean types because the size of these Boolean is 1 byte but in
the Windows API LOGIC values are represented with 4 bytes. Therefore the compiler will
replace these with a special type __WinBool which has 4 bytes and has implicit
converters between Logic and __WinBool.

1.4.14.9 PSZ Type

This structure contains a pointer to a memory block with an Ansi string. When created
with String2Psz() and Cast2Psz() then the compiler will take care of releasing these
memory blocks. When created with other runtime functions such as StringAlloc() then you
are responsible of releasing the memory yourself.
The internal type name for this type is XSharp.__Psz

Note
Please do not use the PSZ type for new code. It is only included for backward
compatibility.
Even new code that calls the windows API can use a better alternative, for example using
the [DllImportAttribute] from the framework

The PSZ type is a pointer type that points to a null terminated sequence of zero or more
bytes, typically representing a printable character string. This type is for backward
compatibility only. Don't use this type in new code unless you have to.

295 XSharp

© 2015- 2024 XSharp BV

Implementation

The PSZ type is implemented in the class XSharp.__Psz
The Usual type of PSZ is 17.

1.4.14.10 Symbol Type

This structure holds just a number. This number is a reference to a string table that
contains the actual string representation of the symbol.
The internal type name for this type is XSharp.__Symbol

The SYMBOL type is a 32-bit integer that represents an index into an array of strings.

Since a SYMBOL represents a string, there is a built-in implicit conversion from SYMBOL
to STRING, and from STRING to SYMBOL.

Since the underlying value of a SYMBOL is an integer, there is a built-in explicit conversion
from SYMBOL to DWORD and from DWORD to SYMBOL. A cast is necessary in order
to perform explicit conversions.

Unlike with Visual Objects, the number of symbols is not limited by available memory or
symbols that are declared in another library.

Literal symbols consist of the '#' character followed by one or more alphanumeric
character. The first character must be a letter or an underscore.

Some examples of literal symbols are shown below:
#XSharp
#XSHARP

Note that although literal symbols can be specified with lower or upper case letters, the
strings they represent are converted to uppercase at compile time, for compatibility with
Visual Objects. It is not possible to specify a literal symbol that contains lower case
letters, the StringToAtom() function must be used.

The compiler-defined constant NULL_SYMBOL can be used to express a null symbol, i.e.
a symbol that has no associated string value.

Implementation

The SYMBOL type is implemented in the structure XSharp.__Symbol
The Usual type of SYMBOL is 10.

1.4.14.11 Usual Type

The USUAL type in X# is implemented as a .Net structure. It contains a type flag and a
value. The value can be one of the following types:
NIL, Long, Date, Float, Array, Object, String, Logic, Codeblock, Symbol, Ptr, Int64,
DateTime, Decimal, DateTime
The internal type name for this type is XSharp.__Usual

Type Usual Type Number

NIL 0

296X# Documentation

© 2015- 2024 XSharp BV

Type Usual Type Number

Long 1

Date 2

Float 3

Array 5

Object 6

String 7

Logic 8

Codeblock 9

Symbol 10

Ptr 18

Int64 22

DateTime 26

Decimal 27

Currency 28

Binary 29

Note that some Usual Type numbers are not included in this table. There are defines in
the compiler for these numbers, but they are never stored inside a USUAL.
So you can write UsualType(uValue) == REAL8 but that will NEVER be true.

You can assign values of these other types to a USUAL but the values will be converted to
a type listed in the first table. For example if you assign a DWORD to a USUAL then the
runtime will look at the value of the DWORD and if it is smaller or equal to MAX_LONG
then it will store the value as a LONG. Otherwise it will store it as a FLOAT. Please note
that although we support the Int64 type the DWORD conversion does not use this to be
compatible with VO. Also if you assign a PSZ to a USUAL then it will be stored as a
STRING. So the runtime will automatically call Psz2String() to get the string
representation.

Name Usual Type Number

Byte 11

Short 12

Word 13

DWord 14

Real4 15

Real8 16

PSZ 17

297 XSharp

© 2015- 2024 XSharp BV

Name Usual Type Number

Usual By Ref 19

UInt64 23

Char 24

Dynamic 25

The USUAL type is datatype that can contain any data type. It consists internally of a type
flag and a value. This type can store any value.
The compiler treats this type in a special way. The compiler will not warn you when you
assign a value of type USUAL to another type, but will automatically generate the
necessary conversion operation/

USUAL is provided primarily for compatibility with untyped code. It is not recommended for
use in new code because the compiler cannot perform any type checking on expressions
where one or more operands are USUAL. Any data type errors will only be discovered at
runtime.

Locals, parameters and fields declared as USUAL also incur considerably more runtime
overhead than strongly typed variables.

The literal value NIL may be assigned into any storage location typed as USUAL. The
value NIL indicates the absence of any other data type or value, and is conceptually
equivalent to storing NULL into a reference type. NIL is the default value for a local USUAL
variable that has not been initialized.

When the left operand of the ':' operator is a USUAL, the compiler will generate a late
bound call to the method, field or property specified as the right operand. This call may fail
if the value contained in the USUAL at runtime does not have such a member, the
member type is incorrect or inaccessible, or if the name evaluates to a method and the
number of parameters or their types is incorrect. The /lb compiler option must be enabled
in order to use a USUAL as the left operand of the ':' operator, otherwise a compile-time
error will be raised.

Numeric operations and USUAL variables of mixed types.

When you combine 2 USUAL variables in a numeric operation then the type of the result is
derived from the types of operands.
The leading principle has been that we try not to loose decimals.

The generic rule is:
· When the Left Hand Side is fractional then the result is also fractional of the type of the

LHS
· When the LHS is NOT fractional and the Right Hand Side (RHS) is fractional then the

result is the type of the RHS
· When both sides are integral then the result has the type of the largest of the two.

LHS \
R

LONG INT64 FLOAT CURRENC
Y

DECIMAL

298X# Documentation

© 2015- 2024 XSharp BV

H
S

LONG LONG INT64 FLOAT CURRENC
Y

DECIMAL

INT64 INT64 INT64 FLOAT CURRENC
Y

DECIMAL

FLOAT FLOAT FLOAT FLOAT FLOAT FLOAT

CURRENCY CURRENC
Y

CURRENC
Y

CURRENC
Y

CURRENC
Y

CURRENC
Y

DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL

Implementation

The USUAL type is implemented in the structure XSharp.__Usual

299 XSharp

© 2015- 2024 XSharp BV

1.4.15 Workarea Events

In build 2.08 we have added the option to register an event handler that receives workarea
events. This can be used to monitor access to workareas and for example write this
information to a log file.

There are 2 ways to install this event handler:
1. You create a function/ method that implements the DbNotifyEventHandler delegate.

PUBLIC DELEGATE XSharp.DbNotifyEventHandler(osender AS XSharp.RDD.IRDD, e AS
XSharp.DBNotifyEventArgs) AS VOID

2. You create a class that implements the IDbnotify interface, which only has a method
named Notify() with the same prototype as the delegate from 1)

Important

· Your event handler should do as little as possible if you don't want to slow down the
whole RDD system.

· Do not manipulate any workareas from within your event handler to avoid recursion.

· Unregister your event handler as soon as possible.

· If you use an object for event handling you are responsible yourself to manage the life
time of this object. And be sure to unregister the object before it runs out of scope

· In some cases (operations that work on more than one workarea, such as
DbCommitAll() , DbUnLockAll()) the event handler will not always receive a sender
parameter. Be prepared for that !

· The events are sent from the CoreDb level. So if a method inside an RDD calls another
method inside that RDD (for example CreateOrder() might call GoTop() after creating
the order) then you will not see that second event, only the events related to the method
that was called from the CoreDb() level, so the events related to the Ordercreation in
this example.

Examples

If you use approach 1 then you need to add the event handler to CoreDb.Notify like in the
following example:

FUNCTION NotifyRDDOperations(oRDD AS XSharp.RDD.IRdd, oEvent AS
XSharp.DbNotifyEventArgs) AS VOID
 IF oRDD != NULL
 ? oRDD:Alias, oEvent:Type:ToString(), oEvent:Data
 ELSE
 ? "(no area)",oEvent:Type:ToString(), oEvent:Data
 ENDIF
 RETURN

FUNCTION Start() AS VOID
 CoreDb.Notify += NotifyRDDOperations

300X# Documentation

© 2015- 2024 XSharp BV

 ? DbCreate("Test", {{"FLD1" , "C" , 10 , 0} }) // This will
trigger a notification

CoreDb.Notify -= NotifyRDDOperations // Do not
forget to unregister!
 WAIT
RETURN

The parameters to the function are:
oRDD The RDD for which the event is triggered. This may be NULL for events that

involve multiple workareas, such as DbUnlockAll()
oEvent An event handler object that has 2 properties

Type A Value of the DbNotificationType enum
Data An object that has additional information about the event, such as the
fieldname for a PieldPut and the recordnumber for a Append or Delete event..

For the second approach you create a class and register the class with the
DbRegisterClient() function and unregister the class with the DbUnRegisterClient function
The method in the class will get the same arguments as the event handler function:

CLASS Notifier IMPLEMENTS IDbnotify
 METHOD Notify(oRDD AS XSharp.RDD.IRdd, oEvent AS
XSharp.DbNotifyEventArgs) AS VOID
 IF oRDD != NULL
 ? oRDD:Alias, oEvent:Type:ToString(), oEvent:Data
 ELSE
 ? "(no area)",oEvent:Type:ToString(), oEvent:Data
 ENDIF
 RETURN
END CLASS

FUNCTION Start() AS VOID
 LOCAL oNot AS Notifier
 oNot := Notifier{}
 DbRegisterClient(oNot)
 ? DbCreate("Test", {{"FLD1" , "C" , 10 , 0} }) // This will
trigger a notification
 DbUnRegisterClient(oNot) // Do not
forget to unregister!

 WAIT
RETURN

See Also

DbNotificationType
DbRegisterClient()
DbUnRegisterClient

301 XSharp

© 2015- 2024 XSharp BV

DbNotifyEventHandler
IDbnotify

302X# Documentation

© 2015- 2024 XSharp BV

1.4.16 Dialect (in)compatibilities

The following pages list incompatibilties between X# and the various dialects. Please note
that this list is not complete yet.

1.4.16.1 VO

Compiler

Operation Difference

Adding methods to existing classes In X# (actually in .Net) you cannot add
methods to classes in other assemblies. As
work around you can:
· write an extension method

· create a subclass

Runtime functions

Function Difference

1.4.16.2 Vulcan.NET

Compiler

Operation Difference

Adding methods to existing classes

Runtime functions

Function Difference

1.4.16.3 Xbase++

Compiler

Operation Difference

[] operator on usuals The [] operator on usuals does not work
with numeric usuals in X#.

Runtime functions

Function Difference

FErase() returns a LOGIC in X# and a Number
Xbase++

303 XSharp

© 2015- 2024 XSharp BV

1.4.16.4 FoxPro

Compiler

Operation Difference

Bracketed strings The preprocessor in FoxPro translates
#defines inside bracketed strings. X# does
not touch the contents of bracketed strings
in the preprocessor

Runtime functions

Function Difference

1.4.16.5 Harbour

Compiler

Operation Difference

Runtime functions

Function Difference

304X# Documentation

© 2015- 2024 XSharp BV

1.4.17 Subsystems of the X# Runtime

Description of Various Subsystems

Subsystem Remarks

Low Level
File IO

These functions are implemented in XSharp.Core.
There is an important difference between the implementation in
XSharp.Core when compared to VO.
In VO the file handles returned from functions such as FCreate() and
FOpen() are OS file handles. That means that you can also pass them
directly to Win32 API Functions. In the X# Runtime that is no longer
possible.
We use .Net FileStream objects for the File IO. The File handler returned
(which is of the IntPtr type) is a unique key into a table where we are
storing these File IO objects. The keys are generated from random
numbering. You can't and shouldn't rely on the values of these keys.

Static
Memory IO

The static memory subsystem allocates memory using the
Marshal.AllocHGlobal functionality. Each memory block has 2 guard
blocks that contain information about the group number, size and a magic
number. We have also implemented memory groups.
Unlike in VO you cannot release all blocks in a group by simply closing the
Memory Group.
If you want to enumerate allocated blocks you should first call
MemTrace(TRUE) to enable block tracing.
Then create a function with the following prototype

FUNCTION MyMemWalker(pMem AS IntPtr, nSize AS DWORD) AS
LOGIC
Then call MemWalk and pass your function as parameter. The runtime
will call your function and will pass in all memory blocks that have been
allocated and not released yet.

Late Binding
Support

The Runtime fully supports late binding. The late binding support still
needs some optimizations.
We recommend to only use this when necessary. New code should
either use the DYNAMIC type or try to use early bound code as much as
possible.

305 XSharp

© 2015- 2024 XSharp BV

1.4.18 Combining X# Runtime and Vulcan Runtime

Technically it is possible to include both the X# and the Vulcan runtime libraries in your
application. When you do so then the compiler will assume that you want to use the X#
implementations for the XBase types such as USUAL and DATE. If the compiler does not
find the XSharp.Core and XSharp.VO assemblies then it will assume you want to map
these types to the Vulcan runtime types.
So you can mix things. However if you want to call code in the Vulcan runtime DLLs you
may have to use the fully qualified classnames or typenames.
And remember: there is no automatic translation between the X# types and Vulcan types.
If you want to convert an X# variable to a Vulcan variable you may have to cast it to an
intermediate type first.

Call Vulcans implementation of Left()

LOCAL cValue as STRING
cValue := VulcanRTFuncs.Functions.Left("abcdefg",2)

If you want to convert an X# usual to a Vulcan usual, cast to OBJECT

LOCAL xUsual as USUAL
LOCAL vUsual as Vulcan.__Usual
xUsual := 10
vUsual := (OBJECT) xUsual

For dates you can do something similar. In that case you should cast the X# date to a
DateTime.

LOCAL xDate as DATE
LOCAL vDate as Vulcan.__VODate
xDate := ToDay() // will call the X# implementation
of ToDay()
vDate := (System.DateTime) xDate

306X# Documentation

© 2015- 2024 XSharp BV

1.5 X# Scripting

Below is the text from the presentation from the session that Nikos did in Cologne during
the XBase.Future 2017 conference.
The examples from this session are stored during the installation of X# in the folder c:
\Users\Public\Documents\XSharp\Scripting

Why endorse scripting?

· Dynamic behavior at runtime

o Extensibility and flexibility
o User-defined behavior

· Platform independence
o System operations defined in a script

· Behavior as data
o Stored in files, database, cloud
o Updated at runtime

· Rapid prototyping

Scripting is...

· Expression evaluation
o Built-in interpreter
o Self-contained functionality
o Simple expressions or full statements

· Source file(s) without a project
o Single file (multiple sources may be loaded by a single script)
o No need for a full IDE or SDK
o Dynamic compilation without an IDE
o Definition of complex structures, classes

X# as a scripting language

· Roslyn script engine
o C# scripting

· Standalone expressions
o No START function
o Global statements, expressions
o Similar to the macro compiler (but not the same!)
o Host object maintains state

X# as a scripting language

· Complex declarations allowed
o Types, functions can be declared
o No namespaces!

· External references

307 XSharp

© 2015- 2024 XSharp BV

o Loading assemblies
o No implicit access to host assembly
o No isolation (e.g. separate AppDomain)

The X-Sharp interpreter (xsi.exe)

· Read-Eval-Print Loop (REPL)

· Console application

· Return values are printed to the console
o With pretty formatting!

· Maintain context

· Declare LOCAL variables

The X-Sharp interpreter (xsi.exe)

· Can load assemblies, script files
o .PRGX extension
o #R directive
o #LOAD directive

· Can runs scripts from command line
o Xsi.exe <script.prgx>

· Passes command-line arguments to scripts
o Xsi.exe <script.prgx> <arg> ...

Alternative ways to run scripts

· Setting xsi.exe as default app for .prgx
o Also creates file association, but without args
o Edit file association in registry

· Manually setting file association
o assoc, ftype

· Invoking without the .prgx extension
o PATHEXT

· Run without console?
o Not possible with xsi.exe since it is a console application

Scripting internals: the submission

· Every script is compiled into a “submission”
o Roslyn terminology

· Every line given to the xsi prompt creates a new submission
o Inherits previous submission
o Previously declared variables remain visible

· Cannot be inspected directly
o “SELF” and “SUPER” are not accessible

Scripting internals: the global object

· Statements execute in the context of the global object

308X# Documentation

© 2015- 2024 XSharp BV

· Generated by xsi.exe
o InteractiveScriptGlobals class

· Provides access to command-line arguments

· Print function with pretty-formatting options

Scripting internals: script declarations

· Are LOCALs declared in a script really local?
o Not when they are declared outside of a method
o They become fields of the submission class

· What about FUNCTIONs and PROCEDUREs?
o They become methods of the submission class

· Declared types? (CLASSes, STRUCTUREs, ENUMs)
o They become nested types in the submission class
o Not possible to have extension methods!

Application scripting: the first steps

· Add scripting capabilities to your application!

· Reference the script hosting and code analysis assemblies
o XSharp.CodeAnalysis.dll
o XSharp.Scripting.dll

· Important namespaces
o LanguageService.CodeAnalysis.Scripting
o LanguageService.CodeAnalysis.Xsharp.Scripting

· Run a script
o XSharpScript.RunAsync("? 'HELLO'")
o CompilationErrorException is thrown if the source has errors

Problem: how to pass arguments to a script?

· Passing arguments: the globals object

· The script can access public members of the globals object
o The type of the globals object can be custom

· An instance of the globals object can be passed to RunAsync()
o Public fields of the globals object can be used to pass arguments to the script
o The script will access them as variables

Problem: how to provide an API to the script?

Script API: the globals object

· Public members of the globals object are accessible by the script
o Remember: the script is compiled and executed in a different assembly in-memory!

· Not an elegant method to give access to types
o But excellent for a function-based API
o Self-contained, not prone to errors

· The script does not have direct access to all application types

309 XSharp

© 2015- 2024 XSharp BV

· Not a security measure!
o The script is run in the same AppDomain (in a dynamic assembly)

Script API: using a common assembly

· Scripts can reference assemblies
o Through the #R directive
o Through the options passed to the RunAsync() call

· Move functions and types that should be accessible by the script to a separate
assembly
o The assembly can then be referenced by the script

· Can be used in conjunction with the globals object

Problem: how to get results back from a script?

Script result: return value

· Scripts can return a value with a RETURN statement
o ...or from a standalone expression!
o EvalAsync() returns that value
o RunAsync() returns a ScriptState object, from which the return value can also be

fetched

Script result: examine script state

· Variables declared by the script can be examined
o The ScriptState object returned by RunAsync() includes methods to examine the

variables
· ScriptState.GetVariable(string name)

Advanced topics: handling errors

· Compilation errors
o CompilationErrorException thrown
o Roslyn API provides access to compilation messages
o Create script object with XsharpScript.Create()
o Compile with script:Compile()

· Returns list of diagnostic messages

· Runtime errors
o Exception is thrown

· AggregateException because script is ran as a Task

· e:InnerException property contains the real exception

Advanced topics: strong-typed return value

· By default a script returns OBJECT

· Custom return type can be specified
o Create<T>()

310X# Documentation

© 2015- 2024 XSharp BV

o RunAsync<T>()
o EvaluateAsync<T>()

Advanced topics: performance tuning

· Pre-compile scripts
o Script:Compile()
o Compiled scripts can be ran multiple times
o Similar to macros

· Delegate can be created with script:CreateDelegate()

· Native image with ngen.exe
o Speed-up initial compilation
o 64-bit version of ngen must be used for 64-bit CLR!!!
o Useful for command-line scripts (xsi.exe)

Advanced topics: functional scripts

· A script cannot be used exactly like a function
o Does not accept arguments

· Instead, it needs a global object instance
o Is run via a script hosting object

· Additional overhead

· But scripts can evaluate to functions!
o Lamda functions or delegates as return type

Advanced topics: accessing application

· Provide a reference to current assembly inmemory
o Assembly.GetExecutingAssembly()
o Does not work with CoreCLR

· Entities declared in current assembly can be used
o Functions & procedures
o Types (classes, structures, etc.)
o Namespaces

Advanced topics: support for dynamics

· Need to reference the proper assembly
o Microsoft.Csharp.dll

311 XSharp

© 2015- 2024 XSharp BV

1.6 Using X# in Visual Studio

XSharp comes with 2 options for development environments:
1. Chris Pyrgas has adjusted his existing IDE to support XSharp (it is now called XIDE,

and compiled in XSharp !)
2. We supply Visual Studio integration for Visual Studio 2017 and later. If you do not have

Visual Studio, you can download a (free!) community edition from Visual Studio from
the web:

https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
The Visual Studio integration is also work in progress. What is supported in this version is:
· Edit

· Compile

· Debug

· Source control

· Windows Forms Editor

· WPF Editor

· Resource editor

· Settings editor

Known issues:

· Some of the intellisense features are not supported yet.

· There are no editors for VO Binary entities yet

· No support yet for .Net Core, .Net Standard, Portable class libraries and shared projects

https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx

312X# Documentation

© 2015- 2024 XSharp BV

1.6.1 Project System

The X# Visual Studio project system allows you to create X# projects with Visual Studio. It
has support for a special kind of project file format for X# (the .xsproj files) and it also
recognizes various X# specific file types such as PRG files and several "binary" files for
VO compatible Form, Server, Menu and FieldSpec definitions.

Part of this project system is the MsBuild support which uses the .xsproj files and creates
command lines for the X# compiler based on properties and values in the .xsproj files.
The following chapters will briefly discuss solutions and projects and will describe the
various project property pages for X# inside Visual Studio.

1.6.1.1 Solution

Visual Studio organizes your source code in Solutions and one or more projects.

A solution is a container for one or more related projects, along with build information,
Visual Studio window settings, and any miscellaneous files that aren't associated with a
particular project.
A solution is described by a text file (extension .sln) with its own unique format; it's not
intended to be edited by hand.
Visual Studio uses two file types (.sln and .suo) to store settings for solutions:

Extension Name Description

.sln Visual Studio Solution
Organizes projects, project
items, and solution items in
the solution.

.suo Solution User Options
Stores user-level settings
and customizations, such
as breakpoints.

Different projects in Visual Studio may target different development languages.

It is very well possible to use C# and X# projects next to each other in the same solutions.
And you can set dependency relations between projects for different development
languages without problems.
Visual Studio will automatically determine the order in which projects must be build.

If you want you can control this order by opening the Solution Properties dialog (right click
on the Solution node in the Solution Explorer and choose "Properties").
The image below shows the Solution Properties dialog for the X# runtime solution.
On this dialog you can also set which project needs to be the "startup project" when you
start debugging inside Visual Studio.
As you can see you can also start multiple projects at the same time.
The "Action" combo offers you the choice to Start a program or to start Debugging a
program when you start the debugger inside Visual Studio.

313 XSharp

© 2015- 2024 XSharp BV

On the "Project Dependencies" tab page you can set the dependencies between projects

On this dialog you can see that 2 projects are already marked with a check box: these are
projects that are added in the references list of the XSharp.VO project.
Other projects have a gray checkbox, which means that they depend on XSharp.VO, so
you cannot make XSharp.VO dependent on them (that would introduce a circular relation).
Other projects ave w hite checkbox. You could add these to the "Depends on:" list for

314X# Documentation

© 2015- 2024 XSharp BV

XSharp.VO if you want, which would mean that Visual Studio would always build them
before XSharp.VO is built.

From this dialog you can also open the "Configuration Manager" with which you can
maintain the various Configurations (Normally Debug and Release, but you can to that it
you want and the various "Platforms". Normally there is only one Platform called
"AnyCpu". But if your project contains C++ code you may have a x86 and a x64 platform
as well. This configuration manager is also available in the Visual Studio Build menu.
See the next chapter for more information about build configurations.

1.6.1.2 Build Configurations

You need build configurations when you need to build your projects with different settings.
For example, Debug and Release are configurations and different compiler options are
used accordingly when building them. One configuration is active and is indicated in the
command bar at the top of the Visual Studio IDE.

The configuration and the platform control where built output files are stored. Normally,
when Visual Studio builds your project, the output is placed in a project subfolder named
with the active configuration (for example, bin/Debug), but you can change that.
You can create your own build configurations at the solution and project level. The solution
configuration determines which projects are included in the build when that configuration
is active. Only the projects that are specified in the active solution configuration will be
built. If multiple target platforms are selected in Configuration Manager, all projects that
apply to that platform are built. The project configuration determines what build settings
and compiler options are used when you build the project.
To create, select, modify, or delete a configuration, you can use the Configuration
Manager. To open it, on the menu bar, choose Build > Configuration Manager, or just type
Configuration in the search box. You can also use the Solution Configurations list on the
Standard toolbar to select a configuration or open the Configuration Manager.

315 XSharp

© 2015- 2024 XSharp BV

By default, Debug and Release configurations are included in projects that are created by
using Visual Studio templates. A Debug configuration supports the debugging of an app,
and a Release configuration builds a version of the app that can be deployed. For more
information, see How to: Set debug and release configurations. You can also create
custom solution configurations and project configurations. For more information, see How
to: Create and edit configurations.

Solution Configurations

A solution configuration specifies how projects in the solution are to be built and deployed.
To modify a solution configuration or define a new one, in the Configuration Manager,
under Active solution configuration, choose Edit or New.
Each entry in the Project contexts box in a solution configuration represents a project in
the solution. For every combination of Active solution configuration and Active solution
platform, you can set how each project is used. (For more information about solution
platforms, see Understand build platforms.)
When you define a new solution configuration and select the Create new project
configurations check box, Visual Studio automatically assigns the new configuration to all
of the projects. Likewise, when you define a new solution platform and select the Create
new project platforms check box, Visual Studio automatically assigns the new platform to
all of the projects. Also, if you add a project that targets a new platform, Visual Studio adds
that platform to the list of solution platforms and assigns it to all of the projects. You can
still modify the settings for each project.
The active solution configuration also provides context to the IDE. For example, if you're
working on a project and the configuration specifies that it will be built for a mobile device,
the Toolbox displays only items that can be used in a mobile device project.

https://docs.microsoft.com/en-us/visualstudio/debugger/how-to-set-debug-and-release-configurations?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/ide/how-to-create-and-edit-configurations?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/ide/how-to-create-and-edit-configurations?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/ide/understanding-build-platforms?view=vs-2019

316X# Documentation

© 2015- 2024 XSharp BV

Project Configurations

The configuration and platform that a project targets are used together to specify the build
settings and compiler options to use when it's built. A project can have different settings
for each combination of configuration and platform. To modify the properties of a project,
open the shortcut menu for the project in Solution Explorer, and then choose Properties.
At the top of the Build tab of the project designer, choose an active configuration to edit its
build settings.
See the project properties dialogs for more information about which project properties are
configuration dependent and which project properties are configuration independent.

1.6.1.3 Projects

Project properties in Visual Studio are stored in the project files. The file names for X#
projects end with the .xsproj extension.
Project files are a special kind of XML files.
These XML files contains various groups of information.
Properties at the project level are stored in <PropertyGroup> nodes.
Some of these properties are "Global" and some of these properties have a condition
through which they are only active when a certain "configuration" is selected, such as
"Debug" or "Release".
Properties as the dialect and the output filename are global.
Properties such as the optimization, PDB generation and output folders are configuration
specific.

The project files also contain the list of references to external assemblies, other projects
and COM components and the list of files.
The build system inside Visual Studio uses the contents of the project files and construct
a commandline that is passed to the X# compiler to produce the output for the project.
We have developed a set of dialogs that allows you to set the various properties for a
project. The following chapters will show you these dialogs and will discuss the various
options that you can set on each page.

Tip

Since the project file is a XML file you can also directly edit the project file if you want and
for example add <Import> lines to import common properties from "include" files.
We use that internally for our assemblies, so common properties are declared at one
location.
If you do that then you must be careful when using the project property dialogs inside
Visual Studio.
These dialogs will not understand that some values were read from an imported file and
will change the values in the xsproj file, even when they were imported from an external
file.
Also the order of the various property groups is important:
The PropertyGroups with the Pre and PostBuild events are expected to be at the end of
the XML file.

The lists of external references and lists of items inside a project are stored in
<ItemGroup> nodes.

317 XSharp

© 2015- 2024 XSharp BV

1.6.1.3.1 Project Properties

There are several ways that you can set project properties in Visual Studio:
1. There is a <Myprojectname> Properties menu option in the Project Menu
2. There is a context menu option "Properties" on the project icons in the Solution

Explorer
3. By choosing the context menu option "Open" on the Properties folder below the Project

Icon in the Solution Explorer.

All these options do the same and open the project properties dialog. This dialog has
several pages.
· Application

· Language

· Dialect

· Build

· Build Events

· Debug

· Resources

· Settings

A description of each of these pages will follow in the next chapters.

1.6.1.3.1.1 Application

The Application page contains the most important settings for your Visual Studio project

Item Description Command item

Default Namespace Specifies the default
namespace for added
items, such as classes, that

This is not a commandline
option for the compiler but
used by Visual Studio.

318X# Documentation

© 2015- 2024 XSharp BV

are added via the Add New
Item Dialog Box.

Dialect Select the compiler dialect
to use when compiling this
project. Changing the dialect
may also change the 'Allow
NamedArguments' setting
on the Language page."

-dialect

Output Type The type of application to
build.

Startup Object The name of the class that
contains the Start method
that you want called when
you launch your application.
The default for X#
applications is the Start
function inside the compiler
generated Functions class.
You can override this setting
by specifying another
classname here.

-main:

Target Framework Moniker The version of the Common
Language Runtime to use
for output assembly.

This is not a commandline
option for the compiler but
controls the location from
which reference assemblies
are loaded.

Assembly Name The name of the output file
that will hold assembly
metadata.

-out

Output File The name of the protject's
primary output file.

This is derived from the
assembly name

Project File The name of the file
containing build,
configuration, and other
information about the
project.

This is the name from the
current project

Project Folder The absolute location of the
project

This is the location from the
current project

Application Icon Sets the .ico file to use as
your application icon.
Please note that if your
application contains native
resources then this value
will be ignored.

-win32icon

Prefer native resource over
managed resource

When your application
includes a native resource,
use this native resource and

-usenativeversion

319 XSharp

© 2015- 2024 XSharp BV

do not generate a resource
based on the global
assembly properties such
as AssemblyTitle,
AssemblyVersion etc.

Suppress default Win32
manifest

Suppress default Win32
manifest. You will have to
supply your own Win32
manifest if you suppress the
default one.

-nowin32manifest

Vulcan Compatible
Managed Resources

Use Vulcan Compatible
Managed Resources (when
'True' then resources files
are included in the
assembly without
namespace prefix. When
'False' then the resource
files are prefixed with the
namespace of the app, just
like in other .Net languages,
such as C#)

-resource

.

1.6.1.3.1.2 Language

The Language page contains some settings that control X# Language specific options.
These settings apply to all dialects.

Item Description Command item

Allow Late Binding Allow property access and
method calls on
expressions of type
OBJECT and USUAL.

/lb

320X# Documentation

© 2015- 2024 XSharp BV

Allow Named Arguments Allow named arguments
(Default = TRUE for the
Core dialect and FALSE for
the other dialects).
Changing the dialect may
also automatically change
this setting.

/namedargs

Allow Unsafe Code Allow Unsafe code inside
this assembly.

/unsafe

Case Sensitive Enable/Disable case
sensitivity.

/cs

Initialize Local variables Automatically initialize local
variables without
initialization expression.
Please note that for locals of
type string the initial value
will depend on the 'Initialize
strings' setting from the
Dialect page.

/initlocals

Overflow Exceptions Check for Overflow and
Underflow for numeric
expressions, like the
CHECKED keyword.

/ovf

Use Zero Based Arrays Use Zero Based Arrays. /az

Enforce SELF When checked then all
references to methods and
fields/properties inside a
class should be prefixed
with SELF (or SUPER)

/enforceself

Allow DOT for instance
members

When checked then you
can also use the DOT (.)
operator to access instance
fields, properties and
methods. Otherwise the
COLON (:) operator is
needed

/allowdot

Enforce
VIRTUAL/OVERRIDE

When checked then you
MUST prefix methods with
VIRTUAL and/or
OVERRIDE when overriding
methods in a parent class
or when defining a new
method that can be
overridden

/enforceoverride

Allow Old Style
assignments

When checked then allow
the use of the single equals
operator (=) for

/allowoldstyleassignments

321 XSharp

© 2015- 2024 XSharp BV

assignments. Otherwise the
Colon Equals (:=) operator
is mandatory

Modern Syntax This options disables some
old style features such as
certain comment
characters

/modernsyntax

Enable Memvar support Enable support for memory
variables (MEMVAR,
PUBLIC, PRIVATE &
PARAMETERS).
Please note that this is NOT
supported for the Core and
Vulcan dialects

/memvar

Enable Undeclared
variables support

Enable support for
undeclared variables (these
are resolved to MEMVARs).
Please note that this
requires /memvar to be
enabled as well.

/undeclared

Enable Implicit Namespace
lookup

Enable the implicit lookup of
classes defined in
assemblies with an Implicit
Namespace attribute.

/ins

Prefix classes with default
Namespace

Prefix all classes that do not
have a namespace prefix
and are not in a begin
namespace ... end
namespace block with the
namespace of the
assembly.

/ns:<Namespace>

Additional Include paths Additional include paths for
the preprocessor (it also
looks through the folders set
with the include environment
variable).

/i

Alternate standard header
file

Name of an alternative
standard header file
(alternative for
XSharpDefs.xh).

/stddefs

Suppress standard header
file

Suppress inclusion of the
standard header file
(XSharpDefs.xh) in every
file.

/nostddef

322X# Documentation

© 2015- 2024 XSharp BV

1.6.1.3.1.3 Dialect

The Dialect page contains some additional language settings. Some of these settings
apply to all dialects. Others only apply to the given dialect and will only be enabled when
the appropriate dialect is chosen.

Item Description Command item

All instance methods virtual Add the virtual modifier to all
methods by default (which
is the normal Visual Objects
behavior).

-vo3

Allow Init() and Axit() as
aliases for
Constructor/Destructor

Allow Init() and Axit() as
aliases for
Constructor/Destructor.

-vo1

Compatible IIF Behavior Compatible IIF Behavior,
allow different types of
return values in TRUE and
FALSE expression.

-vo10

Compatible preprocessor Makes the preprocessor
case insensitive and also
controls how #ifdef inspects
#defines.

-vo8

Handle problems with
incorrect or missing return
statements

Allow missing return
statements or allow return
statements with incorrect
return values.

-vo9

Implicit numeric
conversions

Implicit numeric integer
conversions

-vo4

Initialize strings Initialize strings to empty
string (String.Empty).

-vo2

323 XSharp

© 2015- 2024 XSharp BV

Please note that in .NET a
NULL_STRING is not the
same as a string with length
0. When enabled this will
initialize local string
variables regardless of the
setting of 'initialize locals'
setting from the Language
page.

Clipper Compatible intiger
divisions

Compatible integer
divisions, integer divisions
may return a float.

-vo12

Compatible numeric
conversions

Compatible arithmetic
conversions.

-vo11

Compatible string
comparisons

Compatible string
comparisons, respects
SetExact and collation table.

-vo13

Generate Clipper
constructors

Automatically create clipper
calling convention
constructors for classes
without constructor where
the parent class has a
Clipper Calling convention
constructor.

-vo16

Implicit casts and
conversions

Compatible implicit casts
and Conversions.

-vo7

Implicit Clipper calling
convention

Methods without parameters
and calling convention are
compiled as Clipper calling
convention.
Please note that without this
switch all methods without
parameters will be seen as
STRICT. Methods with
untyped parameters are
always seen as CLIPPER
calling convention.

-vo5

Implicit pointer conversions Implicit conversions
between typed function PTR
and PTR.

-vo6

Treat missing types as
USUAL

Missing type clauses for
locals, instance variables
and parameters are treated
as USUAL (VO and Vulcan
dialect). The default = TRUE
for the VO dialect and
FALSE for the other
dialects. We strongly

-vo15

324X# Documentation

© 2015- 2024 XSharp BV

recommend to set this to
FALSE because this will
help you to find problems in
your code and non optimal
code. If you have to use the
USUAL type we recommend
to explicitly declare variables
and parameters as USUAL.

Use FLOAT literals Store floating point literals
as FLOAT and not as
System.Double (REAL8).

-vo14

Compatible BEGIN
SEQUENCE .. END

Generate code to fully
implement the VO
compatible BEGIN
SEQUENCE .. END
SEQUENCE. The compiler
generates calls to the
runtime functions
_SequenceError and
_SequenceRecover that you
may override in your own
code.

-vo17

Inherit from Custom class All classes are assumed to
inherit from the Custom
class. This also affects the
way in which properties are
processed by the compiler.

-fox1

Compatible Array Handling FoxPro compatible array
handling (Allows
parenthesized arrays and
assigning a single value to
an array to fill all elements).
WARNING Allowing
parenthesized arrays may
slow down the execution of
your program !(/fox2)

-fox2

Inherit from Abstract class All classes without parent
class inherit from the XPP
Abstract class.

-xpp1

1.6.1.3.1.4 Build

The Build properties page contains Configuration Specific properties. So you can have
different properties here for a Debug and a Release configuration. Please read the Build
Configuration topic for more information about build configurations

325 XSharp

© 2015- 2024 XSharp BV

Item Description Command item

Platform Target Select the platform target
when compiling this project.
This should be AnyCPU,
X86, x64,Arm or Itanium.

-platform

Prefer 32 Bit Prefer 32 bit when AnyCpu
platform is selected.

-platform

Intermediate Output Path Intermediate Output Path
(macros are allowed).

used by Visual
Studio/MsBuild

Output Path Output Path (macros are
allowed).

used by Visual
Studio/MsBuild

Code Signing KeyFile Choose a code signing key
file.

-keyfile

Delayed sign only Delayed signing. -delaysign

326X# Documentation

© 2015- 2024 XSharp BV

Sign the output assembly Sign the assembly -keyfile

Extra Command Line
Options

User-Defined Command
Line options.

you can specify additional
commandline options here

Optimize Should compiler optimize
output?

-optimize

Register for COM interop Register the output
assembly for COM Interop
(requires administrator
rights

This will run a tool after the
build process to register the
assembly for COM interop.

Use Shared Compiler Should the shared compiler
be used to compile the
project? (Faster, but may
hide some compiler errors)

-shared

Defines for the
preprocessor

Defines for the
preprocessor.

-define

Generate preprocessor
output

Save the output from the
preprocessor to .ppo files.

-ppo

Suppress Specific
Warnings

Specify a list of warnings to
suppress.

-nowarn

Warning Level Set the warning level to a
value between 0 and 4.

-warn

Warnings As Errors Treat warnings as errors. -warnaserror

Generate XML doc
comments file

Generate XML doc
comments file.

-doc

XML doc comments file
name

XML doc comments file
name.

-doc

1.6.1.3.1.5 Build Events

On the Build Events property page you can specify command lines that need to be run
before or after the build process.
You can use this for example to run a tool that generates source code or to copy the
output DLLs to another folder.

327 XSharp

© 2015- 2024 XSharp BV

1.6.1.3.1.6 Debug

Item Description Command item

Command The debug command to
execute.

Command Arguments The command line
arguments to pass to the
application.

328X# Documentation

© 2015- 2024 XSharp BV

Generate Debug Information Generate Debug Information
(none, full, pdbonly).

Working Directory The application's working
directory. By default, the
directory containing the
project file.

Enable unmanaged
debugging

Enable unmanaged
debugging.

1.6.1.3.1.7 Resources

The Resources Property page allows you to open up a resources editor for project wide
resources. These resources can be files, strings, images etc.
The Resource editor is the normal Visual Studio resource editor.

This resource editor will generate a Resources.Resx file in the Properties folder of the
project.
The "Access Modifier" combobox at the top of the screen allows you to control the code
generation for these resources:
· With (Custom) then no code will be generated

· With "Internal" then X# code will be generated with internal visibility

· With "Public" then X# code will be generated with public visibility

The value of the Access Modifier also sets the "Custom tool" in the properties dialog for
the Resources.Resx file.

329 XSharp

© 2015- 2024 XSharp BV

1.6.1.3.1.8 Settings

Application settings enable you to store application information dynamically.

Settings allow you to store information on the client computer that should not be included
in the application code (for example a connection string), user preferences, and other
information you need at run time.
Each application setting must have a unique name. The name can be any combination of
letters, numbers, or an underscore that does not start with a number, and it cannot have
spaces. The name is changed through the Name property.

Application settings can be stored as any data type that is serialized to XML or has a
TypeConverter that implements ToString/FromString. The most common types are String,
Integer, and Boolean, but you can also store values as Color, Object, or as a connection
string.

Application settings also hold a value. The value is set with the Value property and must
match the data type of the setting.

In addition, application settings can be bound to a property of a form or control at design
time.

There are two types of application settings, based on scope:
· Application-scoped settings can be used for information such as a URL for a web

service or a database connection string. These values are associated with the
application. Therefore, users cannot change them at run time.

· User-scoped settings can be used for information such as persisting the last position of
a form or a font preference. Users can change these values at run time.

You can change the type of a setting by using the Scope property.

The project system stores application settings in two XML files:

· an app.config file, which is created at design time when you create the first application
setting

· a user.config file, which is created at run time when the user who runs the application
changes the value of any user setting.

Notice that changes in user settings are not written to disk unless the application
specifically calls a method to do this.

The Settings Property page allows you to open up a settings editor for project settings.
The definition for these settings will be stored in the Properties folder of your project.

330X# Documentation

© 2015- 2024 XSharp BV

The values of these settings will be stored in a app.config file in the root folder of your
project.

Just like in the resource editor you can also choose the visibility of the generated code (the
IDE generates a file called Settings.Designer.prg). This also changes the "Custom Tool"
property of the Settings file.

When you compile your project then MsBuild will generate a copy of app.config and will
rename it to <yourapp>.exe.config in the output folder of your project.

1.6.1.3.2 References

XSharp projects inside Visual studio work with source code items and may contain
references to code defined in external libraries.
Inside Visual Studio you can set these references through the References dialog.
In short there are 3 kinds of references:
· External .Net assemblies

· External COM components

· Other projects inside the same Visual Studio solution.

References to unmanaged code

You cannot add references to unmanaged code using the Project References.
To call unmanaged code you will have to declare either functions or procedures with the
_DLL prefix, or you declare static methods or functions and add a special [DllImport()]
attribute to them.

1.6.1.3.2.1 .Net

The page with assembly references shows the list of assemblies that were found on the
developers machine.
You can select a reference from this list and this reference will be used without extra
work.

331 XSharp

© 2015- 2024 XSharp BV

1.6.1.3.2.2 COM

The COM page in the Add Reference dialog lists the COM components that were found in
the registry on your machine.
You can select a component from this list.

However, these components cannot be consumed directly by the X# compiler. Therefore
Visual Studio calls a tool (tlbimp.exe) that reads the typelibrary from the COM component
and produces a managed wrapper around this COM object. This wrapper usually has a
name that starts with "interop". In the Email example this is the case for the Internet
Explorer component for which a Interop.SHDocVw.dll is generated.
If the COM component is an ActiveX then a second assembly will be generated that has
code that declares an object that inherits from System.Windows.Forms.AxHost, for the
ActiveX control. Visual Stdio calls the tool "aximp.exe" for this. The file names for these
wrappers usually start with "axinterop", such as "AxInterop.SHDocVw.dll"
Some COM components are used a lot and for these components a so called "Primary
Interop Assembly" is installed on your machines. For these components no "interop"
assemblies will be generated but the primary interop assemblies will be used when
compiling. For example for ADO there is a primary interop assembly in the GAC.

332X# Documentation

© 2015- 2024 XSharp BV

1.6.1.3.2.3 Project

A third type of dependency is between Visual Studio projects. When you add a
dependency of this type then Visual Studio (or actually MsBuild) will try to build that project
first before building the project that depends on it. Unlike in Visual Objects you do not have
to import a prototype library for the output generated by the project. Visual Studio (and our
editor integration) will directly consume the output from the other projects.

If the other project is also a X# Project then our source code editor support code will be
able to jump between the declaration of a type and the place where it is used, even if it is
in another project. When your X# project depends on project in another languages (such
as C#) then we will consume the output of that project like we do with "normal" external
.Net assemblies.

1.6.1.4 Project Items

Enter topic text here.

333 XSharp

© 2015- 2024 XSharp BV

1.6.1.4.1 Source code Items

1.6.1.4.2 Forms

1.6.1.4.3 Other Item types

1.6.1.4.4 Native Resources

1.6.1.4.5 Managed Resources

Enter topic text here.

1.6.1.4.6 Settings

334X# Documentation

© 2015- 2024 XSharp BV

1.6.2 Source Code Editor

1.6.2.1 Text Editor Options

The various settings for the Visual Studio editors can be controlled from the Tools/Options
menu.
The values for the settings are stored in the file XSharp\EditorSettings.json in your
roaming profile folder.
If you have more that one installation of Visual Studio then the settings will be shared
between these installations.
When you open that menu point you will see a window like this:

Tools Options dialog
On the left hand side here is a treeview from where you can select the category of the
option you are interested in.
This dialog contains a LOT of option.
To ease the navigation you can use the edit control on top to filter.
All X# options can be found by typing X# in this control:
You will then see the categories for X#:

335 XSharp

© 2015- 2024 XSharp BV

Tools Options filtered on X#
The Text Editor category (which was also visible on the first image) contain settings for all
languages that are supported by Visual Studio or by an extension installed inside Visual
Studio (such as our Visual Studio extension for X#).
There is also an entry under the Debugging category for settings used by the X#
expression evaluator inside the debugger
The last category contains some settings for the VO compatible form editor and for some
of the other X# specific editors.

336X# Documentation

© 2015- 2024 XSharp BV

1.6.2.1.1 General Options

This page contains generic editor settings for the X# language.
The page may change between different versions of Visual Studio

1.6.2.1.2 Scroll Bars

This page contains generic settings w.r.t. scroll bars.
The page may change between different versions of Visual Studio.

337 XSharp

© 2015- 2024 XSharp BV

1.6.2.1.3 Tabs

This page contains generic settings w.r.t. tabs..
The page may change between different versions of Visual Studio.

1.6.2.1.4 Formatting

This page X# specific settings w.r.t. source code formatting

1.6.2.1.5 Generator

This page X# specific settings w.r.t. source code generating inside VS.
This applies to the source code generated by the Windows Forms editor but also for the
source code generated when you choose "Goto Definition" for a member that is defined in
an external assembly.

338X# Documentation

© 2015- 2024 XSharp BV

1.6.2.1.6 Indentation

This page contains X# specific settings w.r.t. source indentation. This setting is used by
the editor when you choose the option to indent "Smart" on the "Tabs" page.

The listview on top shows the options that you can choose from. The edit control on the
bottom shows the result of the setting.

339 XSharp

© 2015- 2024 XSharp BV

1.6.2.1.7 Intellisense

This page contains specific X# settings w.r.t. code completion and the dropdowns in the
editor.

1.6.2.1.8 Options

This page contains X# specific switches that allow you to control features inside the X#
source code editor.

340X# Documentation

© 2015- 2024 XSharp BV

1.6.2.1.9 Settings Completion

This page contains X# specific settings related to code completion.

1.6.2.2 Keyword Coloring

Visual studio gives keywords and other parts of the syntax colors based on their purpose,
the following items are supported by X#:

Keywords
Identifiers
Comment s (single line, multi line etc)
Operators (+. -, := etc)
String s (also for Char constants)
Numbers (also for date and datetime literals)
Literals (NIL, Symbols, _AND, _OR, _NOT, _XOR)
Preprocessor keywords
* contents of Text .. EndText
Inactive/Hidden code inside #IFDEF
* Highlighted Word

* These are special XSharp colors. The other colors take the default Visual Studio editor
colors for that category

You can change the options for this by going to Tools > Options >
Note that your settings will reset if you switch your color scheme in Visual Studio.

1.6.2.3 Highlighting Errors

At this moments errors are not highlighted in the source code editor. This is planned for a
future version of X#.

341 XSharp

© 2015- 2024 XSharp BV

1.6.2.4 Regions

To unclutter your view of the code, choose the small gray box with the minus sign inside it
in the margin of the first line of the constructor or place the cursor anywhere in the
constructor code and press Ctrl+M, Ctrl+M.

The code block collapses to just the first line, followed by an ellipsis. To expand the code
block again, click the same gray box that now has a plus sign in it, or press Ctrl+M, Ctrl+M
again. This feature is called Outlining and is especially useful when you're collapsing long
methods or entire classes.

1.6.2.5 Blocks

Visual Studio makes it straightforward to select, cut, copy, and paste sections of your
code. Rectangular blocks of code can be highlighted and selected by using Alt + Drag on
the code block. The formatting within this block selection is retained when pasting the
block.

Block selections can also be edited to modify text on multiple lines at once. A zero-width
block selection can be used to place the caret in front of many lines at once, and allows
typing identical text on multiple lines:

342X# Documentation

© 2015- 2024 XSharp BV

1.6.2.6 Parameter Tips

Parameter Info gives you information about the number, names, and types of parameters
required by a method, attribute generic type parameter.
The parameter in bold indicates the next parameter that is required as you type the
function. For overloaded functions, you can use the Up and Down arrow keys to view
alternative parameter information for the function overloads.

When you annotate functions and parameters with XML Documentation comments, the
comments will display as Parameter Info. For more information, see Supply XML code
comments.
You can manually invoke Parameter Info by choosing Edit > IntelliSense > Parameter Info,
by pressing Ctrl+Shift+Space, or by choosing the Parameter Info button on the editor
toolbar.

1.6.2.7 Quick Info

Quick Info displays the complete declaration for any identifier in your code. When you
select a member from the List Members box, Quick Info also appears.

You can manually invoke Quick Info by choosing Edit > IntelliSense > Quick Info, by
pressing Ctrl+I, or by choosing the Quick Info button on the editor toolbar.

If a function is overloaded, IntelliSense may not display information for all forms of the
overload.

343 XSharp

© 2015- 2024 XSharp BV

1.6.2.8 Code Completion

IntelliSense is an invaluable resource when you're coding. It can show you information
about available members of a type, or parameter details for different overloads of a
method. You can also use IntelliSense to complete a word after you type enough
characters to disambiguate it.

While typing bits of code, you see IntelliSense show you Quick Info about the query
symbol.
To insert the rest of the word query by using IntelliSense's word completion functionality,
press Tab.

344X# Documentation

© 2015- 2024 XSharp BV

1.6.2.9 Editor combo boxes

1.6.2.10 Goto definition

The Visual Studio editor makes it easy to inspect the definition of a type, method, etc. One
way is to navigate to the file that contains the definition, for example by choosing Go to
Definition or pressing F12 anywhere the symbol is referenced.
To do this, right-click on any occurrence of string and choose Peek Definition from the
content menu. Or, press Alt+F12.

345 XSharp

© 2015- 2024 XSharp BV

1.6.2.11 Peek definition

The Visual Studio editor makes it easy to inspect the definition of a type, method, etc. One
way is to navigate to the file that contains the definition, for example by choosing Peek
Definition anywhere the symbol is referenced.
To do this, right-click on any occurrence of string and choose Peek Definition from the
content menu. Or, press Alt+F12.
A pop-up window appears with the definition of the String class. You can scroll within the
pop-up window, or even peek at the definition of another type from the peeked code.
Close the peeked definition window by choosing the small box with an "x" at the top right of
the pop-up window.

1.6.2.12 Inactive conditional regions

If you use conditional compilation with #ifdef .. #endif regions then the inactive regions will
be visible with different color in the editor:
Below is a piece of code from the CDX RDD. The CHECKVERSIONS define is not
defined, so there is an inactive region in the editor, which is shown in light gray.

1.6.2.13 Brace matching

When using Visual Studio, if your cursor is next to a brace it will highlight the
corresponding opening or closing brace on screen.

The color for the brace matching can be set in the Tools/Options dialog under the
Environment/Fonts and Colors node.

346X# Documentation

© 2015- 2024 XSharp BV

The X# specific colors all start with the text "X#"

1.6.2.14 Highlight Identifiers

When you select a specific word, it shows you all the places this word is used, this is
case sensitive.

The color for the highlights can be set in the Tools/Options dialog under the
Environment/Fonts and Colors node. The X# specific colors all start with the text "X#"

1.6.2.15 Highlight Keywords

The keyword matching feature will highlight keyword pairs in the editor as you can see in
the image below.

The TRY, CATCH and END TRY keywords are highlighted so you can see that they
belong to each other

If the cursor is located on a RETURN statement then the matching FUNCTION or
METHOD will be highlighted,

347 XSharp

© 2015- 2024 XSharp BV

The color for the highlights can be set in the Tools/Options dialog under the
Environment/Fonts and Colors node. The X# specific colors all start with the text "X#"

1.6.2.16 Indenting code

Visual studio automatically formats your code, so that you have a clearer overview of your
code, and which parts do what.
This only happens if you have set the Indenting option on the Tabs page to "Smart"
The rules for the formatting are defined on the Indentation page

1.6.2.17 Snippets

Visual Studio provides useful code snippets that you can use to quickly and easily
generate commonly used code blocks.
To do this, place your cursor just above the final closing brace in the file, a pop-up dialog
box appears with information about the code snippet.

348X# Documentation

© 2015- 2024 XSharp BV

You can fill in the yellow sections, press tab to switch between these sections.

You can look at the available code snippets for X# by choosing Edit > IntelliSense > Insert
Snippet or right-click > Snippet > Insert Snippet or pressing Ctrl+K, Ctrl+X.
The list includes snippets for creating a class, a constructor, a for loop, an if or switch
statement, and more.

1.6.2.18 .EditorConfig files

Since X# 2.8 we now support the use of .editorconfig files. These files can be used in your
solution or project to control the source code editor settings for several options, such as:
This allows you to synchronize the editor settings for a team and ignore individual
differences between team members.

· use tab or space

· tab with

· encoding for the source files

We are supporting the default tokens for .editorconfig as listed on https://editorconfig.org/:
· indent_style (tab or space)

· indent_size (number)

· tab_width (number)

· end_of_line (cr, lf or crlf)

· charset (latin1, utf-8, utf-8-bom, utf-16be or utf-16le)

· trim_trailing_whitespace (true or false)

· insert_final_newline (true or false)

Additionally we have added a few X# specific options

https://editorconfig.org/

349 XSharp

© 2015- 2024 XSharp BV

· keyword_case (upper, lower, title or none)

· identifier_case (true or false)

· indent_namespace (true or false)

· indent_type_members (true or false)

· indent_type_fields (true or false)

· indent_entity_content (true or false)

· indent_block_content (true or false)

· indent_case_label (true or false)

· indent_case_content (true or false)

· indent_continued_lines (true or false)

· indent_preprocessor (true or false)

The settings inside the .editorconfig overrule the settings on Tools/Options for the X#
editor.

350X# Documentation

© 2015- 2024 XSharp BV

1.6.3 Debugger

The debugger inside Visual Studio is language agnostic. We have added support for our
X# language, so you will see variables in the locals and autos windows with X# specific
types and so you can enter expressions for breakpoint conditions, in the watch window
and in the intermediate window in X# (case insensitive for example).
Behind the debugger expression evaluator (that's how this is called) is the complete X#
compiler.
We have added an options page to Visual Studio from where you can control how the X#
debugger Expression evaluator parses and compiles expressions.
Normally the debugger works with the settings from the main application.
However, when the startup application is not a X# application then the settings from this
dialog are used.
The first 2 options work always.
When your application uses late binding and you see problems with late binding in the
debugger, then you can disable late binding from this dialog.

1.6.3.1 Toolbar and Menu

When the Visual Studio integration for XSharp is installed then you will have see new
menu entry when debugging. This menu entry can be found in the Debug menu and is
called "XSharp".
From that menu you can open 4 different windows with XSharp specific information.
· Globals

· Publics and Privates

· Workareas

· Settings

These windows are shown as pane windows in the lower half of the debugger.
The location of these windows are (initially) associated with existing Visual Studio
windows in the following way

351 XSharp

© 2015- 2024 XSharp BV

Window Associated with

Globals Watch window

Publics and Privates Output window

Workareas Autos window

Settings Callstack window

If you move these windows to another location then Visual Studio will remember that new
location

There is also an X# Debugger toolbar with buttons for these windows

1.6.3.2 Globals Window

On the Globals window you can see a global variables in your app and the referenced
class libraries that are loaded from your app.

When your app does not include the X# runtime then a message will be shown that the
runtime has not been loaded:

352X# Documentation

© 2015- 2024 XSharp BV

1.6.3.3 Publics and Privates Window

On this window you will see the publics and privates that are available at the current line of
your source code:

You can use the checkboxes on the top to filter which type of variables you want to
display.

When your app does not include the X# runtime then a message will be shown that the
runtime has not been loaded:

1.6.3.4 Workareas window

On this window you will see the workareas are open at the current line of your source
code, for the current thread.
The currently selected areas is marked with a checkbox.

In the future we may extend this window so you can see the properties of an area (such
as BoF(), EoF() and RecNo()) and/or the field names and their values for the current
record.

353 XSharp

© 2015- 2024 XSharp BV

When your app does not include the X# runtime then a message will be shown that the
runtime has not been loaded:

1.6.3.5 Settings Window

On this window you will see the various settings at the current line of your source code,
and for the current thread.
You can sort these by name of by number.

When your app does not include the X# runtime then a message will be shown that the
runtime has not been loaded:

354X# Documentation

© 2015- 2024 XSharp BV

1.6.4 Other editors

We have added some custom editor to Visual Studio to allow you to edit resources that
are migrated from Visual Objects.
· Form Editor

· DbServer Editor

· FieldSpec Editor

· Menu Editor

The Tools/Options dialog contains some settings that are used by these custom editors:

There is a second page with some settings for the other editor and for some other
relevant settings:

The values for the settings are stored in the file XSharp\ProjectSystemSettings.json in
your roaming profile folder.

355 XSharp

© 2015- 2024 XSharp BV

1.6.5 Templates

The Visual Studio integrations comes with a couple of predefined templates.
There are templates for:
· Projects

· Items

1.6.5.1 Project Templates

The X# Visual Studio integration comes with the following project templates:

Template Descriptio
n

Required
Framewor
k
version

Default
Dialect

Reference
s

ClassLibrar
y

A project
for creating
a X# class
library (.dll)
for the Core
dialect with
no
dependenci
es on the
runtime

2.0 Core System,
and some
extensions
for
frameworks
> 3.5

Core
ClassLibrar
y

A project
for creating
a X# class
library (.dll)
for the Core
dialect with
a
dependenc
y on
XSharp.Cor
e

2.0 Core System, X#
Core and
some
extensions
for
frameworks
> 3.5

FoxPro
ClassLibrar
y

A project
for creating
a X# class
library (.dll)
for the
FoxPro
Dialect

2.0 FoxPro System, X#
Core, VFP
and some
extensions
for
frameworks
> 3.5

VO
ClassLibrar
y

A project
for creating
a X# class
library (.dll)
for the VO
Dialect

2.0 Visual
Objects

System, X#
Core, VO
and some
extensions
for
frameworks
> 3.5

356X# Documentation

© 2015- 2024 XSharp BV

Vulcan
ClassLibrar
y

A project
for creating
a X# class
library (.dll)
for the
Vulcan
Dialect

2.0 Vulcan System, X#
Core,
Vulcan and
some
extensions
for
frameworks
> 3.5

XPP
ClassLibrar
y

A project
for creating
a X# class
library (.dll)
for the
Xbase++
Dialect

2.0 Xbase++ System, X#
Core, XPP
and some
extensions
for
frameworks
> 3.5

Console
Application

A project
for creating
a X#
command-
line
application
in the core
dialect.

2.0 Core System,
and some
extensions
for
frameworks
> 3.5

FoxPro
Console
Application

A project
for creating
a X#
command-
line
application
in the
FoxPro
Dialect.

2.0 FoxPro System,
VFP, and
some
extensions
for
frameworks
> 3.5

VO
Console
Application

A project
for creating
a X#
command-
line
application
in the VO
Dialect.

2.0 Visual
Objects

System,
VO, and
some
extensions
for
frameworks
> 3.5

Vulcan
Console
Application

A project
for creating
a X#
command-
line
application
in the
Vulcan
dialect with
Vulcan

2.0 Vulcan System,
Vulcan, and
some
extensions
for
frameworks
> 3.5

357 XSharp

© 2015- 2024 XSharp BV

Runtime
Assemblies
(BYOR =
Bring Your
Own
Runtime).

XPP
Console
Application

A project
for creating
a X# class
library (.dll)
for the
Xbase++
Dialect

2.0 Xbase++ System,
XPP, and
some
extensions
for
frameworks
> 3.5

Windows
Forms
Application

A project
for creating
an
application
with a
Windows
Forms user
interface.

2.0 Core System,
and some
extensions
for
frameworks
> 3.5
System.Dra
wing
System.Wi
ndows.For
ms

WPF
Application

Windows
Presentatio
n
Foundation
client
application.

3.0 Core System,
and some
extensions
for
frameworks
> 3.5
WindowsB
ase,
Presentatio
nCore,
Presentatio
nFramewor
k

VO MDI
Application

A project
for creating
a VO MDI
application
in the VO
Dialect.

4.6 Visual
Objects

System and
some
extensions
for
frameworks
> 3.5

VO SDI
Application

A project
for creating
a VO SDI
application
in the VO
Dialect.

4.6 Visual
Objects

System and
some
extensions
for
frameworks
> 3.5

358X# Documentation

© 2015- 2024 XSharp BV

Vulcan
Console
Application

A project
for creating
a Vulcan
command-
line
application.

2.0 Vulcan System,
and some
extensions
for
frameworks
> 3.5
VulcanRT
and
VulcanRTF
uncs

Ms Test
Library

A Library
with test
support
using the
MsTest
Framework

2.0 Core System and
several
MsTest
related
assemblies

NUnit Test
Library

A library
with test
support
using the
open
source
NUnit
Framework

2.0 Core System and
several
NUnit
related
assemblies
.
The
template
uses a
NuGet
package to
retrieve the
correct
assemblies

XUnit Test
Library

A library
with test
support
using the
open
source
XUnit
Framework

2.0 Core System and
several
XUnit
related
assemblies
.
The
template
uses a
NuGet
package to
retrieve the
correct
assemblies

1.6.5.2 Item Templates

The X# Visual Studio integration comes with the following item templates:

Template Description Required
Framework

359 XSharp

© 2015- 2024 XSharp BV

version

Category: Code

Class An empty class
definition

2.0

CodeFile An empty Code
File

2.0

Header An empty Header
File

n/a

TextFile An empty text file n/a

Category: Forms

Windows Forms
Form

A Windows form
with separate
designer.prg

2.0

Windows Forms
Simple Form

A simple Windows
Forms Form
without
designer.prg

2.0

Windows Forms
User Control

Windows Forms
User Control

2.0

Category:
Internal

AppConfigInternal A hidden
app.config

2.0

AppManifestIntern
al

A hidden
app.manifest

2.0

AssemblyInfoInter
nal

A hidden
assemblyinfo prg

2.0

Managed
Resource Internal

A hidden resource
file

2.0

Settings Internal A hidden settings
file

2.0

360X# Documentation

© 2015- 2024 XSharp BV

Category:
Resources

Native Resource
File (.rc)

A file in which
native resources
can be defined

n/a

Bitmap A Bitmap file n/a

Cursor A Cursor file n/a

Icon An Icon file n/a

Managed resource
file (.resx)

A file to store
managed
resources

2.0

Category: VO

VODBServer An empty
DBServer

n/a

VOFieldSpec An empty
FieldSpec
container file

n/a

VOMenu An empty VO
Menu

n/a

VOWindow An empty VO
Window

n/a

Category: WCF

WCF Service A WCF Service 3.0

Category: WPF

WPF Flow
Document

Dynamically
formatted XAML
document

3.0

WPF Page Windows
Presentation
Foundation page

3.0

361 XSharp

© 2015- 2024 XSharp BV

WPF Page
Function

Windows
Presentation
Foundation page
function

3.0

WPF Resource
Dictionary

XAML Resource
Dictionary

3.0

WPF UserControl Windows
Presentation
Foundation user
control

3.0

WPF Window Windows
Presentation
Foundation
window

3.0

362X# Documentation

© 2015- 2024 XSharp BV

1.6.6 VOXporter

Enter topic text here.

363 XSharp

© 2015- 2024 XSharp BV

1.6.7 XPorter

Enter topic text here.

364X# Documentation

© 2015- 2024 XSharp BV

1.6.8 VFPXporter

The VFPXporter too is created to ease the move of your Visual FoxPro (VFP) Application
in .NET, using a language you already know, with help of XSharp.
1. Minimum changes to your code during export
2. Keep the original code as comment if any change is made.
3. Move VFP Forms to Windows Forms, using an adaptation layer/library called
XSharp.VFP.UI.Dll
4. Move VCX libraries as external projects containing Forms/Controls
5. Create real Windows Forms solution/project so you can use any existing 3rd party for
.NET in your application

Start & Settings

First, open the Settings dialog box:

365 XSharp

© 2015- 2024 XSharp BV

Folders settings

· Default VFP item Folder: The folder where VFPXPorter will start to search for elements
to export per default.

· Default Output Folder: The folder where the VFPXPorter will create the generated export
content

· Default exporter resources Folder: The folder where the VFPXPorter will look for extra
templates/Libraries/Tools.etc

You can then:
· Reset Settings to their default values.

· Open Settings Folder where the .json settings file is stored (for backup for eg)

366X# Documentation

© 2015- 2024 XSharp BV

Export settings

Check or Uncheck the export settings: Usually the default values are the best choice.

· Default Fields modifiers: When exporting a CLASS, set the default Field visibility.

367 XSharp

© 2015- 2024 XSharp BV

Project settings

· Ignore export Errors: Allows to continue the export process in case of errors. All errors
are logged in the destination folder.

· If needed, you can specify your own name for the Folders where elements are exported.

· Each ClassLibrary is in a SubFolder: If your application is using libraries, it is a good
practice to export them separately.

· Empty the destination folder: Each time you export an element, the destination folder is
emptied

368X# Documentation

© 2015- 2024 XSharp BV

Exporting

Project

· Input Project: Search for the .PJX file to export.

· Output Folder: Indicate where the VFPXPorter will write the generated files.

· Analyze: Allow to look at the content that the VFPXPorter has detected in the Project.

· Export: Export the project

· Open : Open the folder where the files where written

The generated folder should contain several folders (One per Library if you have checked
the setting, One for detected FreeTables, One for XSharp Tools, …)

You will find a file with the same name as the exported project with .SLN as extension.
This is the MS Visual Studio solution file that will group all exported top-level items
(Project, Libraries, ...)
This is the file you should open first.

How does the VFPXPorter work?

The VFPXPorter will read you project and its elements. It will identify their type and
generate some X# code.
In order to generate that code, it will look into the Data folder.
There, we will find several .JSON files that are used as conversion Rules:
The documentation for these rules is available in VFPXPorter repository on GitHub.
Then, to generate the files, it will use some templates : One per type of file. You can find
these templates on GitHub : Templates

Converting from VFP

Common problems

Please find here a list of the common troubles we will face when converting your VFP GUI
code to X# and WinForms.

https://github.com/X-Sharp/XSharpPublic/blob/main/src/Tools/VFPXPorter/DocumentationAndRules.md
https://github.com/X-Sharp/XSharpPublic/tree/main/src/Tools/VFPXPorter/Source/VFPXPorterLib/Data/Templates

369 XSharp

© 2015- 2024 XSharp BV

Events & Methods naming

When converting your Application from VFP to X# & WinForms, you have to keep in mind
that these two "worlds" are using a different point-of view to your Form.

In VFP, events are routed to the Controls.
So we could consider that, for eg, each button on the Form has its own class that
INHERIT from the base-class CommandButton, and is an instance of that particular class:
So you can override Events and Methods that that level, and it gives you a lot of control on
what's happening there.
In WinForms, events are routed to the Owner of the Controls: The Form
So, the usage is to prefix the EventHandlers and Methods with the name of the Control.
If button1 is raising a click event, the name of the handler is button1_click.
If a Form is raising a event, as the Form is the class, the name will
be nameOfTheForm_Event.
You can change that via an exporter setting:

· Prefix Event methods with FORM name

Start() Function

The generated code contains a Start() Function, which is the Startup Object of the
generated application. If you are also using a Start() Function in your VFP Code, you will
have to rename it after export.

Init() Method

With VFP, the Init() method is called when an object is created.
With X#, calling the Constructor() of a class (with the MyClass{} syntax), won't
automatically called the Init() Method.
This process is emulated by the InitType.prg template that is used during export.
With Controls, the Init() Method is called when the Handle is created. This code is
generated by the InitType.prg template used during export.

Colors

Unfortunately, these cannot be handled automatically as it would break the Windows
Forms designer in Visual Studio.
Setting a BackColor or ForeColor with an RGB, like :

 this.Label1.ForeColor = RGB(255,0,0)

Should be converted to :

 this.Label1.ForeColor =
System.Drawing.Color.FromARGB(255,0,0))

BUT.... If you had a function called RGB() that returns a System.Drawing.Color in a PRG
file, in the Tools folder of the Exporter, it will be part of your Exported Solution, and it will
supersede the XSharp Runtime definition, and that will do the trick !!

370X# Documentation

© 2015- 2024 XSharp BV

Method Call without parenthesis

In X#, a Property holds a Value that is set/get with the equal sign, while a Method contains
code that is executed when called : And you can make the difference because Method call
ends with parenthesis.
While this is allowed in VFP, you will have to correct that in X#

 this.Refresh

Should be corrected as

 this.Refresh()

These can be corrected at export time, if you check the "Convert Statement to Call" in
settings.
The handled statements are in the Statements.json file

Form Properties casing

In order to modify a Form with the Windows Form Designer in Visual Studio, the
Properties must respect the WinForm casing. So, you may have to add some properties
to the PropRules.json in order to automatically convert them.
That's why ShowInTaskBar appears in the rules as ShowInTaskbar. (Note the lowercased
b)

The following points have been addressed with the VFP2WinForms.json
Rules

Access to Parent

The Parent Property is already defined in Windows Forms, and is strongly typed to a
System.Windows.Forms.Control object. To avoid troubles, and ease the port of
applications, the support library contains a property called _Parent that access the
Control's parent, but as a weakly typed Object.
This will forced X# to a late-bound call, and could help in resolving access to ported code.
The call to _Parent is automatically generated by the XPorter.

Calling an Object Event in Your Code

In object with Parent, you may sometimes call directly Event handlers in your VFP code.
This might be problematic, and for example a direct call to the Click event of a button will
fail.

This.Parent.cmd_prec.Click

During export, the This will be turned to ThisObject, the parent.

Array access

In X#, array elements are accessed using brackets [].
In VFP, it is possible to use parenthesis ().
But this can be a problem when accessing a .Net typed-array.

371 XSharp

© 2015- 2024 XSharp BV

So, in order to ease the port of VFP applications, some array access have been turned to
method call in the XSharp.VFP.UI, the Control layer that ease access to .NET Controls
with VFP syntax.

x = __screen.FormCount
__screen.Forms(x-1).Release() // Here, Forms array will be
replaced by Forms Method call.

Access Fields in the current Area/Cursor

In VFP, it is possible to reference the current WorkArea/Cursor using its name, and to
point to specific fields by specifying their name after a Dot selector, like with :

? movie.title

Unfortunately, in X# the Dot selector is used for Objects, so you will have to use an arrow
as selector, like with:

? movie->title

Undeclared Vars

You can use an undeclared var anywhere in your code. This is something that X# will
recognize and support.
In such case, X# will silently create a MemVar: a local, untyped, var.
But there are some cases, where this will not work. For eg:

IF SQLExec(nHandle,"SELECT * FROM employees ORDER BY id ASC
LIMIT 1","CurResult") <=0 THEN &&& validate error first.
 Aerror(laErr)
 Messagebox("Check the following error: " + Chr(13) +
laErr[2],'Alert',3000)
 RETURN .F.
ENDIF

In the previous code, the var laErr has never been declared at this level, but it is used as
a REF var by the AError() function.
This type of construction is not supported by X#. You will have to create a local variable
laErr first.

Unsupported Functions

When building your VFP App, you may call some functions that are not (yet) supported by
X#.
The compiler will express a warning (XS0618), but will generate an Exe, that will certainly
crash at Runtime.
To avoid that, indicate these warnings as Errors.
To do so, with MS Visual Studio, follow these steps:
· Open the Properties of the Project

372X# Documentation

© 2015- 2024 XSharp BV

· Go To Build

· In section Treat Warning as Errors, enter the Specific Warning : XS0618

XSharp.VFP.UI.Dll : adaptation layer

VFP GUI Control library is very different from .NET Windows Forms : Properties, Methods
and Event Handling are very different.
In order to offer GUI export, VFPXPorter is using an adaptation layer : XSharp.VFP.GUI
That library contains some controls that micmics the way VFP is behaving. It exposes the
originals properties of VFP and convert them to their .NET Windows Forms counterparts.

Some controls might be missing, same for some Properties/Methods/Events : Please
report your troubles in the XSharp Forums.

373 XSharp

© 2015- 2024 XSharp BV

1.6.9 UDC Tester

Enter topic text here.

374X# Documentation

© 2015- 2024 XSharp BV

1.7 X# Programming guide

375 XSharp

© 2015- 2024 XSharp BV

1.7.1 Classes and Structures

In .Net, there are two kind of types that hold data, reference types (or classes) and value
types (or structures). The two of them have different semantics in the way they are used,
but both can contain themselves other reference and/or value types.

Classes

A class (or a reference type), is the most common way of storing data. Its name comes
from the fact that a variable of a reference type (commonly referred to as an instance of
the type) does not contain the data directly, but instead points to (references) a memory
location where the actual data is stored. A class in X# is defined through the
CLASS...END CLASS statement and can INHERIT from another reference type,
implement one or more INTERFACES and may contain fields, properties, constructors,
methods, events and other items:

CLASS Customer
 EXPORT name AS INT // exported (public) field
 PROTECT age AS INT // protected field, not visible to code
outside the class
END CLASS

Typically classes and all their members are defined in a single file of code. If it's
necessary for class members to be defined in multiple files (for example when the amount
of class members is very big), then the class must be defined in every file as PARTIAL:

PARTIAL CLASS Customer
// class members
END CLASS

Since an instance of a class is only storing a pointer to the data, one or more variables
can point to the exact same object in memory. Assigning a variable of a reference type to
another variable of the same type results to both representing the same data. Updating
data using one reference automatically updates the other reference as well:

FUNCTION Start() AS VOID
 LOCAL one, two AS Customer
 one := Customer{}
 two := one // now both vars point to the same object in memory
 two:name := "Robert"
 ? one:name // also "Robert"

Nested Classes

A class can even contain other types (classes or structures). In this case the type inside
the main type is called a nested type. Nested types can be used by using the name of
their container class and their own name, connected by a dot:

376X# Documentation

© 2015- 2024 XSharp BV

CLASS Customer
 CLASS NestedClass
 EXPORT FieldInNestedClass AS INT
 END CLASS
END CLASS

FUNCTION Start() AS VOID
 LOCAL oNested AS Customer.NestedClass
 oNested := Customer.NestedClass{}
 oNested:FieldInNestedClass := 100
 ? oNested:FieldInNestedClass

Nested classes are useful in particular for defining helper classes, a class that is only
used in the context of the parent class, for holding information only relevant to that class.
Creating a nested class for this data, instead of using a regular class results to better
structured code.

Structures

A structure (or a value type), in contrast to reference types, stores its data directly. It has
some similarities to the Visual Objects STRUCTURE feature (renamed in X# to
VOSTRUCT), but it is a lot more powerful than in VO, as it can contain most items that
also reference types have, like properties, constructors, methods etc. Unlike reference
types though, value types cannot inherit from other types or implement interfaces. They
can contain nested classes or structures though. Value types can be defined with the
STRUCTURE Statement:

STRUCTURE Vector2D
 EXPORT x AS INT
 EXPORT y AS INT
 METHOD Invert() AS VOID
 SELF:x := - SELF:x
 SELF:y := - SELF:y
END STRUCTURE

Since structures hold their data directly, instantiating them does not involve any additional
memory consumption than the memory needed for their data itself (reference types need
memory for the data and also for the pointer to the data) or garbage collector activity. They
are mostly suitable as light weight data containers, usually hold a small amount of fields,
typically 2-4, but can even contain a single element, like the System.Int32 (INT) or
System.Boolean (LOGIC) data types which simply define the INT and LOGIC data types,
including several methods for manipulating their data. Other very commonly used system
defined structures are System.Drawing.Point, System.Drawing.Rectangle etc, all
containing a small amount of data fields.

377 XSharp

© 2015- 2024 XSharp BV

Structure semantics

Structures also have different semantics when using them compared to regular classes. It
is not necessary to instantiate such a variable to use it, since declaring a var of a value
type results to its data being allocated directly:

FUNCTION Start() AS VOID
 LOCAL vector AS Vector2D
 vector:x := 10
 vector:y := 20

Although, for convenience, it's possible to also define constructors in value types and
instantiate them as with regular classes:

STRUCTURE Vector2D
 EXPORT x AS INT
 EXPORT y AS INT
 CONSTRUCTOR(vec_x AS INT, vec_y AS INT)
 SELF:x := vec_x
 SELF:y := vec_y
END STRUCTURE

FUNCTION Start() AS VOID
 LOCAL vector AS Vector2D
 vector := Vector2D{10,20}
 ? vector:x // 10

The most important difference that must always be taken under consideration, is that
assigning a value type to another one results to the data of the source being copied to the
destination, so unlike what happens with reference types, the data of the two variables are
stored in separate memory locations and any changes to one variable will not affect the
other:

FUNCTION Start() AS VOID
 LOCAL vec_1,vec_2 AS Vector2D
 vec_1:x := 10 ; vec_1:y := 20
 vec_2 := vec_1
 ? vec_2:x // 10, value was copied from first vector

 vec_2:x := 40 // put a new value to second vector
 ? vec_1:x // 10 again, first vector value still has its
original value

For this reason structures are not suitable for very large objects, since assigning one to
another or passing one as an argument to a method involves copying all data from the
source to the destination. On the other hand, with regular classes, only the pointer to the
data is passed as an argument to a method.

378X# Documentation

© 2015- 2024 XSharp BV

Equals operator

Another important difference between reference and value types, is the behavior of the
equals operator (==). For reference types, the equals operator between two variables only
compares the pointers themselves, not the data of the objects. So it returns TRUE only
when both variables point to the same object and in all other cases it returns FALSE, even
if the data both objects contain is the same:

CLASS ReferenceType
 EXPORT data AS STRING
END CLASS

FUNCTION Start() AS VOID
 LOCAL o1,o2 AS ReferenceType
 o1 := ReferenceType{}
 o1:data := "test"

 o2 := ReferenceType{}
 o2:data := "test"

 ? o1 == o2 // FALSE, because o1 and o2 point to different
memory locations

 o2 := o1
 ? o1 == o2 // TRUE

On the other hand, by default the == operator cannot be used on structures and the
compiler will report an error if you try to do so. It can be made possible to use it though, by
defining an OPERATOR method in the structure that implements how the comparison
with == should be done. In the sample below, the == operator is implemented to compare
the actual data that the two compared structures hold, so that it returns TRUE, when the
data is equal:

STRUCTURE ValueType
 EXPORT data AS STRING
 OPERATOR == (a AS ValueType, b AS ValueType) AS LOGIC
 RETURN a:data == b:data // let the equals == operator return
true when the data of the two arguments is the same
END STRUCTURE

FUNCTION Start() AS VOID
 LOCAL o1,o2 AS ValueType
 o1:data := "test"
 o2:data := "nothing"
 ? o1 == o2 // FALSE

379 XSharp

© 2015- 2024 XSharp BV

 o2:data := "test"
 ? o1 == o2 // TRUE

Note that it is possible to compare values of most common system defined structures like
System.Int32, System.Boolean, System.Double, because they also have defined equals
operator methods like the one in the code above.

Which one to use

Weather to use a class or a structure for holding data depends on the specific needs
related to the particular data. For data holding a lot of information (for example a customer
object) you would typically use a reference type, as such objects usually don't get
instantiated very often, but usually "live" long for the duration of the program. For smaller
objects, that are being a created, manipulated and copied between variables a lot of times
and in particular in tight loops (like for example an object representing a Complex number,
consisting of a real and an imaginary part, which can be used in a lot of calculations), it is'
more suitable to use a structure, as this will typically lead to faster execution, with a lot
less memory consumption and garbage collector activity. In any case, it's very important
to carefully consider their differences in semantics when using value vs reference types.

380X# Documentation

© 2015- 2024 XSharp BV

1.7.2 Codeblock, Lambda and Anonymous Method Expressions

X# contains 3 language constructs that are fairly similar yet different.

Codeblocks

Historically the XBase language has known the CodeBlock Type. A codeblock is specified
as

{| params | expression }

The parameters inside a codeblock are of type USUAL and its return value is also of type
USUAL.
To evaluate a codeblock you call the Eval() runtime function and pass this function the
codeblock and parameters when needed

FUNCTION Start() AS VOID
LOCAL cb as CODEBLOCK
cb := { |x, y| x * y}
? Eval(cb, 2,3) // shows 6
WAIT
RETURN

In stead of a single expression, you can also use an expression list. The value of the last
expression in the list is returned as the result of the codeblock.

FUNCTION Start() AS VOID
LOCAL cb as CodeBlock
cb := { |x, y| x += 1, x * y}
? Eval(cb, 2,3) // shows 9
WAIT
RETURN

X# has also added the possibility to the language to include a list of statements as "body"
of the codeblock. The result of the last statement is returned to the calling code. When the
last statement is "Void" then a NIL will be returned:
Note that the closing Curly must be on a line of its own and the first statement must
appear on a new line as well.

FUNCTION Start() AS VOID
LOCAL cb as CodeBlock

381 XSharp

© 2015- 2024 XSharp BV

cb := { |x, y|
 x += 1
 ? x
 RETURN x * y
 }
? Eval(cb, 2,3) // prints 3 and shows the result 9
WAIT
RETURN

Lambda Expressions

Lamda expressions look a lot like Codeblocks. They are usually used in combination with
Delegates.

DELEGATE MultiPlyInt(x as Int, y as Int) as Int

FUNCTION Start() AS VOID
LOCAL lambda as MultiPlyInt
lambda := { x, y => x * y}
? Lambda(2,3) // shows 6
RETURN

Parameters are optional and the return type can be VOID, so this works as well

DELEGATE DoSomething() as VOID

FUNCTION Start() AS VOID
LOCAL lambda as DoSomething
lambda := { => Console.WriteLine("This is a Lambda")}
Lambda() // prints the text
RETURN

The parameters of a Lambda expression may be typed. This can be convenient for
documentation purposes but can also help the compiler to find the right overload for a
method:

DELEGATE CalcInt(x AS INT, y AS INT) AS INT

382X# Documentation

© 2015- 2024 XSharp BV

DELEGATE CalcReal(x AS REAL8, y AS REAL8) AS REAL8

FUNCTION Start() AS VOID
TestLambda({ x AS INT, y AS INT => x * y})
TestLambda({ x AS REAL8, y AS REAL8 => x + y})
TestLambda({ x , y => x - y }) // Which one will be called ?
RETURN

FUNCTION TestLambda (lambda AS CalcInt) AS VOID
? "Int", lambda(2,3)
RETURN

FUNCTION TestLambda (lambda AS CalcReal) AS VOID
? "Real",lambda(2,3)
RETURN

The body of the Lambda may also be a single expression, expression list and a statement
list.
Anonymous Method Expressions
These work almost the same as Lambda Expressions.
Take the example below:

FUNCTION TestAnonymous() AS VOID
 LOCAL oForm AS Form
 oForm := Form{}
 oForm:Click += DELEGATE(o AS System.Object, e AS
System.EventArgs) {
 System.Windows.Forms.MessageBox.Show("Click from
AME 1!")
 System.Windows.Forms.MessageBox.Show("Click from
AME 2!")
 }
 oForm:Click += { o,e =>
System.Windows.Forms.MessageBox.Show("We can also do this with a
Lambda!") }
 oForm:ShowDialog()
 RETURN

The biggest difference between Lambda Expressions and Anonymous Method
Expressions is that the parameters to Lambda Expressions do not have to be typed. They
will be inferred from the usage. Parameters for Anonymous Method Expressions must
always be typed.

383 XSharp

© 2015- 2024 XSharp BV

1.7.3 Exceptions and Exception Handling

In X#, errors in the program at run time are propagated through the program by using a
mechanism called exceptions. Exceptions are thrown by code that encounters an error
and caught by code that can correct the error. Exceptions can be thrown by the .NET
Framework common language runtime (CLR) or by code in a program. Once an
exception is thrown, it propagates up the call stack until a catch statement for the
exception is found. Uncaught exceptions are handled by a generic exception handler
provided by the system that displays a dialog box.

Exceptions are represented by classes derived from Exception. This class identifies the
type of exception and contains properties that have details about the exception. Throwing
an exception involves creating an instance of an exception-derived class, optionally
configuring properties of the exception, and then throwing the object by using the throw
keyword. For example:

CLASS CustomException INHERIT Exception

 CONSTRUCTOR(message AS STRING)
 SUPER(message)

END CLASS

FUNCTION TestThrow as VOID
LOCAL ex AS CustomException
ex := CustomException{"Custom exception in TestThrow()}
THROW ex
RETURN

After an exception is thrown, the runtime checks the current statement to see whether it is
within a try block. If it is, any catch blocks associated with the try block are checked to see
whether they can catch the exception. Catch blocks typically specify exception types; if
the type of the catch block is the same type as the exception, or a base class of the
exception, the catch block can handle the method. For example:

FUNCTION TestCatch as VOID

 TRY
 TestThrow()
 CATCH ex AS CustomException
 System.Console.WriteLine(ex.ToString())
 END TRY
RETURN

If the statement that throws an exception is not within a try block or if the try block that
encloses it has no matching catch block, the runtime checks the calling method for a try
statement and catch blocks. The runtime continues up the calling stack, searching for a
compatible catch block. After the catch block is found and executed, control is passed to
the next statement after that catch block.

384X# Documentation

© 2015- 2024 XSharp BV

A try statement can contain more than one catch block. The first catch statement that can
handle the exception is executed; any following catch statements, even if they are
compatible, are ignored. Therefore, catch blocks should always be ordered from most
specific (or most-derived) to least specific.

385 XSharp

© 2015- 2024 XSharp BV

1.7.4 Memory Variables

X# provides support for dynamically scoped variables that are created and maintained
completely at runtime.
The term dynamically scoped refers to the fact that the scope of these variables is not
limited by the entity in which the variable is created.

Warning! Dynamically scoped variables are NOT supported in the Core and Vulcan
dialects. In other dialects they are supported only if the -memvar compiler option is
enabled.

Variable Type Lifetime Visibility

PRIVATE Until creator returns or until
released

Creator and called routines

PUBLIC Application or until released Application

The data type of a dynamically scoped variable changes according to the contents of the
variable. For this reason they are often described as dynamic or polymorphic.
Dynamically scoped variables are provided mainly for Clipper/Xbase compatibility;
however, they are very useful in certain circumstances. For instance, they let you develop
rapid prototypes and have certain inheritance properties that you may find hard to resist.
You must be aware, however, that using them comes at a cost. Consider these points:
· Because they are not resolved at compile time, these variables require overhead in the

form of runtime code, making your application larger and slower than necessary.
· No compile time checking for type compatibility is possible with these variables.

· Using the inheritance properties of these variables defies one of the basic tenets of
modular programming and may lead to maintenance and debugging problems down the
line. Furthermore, this practice will make the transition to lexically scoped and typed
variables more difficult.

This section explores dynamically scoped variables fully, but X# has several options for
variable declarations that you will want to explore before choosing to use this variable
class. The next two sections in this chapter introduce you to Lexically Scoped Variables
and Strongly Typed Variables, which you may find useful.
Important! For the sake of illustration, some of the examples in this section use
unorthodox programming practices. Using the inheritance properties of public and private
variables instead of passing arguments and returning values is not recommended.

Private

Private is one of the two types of dynamically scoped variables, and there are several
ways to create a private variable:
· List the variable name as part of a PRIVATE statement. If you do not make an

assignment at this time, the variable takes on the NIL value and data type; otherwise, it
takes on the data type of its assigned value. You can assign a new value (with a new
datatype) to a variable at any time:

PRIVATE X := 10, y
This creates x as a numeric variable and y as an untyped variable with the value NIL.
You can later change the values and their types by assigning other values to them:
 X := "X# Is great"
 Y := Today()

· List the variable name as part of a PARAMETERS statement within a FUNCTION,
PROCEDURE or METHOD definition. The variable takes on the data type of its

386X# Documentation

© 2015- 2024 XSharp BV

associated argument when the routine is called, or NIL if the argument is omitted. You
can assign a new value (and a new data type) to the variable at any time.

· Assign a value to a non-existent variable name (for example, x := 10). The variable takes
on the data type of its assigned value until you assign a new value to it. (x is numeric,
but the assignment x := "Ms. Jones" changes it to a string.) This will only work if you
have used the -undeclared as well as the -memvar commandline options.

Private variables have these properties:
· You can access them within the creating routine and any routines called by the creator.

In other words, private variables are automatically inherited by called routines without
having to pass them as arguments.

· You can hide them from a called routine by explicitly creating a private (using PRIVATE
or PARAMETERS) or declaring a local (using LOCAL) variable with the same name in
the called routine.

· They are automatically released from memory when the creator returns to its calling
routine, or you can release them explicitly using RELEASE, CLEAR ALL, or CLEAR
MEMORY.

In this example, the function Volume() expects three arguments, or parameters, to be
passed. When the function is called, it creates three private variables, nLength, nWidth,
and nHeight to accept the arguments. Because they are created with the PARAMETERS
statement, any higher-level variables (either public or private) created with these names
are temporarily hidden, preventing their values from being overwritten in memory:

FUNCTION Volume()
PARAMETERS nLength, nWidth, nHeight
RETURN nLength * nWidth * nHeight

In the next example, a modified version of Volume() creates a private variable (assuming
no other variable name nVolume is visible) to store its return value. If the variable nVolume
exists prior to calling Volume() and is visible to Volume() (for example, nVolume may be
public or private to the routine that called Volume()), its value is overwritten in memory and
will remain changed when the function returns to its calling routine:

FUNCTION Volume()
PARAMETERS nLength, nWidth, nHeight
nVolume := nLength * nWidth * nHeight
RETURN nVolume

In this version, Volume() specifies the nVolume variable as PRIVATE. Doing this
temporarily hides any higher-level variable (either public or private) with the same name,
preventing its value from being overwritten in memory:

FUNCTION Volume()
PARAMETERS nLength, nWidth, nHeight
PRIVATE nVolume := nLength * nWidth * nHeight
RETURN nVolume

387 XSharp

© 2015- 2024 XSharp BV

Public

The second category of undeclared variable is public. Public variables have application-
wide lifetime and visibility, and you can define them in only one way:
· List the variable name as part of a PUBLIC statement. If you do not make an

assignment at this time, the variable takes on a value of FALSE (or NIL for array
elements); otherwise, it takes on the data type of its assigned value. You can assign a
new value (and a new data type) to the variable at any time.

Public variables have these properties:
· Once they are created, you can access them anywhere in the application. In other

words, public variables are automatically inherited by all routines in the application
without having to pass them as arguments or post them as return values.

· You can hide them from a routine by explicitly creating a private (using PRIVATE or
PARAMETERS) or declaring a local (using LOCAL) variable with the same name.

· They are not released from memory until you explicitly release them using RELEASE,
CLEAR ALL, or CLEAR MEMORY.

In this example, the function Volume() is defined without arguments. Instead, the calling
routine, Compute(), creates three public variables, nLength, nWidth, and nHeight that are
automatically visible to Volume():

PROCEDURE Compute()
PUBLIC nLength := 5, nWidth := 2, nHeight := 4
? Volume() // Result: 40

FUNCTION Volume()
RETURN nLength * nWidth * nHeight

In the next example, a modified version of Volume() creates a public variable to store the
computed volume, getting around having to return a value to the calling routine. Since
nVolume is public, it is not released from memory when Volume() returns:

PROCEDURE Compute()
PUBLIC nLength := 5, nWidth := 2, nHeight := 4
Volume()
? nVolume // Result: 40 , this will only compile with -undeclared
RETURN

PROCEDURE Volume()
PUBLIC nVolume
nVolume := nLength * nWidth * nHeight
RETURN

A better solution for the use of the nVolume variable from last example that will not require
the -undeclared commandline option is:

PROCEDURE Compute()
PUBLIC nLength := 5, nWidth := 2, nHeight := 4

388X# Documentation

© 2015- 2024 XSharp BV

MEMVAR nVolume // tell the compiler that nVolume is a Public or
private
Volume()
? nVolume // Result: 40
RETURN

or

PROCEDURE Compute()
PUBLIC nLength := 5, nWidth := 2, nHeight := 4
Volume()
? _MEMVAR->nVolume // Result: 40
RETURN

Please note that this kind of programming is NOT recommended.

Variable References

Once a public or private variable is created as demonstrated in the previous two sections,
you obtain its value by referring to its name. You might display the value of a variable using
a built-in command or function:

? nVolume
QOut(nVolume)

or use its value as part of an expression:

Str(nVolume, 10, 2) + " cubic feet"

For dynamically scoped variables, you can use the _MEMVAR alias to qualify a variable
reference. In some cases, you may have to do this in order to help the compiler resolve
what might otherwise be an ambiguous reference (for example, if you have a field variable
with the same name as a memory variable and want to use the memory variable in an
expression).
Note: MEMVAR is an abbreviation for memory variable, a term that is synonymous with
dynamically scoped variable.
Assuming that the database file Measures has fields named nLength, nWidth, and
nHeight, this example calls Volume() using the field variable values:

FUNCTION Calculate()
PRIVATE nLength := 5, nWidth := 2, nHeight := 3
USE measures
? Volume(nLength, nWidth, nHeight)
...

389 XSharp

© 2015- 2024 XSharp BV

To force the function to use the private variables instead of the field variables,
you could use the _MEMVAR-> (or, more simply, M->) alias to qualify the
variable names:

FUNCTION Calculate()
PRIVATE nLength := 5, nWidth := 2, nHeight := 3
USE measures
? Volume(_MEMVAR->nLength, _MEMVAR->nWidth, _MEMVAR->nHeight)
...

Of course, it is better to avoid ambiguous situations like the one described above by taking
care to have unique field and variable names, but the point is that the compiler has certain
default rules for handling ambiguous references. If you do not want to be at the mercy of
those defaults, it is best to qualify variable names in all cases.

MEMVAR Declarations

Although you may hear them referred to as such, the statements mentioned so far in the
discussion of dynamically scoped variables are not declarations. The term declaration
refers to a statement whose purpose is to inform the compiler of something—PRIVATE,
PARAMETERS, and PUBLIC are statements that generate memory variables at runtime.
In fact you never have to declare a dynamically scoped variable to the compiler, which is
the reason for their inefficiency. Because they are not created using compile-time
declaration statements, the compiler has to generate runtime code for handling such
issues as type translation, memory management, and resolving ambiguous references to
variable names since it is possible for several variables with the same name to be visible
at one time.
You can, however, declare dynamically scoped variables with the MEMVAR statement and
they will be created as PRIVATE variables:

FUNCTION Calculate()
MEMVAR nLength, nWidth, nHeight
nLength := 5
nWidth := 2
nHeight := 3
USE measures
? Volume(nLength, nWidth, nHeight)

In this case, the MEMVAR statement causes memory variables to take precedence over
field variables with the same names, causing Volume() to be called with the private
variables.
Using MEMVAR to declare dynamically scoped variable names to the compiler may make
your programs slightly more efficient (especially if you have lots of ambiguous
references); however, it will not eliminate the runtime overhead of these variables.

390X# Documentation

© 2015- 2024 XSharp BV

1.7.5 Modifiers

Modifiers are language keywords that are used to modify the visibility of a program
element (function, global, class, property etc), or the way they operate within a type
hierarchy.
There are several groups of modifiers that will be discussed in these subtopics.

Visibility Modifiers PUBLIC, EXPORT, PROTECT,
PROTECTED, PRIVATE, HIDDEN,
INTERNAL

Class Hierarchy Modifiers VIRTUAL, OVERRIDE, ABSTRACT,
SEALED

STATIC modifier STATIC

ASYNC / AWAIT ASYNC, AWAIT

Other Modifiers PARTIAL, EXTERN, UNSAFE

1.7.5.1 Access/Visibility modifiers

Access / Visibility modifiers

Access modifiers restrict the visibility of program elements:

· PUBLIC/EXPORT: A public function, global, type (class, structure, delegate etc) or type
member (field, method, property, event etc) is visible to all code within the same
assembly (exe or dll) where it is declared and assemblies referenced by the declaring
assembly. This is the default in X#.

· PROTECT/PROTECTED: The PROTECT(ED) keyword can be applied only to type
members and restrict their visibility to code within the same type and classes that inherit
from that type

· INSTANCE: A unique modifier keyword to X# (and Visual Objects), very similar to
PROTECT, but applies only to class fields and has different semantics to PROTECT,
on the way it is used by code within the same class (see sample below)

· PRIVATE/HIDDEN: Also applies to type members and is more restrictive than
PROTECT, as it limits the member visibility to only code within the type where it is
declared (not to classes inheriting from that type). If you declare a field or method as
PRIVATE then the compiler may produce a compiler warning xs0169 when it detects
that that field or method is never called inside the class.

· INTERNAL: Restricts the visibility of a type or member only to code from the same
assembly (dll or exe). An internal member is not visible to any code outside the defining
assembly, not even to classes inheriting from this class declared in other assemblies.
Can be combined with PROTECTED, so that an INTERNAL PROTECTED member
can be seen only form within the same class and also from inheriting classes that are
defined in the same assembly, but not from inheriting classes that are defined in other
assemblies.

· The XBase++ dialect also has the modifier STATIC which means that the class is only
visible in the source file where it is used.

Note: It is still possible to explicitly specify certain assemblies where internal types and
members of an assembly are visible, by using the InternalsVisibleTo attribute. See

391 XSharp

© 2015- 2024 XSharp BV

documentation for System.Runtime.CompilerServices.InternalsVisibleToAttribute for more
information.

INTERNAL PROCEDURE InternalProc() // procedure
accessible only from within the same assembly
INTERNAL GLOBAL InternalGlobal AS INT // global accessible
only from within the same assembly

PUBLIC CLASS TestClass // accessible from
everywhere
 EXPORT Export_field AS INT // accessible from
everywhere
 PROTECT Protected_field AS INT // accessible to this
class and classes inherited from it
 INTERNAL PROTECT Internal_Protected_field AS INT // accessible
to this class and classes inherited from it, defined in this same
assembly only
 PRIVATE METHOD Private_Method() AS VOID // accessible only
from code inside this particular class
END CLASS

PROTECTED vs HIDDEN

A compatibility feature for code derived from Visual Objects, INSTANCE applies to fields
and is similar to PROTECT, but has different semantics when a property (or ACCESS) is
defined with the same name. When using a PROTECT field and an ACCESS/ASSIGN
pair (or PROPERTY) is defined with the same name in the type, then any code within that
class that tries to access this member, always refers to the field. But when the member is
declared with the INSTANCE keyword, then the compiler binds the name to the ACCESS
instead:

FUNCTION Start() AS VOID
 TestClass{}:DoTest()

CLASS TestClass
 PROTECT Protected_member := "field" AS STRING
 INSTANCE Instance_member := "field" AS STRING
 ACCESS Protected_member AS STRING
 RETURN "access"
 ACCESS Instance_member AS STRING
 RETURN "access"
 METHOD DoTest() AS VOID
 ? SELF:Protected_member // field
 ? SELF:Instance_member // access, because the field is
defined with the INSTANCE keyword
END CLASS

392X# Documentation

© 2015- 2024 XSharp BV

This feature is a left over from old Visual Objects versions that were emitting INSTANCE
members for every control in the Window Editor and is depreciated in X#, but still available
for compatibility reasons

1.7.5.2 Class hierarchy modifiers

Hierarchy modifiers control the way elements of a class behave within their class
hierarchy.

VIRTUAL/OVERRIDE/NEW

By default, all methods in .Net are non-VIRTUAL, meaning they cannot be overridden by
same named methods (and signature - parameter and return types) in descendant
classes. In the following example, calling a method from code inside the Parent class,
results to calling he version of the method defined in this particular class in the class
hierarchy, not the method with the same name and signature defined in the Child class
(even though the object we are testing with is an instance of the Child class):

FUNCTION Start() AS VOID
 LOCAL oTest AS Child
 oTest := Child{}
 oTest:DoTest()

CLASS Parent
 METHOD SomeMethod() AS VOID
 ? "Parent method was called"
 METHOD DoTest() AS VOID
 SELF:SomeMethod() // calls the method of this Parent class,
not the same named one defined in the Child class
 RETURN
END CLASS

CLASS Child INHERIT Parent
 METHOD SomeMethod() AS VOID
 ? "Child method was called"
END CLASS

This behavior is different to that of Visual Objects, FoxPro and Xbase++, where ALL
methods are always considered VIRTUAL. In order to make a method overridable from
descendant classes, it needs to be defined as VIRTUAL. In the following code, calling a
VIRTUAL method from code in the Parent class, results to calling the version of the
method defined in the Child class, since it has overridden the parent method:

CLASS Parent
 METHOD NonVirtualMethod() AS VOID // cannot be overriden in
child class
 ? "Parent non virtual method was called"
 VIRTUAL METHOD VirtualMethod() AS VOID // can be overriden
 ? "Parent virtual method was called"

393 XSharp

© 2015- 2024 XSharp BV

 METHOD DoTest() AS VOID
 SELF:NonVirtualMethod() // calls method in parent
 SELF:VirtualMethod() // calls method in child
 RETURN
END CLASS

CLASS Child INHERIT Parent
 METHOD NonVirtualMethod() AS VOID // this is completely
different method to the parent one, even though it has the same
name
 ? "Child non virtual method was called"
 OVERRIDE METHOD VirtualMethod() AS VOID // overrides the same
named method of the parent class
 ? "Child virtual method was called"
END CLASS

Note that VirtualMethod() in the child class is declared with the OVERRIDE modifier, this
tells the compiler that we have on purpose overridden a parent method with the same
name. The OVERRIDE modifier is not mandatory in X# and can be omitted, but using it
makes the code more self-explanatory and allows the compiler to make additional compile
time checks. If OVERRIDE is used on a method to override a parent method that is not
VIRTUAL, or it does not even exist (or is spelled with a different name or has a different
signature in the parent class), then a compiler error will be reported. For this reason, it is
recommended to explicitly declare methods overriding parent methods with the
OVERRIDE keyword. It is also possible to enforce the use of the OVERRIDE keyword in
the compiler, by enabling the compiler option "Enforce OVERRIDE" (/enforceoverride).

In the above code, the compiler does report a warning on the NonVirtualMethod() defined
in the child class: "warning XS0108: 'Child.NonVirtualMethod()' hides inherited member
'Parent.NonVirtualMethod()', use the new keyword if hiding was intended". This warns
about the definition of a method in the child class that has the same name with a non-
virtual method in the parent class, as this could had been done by accident (either
accidentally using the same name, or forgetting to define the base method as virtual). In
order to tell the compiler that the use of the same name in a child method was intentional
(and prevent the warning), the NEW modifier keyword can be used, which explicitly marks
the method as one that does override the base one:

CLASS Child INHERIT Parent
 NEW METHOD NonVirtualMethod() AS VOID // explicitly mark the
method as new one, different to the parent method
 ? "Child non virtual method was called"
 OVERRIDE METHOD VirtualMethod() AS VOID // overrides the same
named method of the parent class
 ? "Child virtual method was called"
END CLASS

For already existing code ported from older systems like Visual Objects where methods
are always VIRTUAL, it can be tiresome to manually add the VIRTUAL modifier keyword in
all methods that need it. For this reason, it is possible for convenience to instruct the

394X# Documentation

© 2015- 2024 XSharp BV

compiler to automatically treat ALL methods as virtual, with the use of the "All instance
methods virtual" (/vo3) compiler option. But is highly recommended to instead review the
code and manually add the VIRTUAL modifier only where it is really needed.

Note that a method in a child class can override a parent class method, only if it has the
exact same signature with it, meaning it has the exact same name (even the exact same
casing of the name, if the Case sensitive type names (/cs) compiler option is enabled),
parameter count and types and return type with the base method. If the two methods are
different on any of those aspects, then they are considered as completely different
methods and one cannot override the other:

CLASS Parent
 VIRTUAL METHOD VirtualMethod(n AS INT) AS VOID // child class
has same named method but with different signature
END CLASS

CLASS Child INHERIT Parent
 OVERRIDE METHOD VirtualMethod(c AS STRING) AS INT // compiler
error XS0115: 'VirtualMethod': no suitable method found to
override
 RETURN 0
END CLASS

The VIRTUAL/OVERRIDE/NEW modifiers do not apply to methods only, but also
to properties or ACCESS/ASSIGN pairs (and also to events, but it makes little
sense in declaring/overriding virtual events):

FUNCTION Start() AS VOID
 Child{}:DoTest()

CLASS Parent
 VIRTUAL PROPERTY TestProp AS STRING GET "parent"
 ACCESS TestAccess AS STRING
 RETURN "parent"

 METHOD DoTest() AS VOID
 ? SELF:TestProp // child, because the property is overridden
in the child class
 ? SELF:TestAccess // parent, because the access is not
virtual
 RETURN
END CLASS

CLASS Child INHERIT Parent
 OVERRIDE PROPERTY TestProp AS STRING GET "child"
 NEW ACCESS TestAccess AS STRING
 RETURN "child"
END CLASS

395 XSharp

© 2015- 2024 XSharp BV

Finally, also class fields can be declared as NEW (but not as VIRTUAL), in order to
differentiate them from fields with the same name in a parent class:

FUNCTION Start() AS VOID
 Child{}

CLASS Parent
 EXPORT cField := "parent" AS STRING
 CONSTRUCTOR()
 ? SELF:cField // parent, refers to the filed defined in the
parent class
END CLASS

CLASS Child INHERIT Parent
 NEW EXPORT cField := "child" AS STRING
 CONSTRUCTOR()
 SUPER()
 ? SELF:cField // child, refers to the filed defined in the
parent class
END CLASS

Please note that the XBase++ dialect also has the modifiers:

DEFERRED Synonym for ABSTRACT

INTRODUCE Synonym for NEW

SYNC Code inside the method is protected from
running simultaneously in different threads

ABSTRACT/SEALED

Using the SEALED modifier on a class, prevents it from being inherited from a child
class.
This can be useful in order to prevent users of a class/library to alter its functionality in a
subclass and possibly introduce problems in it.
It also allows the compiler to emit more efficient code, because it knows that there will be
no subclasses of a type.

SEALED CLASS Parent
END CLASS

CLASS Child INHERIT Parent // compiler error XS0509: cannot derive
from sealed type 'Parent'
END CLASS

SEALED can be used also on specific (virtual) methods/properties to prevent
overriding only them in a subclass:

396X# Documentation

© 2015- 2024 XSharp BV

FUNCTION Start() AS VOID
 Child{}:DoTest()

CLASS Base
 VIRTUAL METHOD VirtualMethod() AS VOID
 ? "base"
 METHOD DoTest() AS VOID
 SELF:VirtualMethod() // parent, becase method is overriden
in the parent class, but cannot be overriden in the subclass of
parent
END CLASS

CLASS Parent INHERIT Base
 SEALED OVERRIDE METHOD VirtualMethod() AS VOID
 ? "parent"
END CLASS

CLASS Child INHERIT Parent // compiler error
// OVERRIDE METHOD VirtualMethod() AS VOID // compiler error
XS0239: cannot override method because it is sealed
 NEW METHOD VirtualMethod() AS VOID // can only define a NEW
method with the same name and signature, which does not override
the parent method
 ? "child"
END CLASS

The ABSTRACT modifier can be use on a class in order to prevent it from being
accidentally directly instantiated. Only classes inheriting (and implementing additional
functionality) from an abstract class can be instantiated. This is useful for classes that
implement base functionality, but does not make sense creating an instance of them
directly (like the Control class in System.Windows.Forms or the same named class in the
VOSDK):

FUNCTION Start() AS VOID
 LOCAL o AS OBJECT
 o := Child{} // OK
 o := Parent{} // Compiler error XS0144: cannot create an
instance of the abstract type

ABSTRACT CLASS Parent
END CLASS

CLASS Child INHERIT Parent
END CLASS

Abstract classes can also define abstract methods or properties, which dictates that it is
mandatory to implement them in classes inheriting from the abstract class. Abstract

397 XSharp

© 2015- 2024 XSharp BV

methods are implicitly virtual so they can be overridden, and it is a compiler error not
providing an implementation in a child class:

ABSTRACT CLASS Parent
 METHOD BasicFunctionality() AS VOID // does not need to be
overriden in subclass
 ABSTRACT METHOD MustImplementInChild() AS VOID //
implementation must be defined in subclasses
END CLASS

CLASS Child INHERIT Parent
// Omitting this would result to a compiler error that Child
class does not implement inherited abstract method
 OVERRIDE METHOD MustImplementInChild() AS VOID
END CLASS

Please note that XBase++ dialect used the modifier FINAL, which is equivalent to
SEALED. The FREEZE modifier is not supported by X#

1.7.5.3 STATIC modifier

The STATIC modifier has a different meaning when used on a class or its members, on a
FUNCTION/GLOBAL or on a LOCAL variable.

Static classes and members

Static members

The STATIC modifier on a member of a class (method, constructor, property, field, event)
declares a member which belongs to the class itself, instead of to an instance of the
class. Normal (instance) methods and other members can be called by using an instance
of the class (for example through SELF, or a local variable holding such an instantiated
object) with the colon (":") operator (also with the dot "." operator if the compiler
option /allowdot is enabled), while static members can be accessed directly through the
class itself, using the dot operator:

FUNCTION Start() AS VOID
 LOCAL oInstance AS TestClass
 oInstance := TestClass{}

 ? oInstance:instance_field
 ? oInstance:InstanceMethod()
 ? oInstance:InstanceProperty

 ? TestClass.static_field
 ? TestClass.StaticMethod()
 ? TestClass.StaticProperty

398X# Documentation

© 2015- 2024 XSharp BV

CLASS TestClass
 EXPORT instance_field := "instance field" AS STRING
 STATIC EXPORT static_field := "static field" AS STRING

 METHOD InstanceMethod() AS STRING
 RETURN "Instance method"
 PROPERTY InstanceProperty() AS STRING GET "Instance property"

 STATIC METHOD StaticMethod() AS STRING
 RETURN "Static method"
 STATIC PROPERTY StaticProperty() AS STRING GET "Instance
property"
END CLASS

A static method is very similar to a common function and can be used in the same way,
but has the advantage that it is encapsulated within a class that may contain other related
static or non static members. Like functions, static methods can not use instance
members of the class with SELF:, but can access other static members. Methods with
related functionality can be grouped together under the same class, offering much better
intellisense support in the editor (typing a dot after a class name will show a list of all its
static members) and makes the code more structured. For example, the System.Math
class offers a lot of mathematical functions, all grouped together under a single class,
which makes it easier to find and use, rather that having several standalone functions
offering the same functionality. Similarly, a static field can be regarded as a GLOBAL, but
again structured under a class. Any method of a class that is not using SELF in its body
(so is not accessing any instance members) is a good candidate to be declared as static.

Static constructor

It is also possible to define a single static constructor per class, which is guaranteed to be
called automatically just before any static member (method, field, etc) of the class is
accessed for the first time. A static constructor must have no parameters and cannot be
overloaded. Typical use of a static constructor is to initialize static fields:

FUNCTION Start() AS VOID
 ? TestClass.static_field // adjusted by static constructor

CLASS TestClass
 STATIC EXPORT static_field := "initial value" AS STRING

 STATIC CONSTRUCTOR()
 ? TestClass.static_field // initial value
 TestClass.static_field := "adjusted by static constructor"
END CLASS

Note that it is not allowed to define a static destructor. If you need to cleanup data stored
inside a static class, then it is recommended to register a ProcessExit event handler in
the AppDomain class.This will be called when the application ends.

399 XSharp

© 2015- 2024 XSharp BV

FUNCTION Start() AS VOID

CLASS TestClass

 STATIC CONSTRUCTOR()
 AppDomain.CurrentDomain:ProcessExit +=
EventHandler{CurrentDomain_ProcessExit}

static method CurrentDomain_ProcessExit(sender as object, e as
EventArgs) as void
 // clean up
 return
END CLASS

Static class

When a class is designed to hold only static members, then it can be declared itself as
static. Doing so allows the compiler to check every member of the class and make sure
none is accidentally declared as non-static:

STATIC CLASS StaticClass
 STATIC EXPORT static_field AS STRING
 EXPORT accidental_instance AS STRING // compiler error XS0708:
cannot declare instance members in a static class

 STATIC METHOD Static_method() AS VOID
 METHOD Accidental_Instance_method() AS VOID // compiler error
XS0708: cannot declare instance members in a static class
END CLASS

Static functions and globals

Declaring a function or global as static, restricts its visibility to only the code file where it is
declared. This way, multiple files can declared functions and globals with the same name,
each one being visible only in their respective file:

STATIC GLOBAL GlobalVisibleOnlyInThisFile AS INT
STATIC FUNCTION FunctionVisibleOnlyInThisFile() AS VOID

Static local

Declaring a LOCAL variable as STATIC, causes it to be initialized with a value only once,
at the first time that the method, function or other entity where it is declared is called. The
local variable retains its previous value the next time the code is called:

400X# Documentation

© 2015- 2024 XSharp BV

FUNCTION Start() AS VOID
 ? TestStaticLocal() // 2
 ? TestStaticLocal() // 3
 ? TestStaticLocal() // 4

FUNCTION TestStaticLocal() AS INT
 STATIC LOCAL nStaticLocal := 1 AS INT // gets initialized to 1
only the first time the function is called
 nStaticLocal ++ // the current value will be retained the next
time the function is called
RETURN nStaticLocal

1.7.5.4 ASYNC/AWAIT

1.7.5.5 Other modifiers

PARTIAL

Using the PARTIAL modifier on a class declaration, instructs the compiler that the class
definition and its members (methods, properties etc) may span in multiple program files in
the current application/library. By default (when not using the PARTIAL modifier), all
members of a class are expected to be defined in a single file, and if they span in multiple
files, then all of the CLASS...END CLASS definitions of that class need to be marked as
PARTIAL:

// file code1.prg
PARTIAL CLASS ClassSpanningInMultipleFiles // omitting PARTIAL
would result to compiler error on missing partial modifier on
declaration of type
 METHOD MethodInFile1() AS VOID
END CLASS

// file code2.prg
PARTIAL CLASS ClassSpanningInMultipleFiles
 PROPERTY PropertyInFile2() AS LOGIC
 GET
 RETURN TRUE
 END GET
 END PROPERTY
END CLASS

Note that all members of a partial class need to be defined in the same assembly. It is
NOT possible to use the PARTIAL modifier to define members of a class in separate
assemblies/libraries.

401 XSharp

© 2015- 2024 XSharp BV

EXTERN

The EXTERN modifier tells the compiler that a method is implemented externally, so it has
no body in the code itself. Most commonly EXTERN is used together with the DllImport
attribute (System.Runtime.InteropServices.DllImportAttribute), which specifies exactly
where the method is implemented (usually in a Win32 API dll) and how it needs to be
called. When using that, the method needs to be declared also as static:

USING System.Runtime.InteropServices
FUNCTION Start() AS VOID
 WinAPICalls.MessageBox(IntPtr.Zero, "Calling unmanaged code
through an EXTERN method", "EXTERN modifier sample", 0)

STATIC CLASS WinAPICalls
 [DllImport("user32.dll", CharSet := CharSet.Unicode)];
 STATIC EXTERN METHOD MessageBox(hWnd AS IntPtr, text AS STRING
, caption AS STRING , type AS DWORD) AS INT
END CLASS

Note that it is a compiler error for an EXTERN method to directly return a value, since its
complete implementation is provided externally.

UNSAFE

The UNSAFE modifier on a method specifies that its entire body will run in an unsafe
context, meaning it can use pointers to data and manipulate memory directly. The unsafe
modifier can be used only when the compiler option Allow unsafe code (/unsafe) is
enabled:

FUNCTION Start() AS VOID
 ? UnsafeMethods.GetByte2of4(0x10203040) // 32 (hex 20)

CLASS UnsafeMethods
 UNSAFE STATIC METHOD GetByte2of4(d AS DWORD) AS BYTE
 LOCAL p AS BYTE PTR
 p := (BYTE PTR) @d // get direct pointer to the data
 RETURN p[3]
END CLASS

When only a small part of the method body involves pointers or other potentially unsafe
operations, it is more common to declare a BEGIN UNSAFE block for it, instead of
marking the whole method as unsafe:

CLASS UnsafeMethods
 STATIC METHOD GetByte2of4(d AS DWORD) AS BYTE
 LOCAL b AS BYTE
 ? "Begin of unsafe possibly code executing"

402X# Documentation

© 2015- 2024 XSharp BV

 BEGIN UNSAFE // code inside this block uses pointer
operations
 LOCAL p AS BYTE PTR
 p := (BYTE PTR) @d // get direct pointer to the data
 b := p[3]
 END UNSAFE
 ? "End of unsafe code"

 RETURN b
END CLASS

Note that writing code that uses pointers is strongly discouraged (as the code cannot be
verified by the .Net runtime for correct usage and can destabilize the running application)
and needs to be used with extreme caution and only when it is absolutely necessary to do
so.

403 XSharp

© 2015- 2024 XSharp BV

1.7.6 Namespaces

A Namespace is a prefix to item names that provides a logical grouping of types and other
.Net elements, making it easier to structure together items that have a common purpose
and avoid naming conflicts. Due to the vast amount of libraries and classes available in
.Net (in System and 3rd party libraries and in every application written in .Net), using
simple small names without a namespace would had led to a lot of naming conflicts,
making it impossible to distinguish between each other. For example, there's a type
named "Button" (representing a Button control) in the Windows Forms system library,
another for WPF, also one in the VOSDK GUI classes and of course the new typed
VOSDK GUI classes library has one, too. Furthermore, it's very likely that also dozens of
other custom control libraries include a same named type, too! In order to distinguish
among all them, an additional prefix name (namespace) has been added to each version
of the type:

· System.Windows.Forms.Button // Windows forms

· System.Windows.Controls.Button // WPF

· VO.Button // VOGUI library

· XSharp.VO.Button // Typed SDK GUI library

For the full class name System.Windows.Forms.Button, everything before the final dot
(System.Windows.Forms) is called the namespace of the class, while the rest is called
the short class name. Note that a namespace is not something concrete, it does not
exist as a separate entity in .Net assembiles, it is only a convention to use a descriptive
name prefix for all class names and is not mandatory. Using the dot as name part
separator is also a convention in .Net, it could had been equally valid to choose another
character like an underscore for the same purpose, resulting to the name
System_Windows_Forms_Button for the winforms class name, where
"System_Windows_Forms" would had been the namespace part of the name.

Also by convention, usually namespace and type names are structured in the following
format:

<Company name>.<Library name>.<Optional further group
names>.<Short type name>

This has been followed in the name XSharp.VO.Button, where "XSharp" is the company
name, "VO" represents the library and "Button" is the actual class (short) name. The
optional additional group names provide further better structuring of the type names, often
used in large libraries where it is important to logically group together the large amount of
available items.

Specifying namespaces to type names

In X#, there are several ways to provide a namespace to types/classes defined in the
code. The most common way is to use the BEGIN..END NAMESPACE block statement:

BEGIN NAMESPACE OurCompany.CommonLibrary
 CLASS GeneralUseType
 // ...

404X# Documentation

© 2015- 2024 XSharp BV

 END CLASS
END NAMESPACE

Every typed defined inside the block will automatically have its name prefixed by the
compiler with the namespace provided, so the class in the above sample will become
OurCompany.CommonLibrary.GeneralUseType. Also BEGIN NAMESPACE blocks can be
nested (to any level) and the above could had been written in an equal way like this:

BEGIN NAMESPACE OurCompany
 BEGIN NAMESPACE CommonLibrary
 CLASS GeneralUseType
 // ...
 END CLASS
 END NAMESPACE
END NAMESPACE

Another option is to provide the namespace part of the name in the class declaration
directly:

CLASS OurCompany.CommonLibrary.GeneralUseType
// ...
END CLASS

Finally, it is possible to define a Default Namespace in the project properties (which
maps to the -ns compiler option). When defining this, then all class names in the code
that have not been explicitly assigned a namespace, automatically get the one provided in
the project option. This is particularly useful for applications and libraries ported from
Visual Objects or other systems that did not support the concept of namespaces so all
types in them used simple class names. In order to avoid having to explicitly provide
namespace names in potentially 100s or 1000s of files of code, the project option can be
used instead.

Using types with namespaces

Normally, in order to use a type in code, its full class name (including the namespace part)
needs to be used:

FUNCTION Start() AS VOID
 LOCAL oUse AS OurCompany.CommonLibrary.GeneralUseType
 oUse := OurCompany.CommonLibrary.GeneralUseType{}

If the namespace part was not included, then the compiler would not had been able to
resolve the class name. But because always using such long names can be tedious and
may result to all of code bloat, it is common practice to specify the commonly used
namespace in each file of code in the beginning of the file, in USING statements:

405 XSharp

© 2015- 2024 XSharp BV

USING OurCompany.CommonLibrary

FUNCTION Start() AS VOID
 LOCAL oUse AS GeneralUseType
 oUse := GeneralUseType{}

The USING statement instructs the compiler every time it finds a class name that it cannot
resolve, to try resolving it by prefixing it with all the namespace names provided in USING
statements in the given file. Of course if two or more types used in the code have the
same short name with different namespaces, then it is not possible to have a USING
statement for each one of them, as that would lead to a name conflict, making it
impossible for the compiler to distinguish with exact class is used in each case.

Also note that any code between a BEGIN...END NAMESPACE statement, additionally
automatically resolves short type names defined in it to full type names using the
namespace provided in the statement. So it is not necessary to provide a namespace in
the class name in this code:

BEGIN NAMESPACE OurCompany.CommonLibrary
 CLASS GeneralUseType
 END CLASS
 CLASS AnotherClass
 METHOD Test() AS VOID
 LOCAL oUse AS GeneralUseType // not necessary to provide
the namespace
 oUse := GeneralUseType{}
 END CLASS
END NAMESPACE

Implicit namespace lookup

Especially for libraries with the Default namespace option (see above) provided, it is
possible for applications that reference them to use their classes with their short names
without needing to provide USING statements. This can be done by enabling the Enable
Implicit Namespace lookup project option (which maps to the /ins compiler option).
Every such library includes its default namespace as information in an assembly attribute
and when that option is used, the compiler automatically resolves type names also by
using that default namespace in the library. This is used for example in the VOSDK
classes, so all the classes defined in those libraries can be used without the need to
provide USING VO statements, in all files of the applications that reference those libraries.

406X# Documentation

© 2015- 2024 XSharp BV

1.7.7 Types

407 XSharp

© 2015- 2024 XSharp BV

1.7.8 Tuples

Tuple generic data type

A tuple is a data structure that groups multiple data elements in a lightweight data
structure. Tuples can be used as an easy way to represent multiple data elements, pass
them as argument(s) or receive them as a return value, without the need to declare a
complete new class or structure for holding the data set.

For example, the following code uses the generic System.Collections.Generic.Tuple type
to receive multiple values from a function, without the need to declare multiple REF/OUT
parameters or to create a new dedicated type for holding them:

USING System.Collections.Generic

FUNCTION GetCustomerData() AS Tuple<STRING, INT, LOGIC>
 LOCAL oCustomer AS Tuple<STRING, INT, LOGIC>
 oCustomer := Tuple<STRING, INT, LOGIC>{"Nikos", 47, TRUE}
RETURN oCustomer

FUNCTION Start() AS VOID
 LOCAL oCustomer AS Tuple<STRING, INT, LOGIC>
 oCustomer := GetCustomerData()
 ? "Customer name:", oCustomer:Item1
 ? "Age:", oCustomer:Item2
 ? "Is active:", oCustomer:Item3

TUPLE keyword

X# also supports the dedicated keyword TUPLE, which offers an easier syntax for
declaring and working with tuples. The above code can be written in a simpler way with
the TUPLE keyword syntax:

FUNCTION GetCustomerData() AS TUPLE(STRING, INT, LOGIC)
 LOCAL oCustomer AS TUPLE(STRING, INT, LOGIC) // defining the
tuple
 // tuple item types must match the types in the Tuple
definition
 oCustomer := TUPLE{"Nikos", 47, TRUE}
RETURN oCustomer

408X# Documentation

© 2015- 2024 XSharp BV

FUNCTION Start() AS VOID
 LOCAL oCustomer AS (STRING, INT, LOGIC)
 // the TUPLE keyword in the tuple definition can even be
omitted!
 oCustomer := GetCustomerData()
 ? "Customer name:", oCustomer:Item1
 ? "Age:", oCustomer:Item2
 ? "Is active:", oCustomer:Item3

Note that when using the TUPLE keyword, the compiler internally uses the type
System.ValueTuple, instead of the generic type System.Collections.Generic.Tuple. Also
when defining the tuple, the TUPLE keyword can be omitted, thus using the more c#-like
syntax (type1, type2, ...)

Named tuples

The dedicated TUPLE keyword syntax supports also specifying custom names for the
tuple items, instead of using the generic names Item1, Item2 etc. So the code can
become much more readable and close to what it would be like if using a separate new
class for the data:

FUNCTION Start() AS VOID
 LOCAL oCustomer AS TUPLE(Name AS STRING, Age AS INT, IsActive
AS LOGIC)
 // provide names for each item of the tuple
 oCustomer := GetCustomerData()
 ? "Customer name:", oCustomer:Name
 ? "Age:", oCustomer:Age
 ? "Is active:", oCustomer:IsActive

to make code even more self-explanatory, a named tuple can also be instantiated by using
named arguments:

FUNCTION GetCustomerData() AS Tuple(STRING, INT, LOGIC)
 // defining the named tuple with custom item names
 LOCAL oCustomer AS Tuple(Name AS STRING, Age AS INT, IsActive
AS LOGIC)
 // including tuple item names in the tuple instantiation
 oCustomer := TUPLE{Name := "Nikos", Age := 47, IsActive :=
TRUE}
RETURN oCustomer

Defining tuples with VAR

Tuples can also be defined and instantiated at the same time using the VAR keyword:

409 XSharp

© 2015- 2024 XSharp BV

FUNCTION Start() AS VOID
 VAR oTuple := TUPLE{"Nikos", 47, FALSE}
 ? oTuple:Item1, oTuple:Item2, oTuple:Item3 // "Nikos", 47, FALSE

In this case, the data type of each tuple item is inferred from the item types supplied in the
code. In the above sample, the item types are (STRING, INT, LOGIC).

Tuples with the same item types can be assigned to each other (thus copying the item
values from the source tuple to the destination tuple), and the same can be done for
tuples defined with either LOCAL or VAR:

FUNCTION Start() AS VOID
 VAR oTuple := TUPLE{"Nikos", 47, FALSE}
 LOCAL oNew AS TUPLE(STRING, INT, LOGIC)

 oNew := oTuple
 ? oNew:Item1, oNew:Item2, oNew:Item3 // "Nikos", 47, FALSE

When defining a tuple with the VAR keyword, item names can be provided as well:

FUNCTION Start() AS VOID
 VAR oTuple := TUPLE{Name := "Nikos", Age := 47, IsActive :=
FALSE}
 ? oTuple:Name, oTuple:Age, oTuple:IsActive // "Nikos", 47,
FALSE

Finally, when defining a tuple with VAR by using identifiers for the item values, instead of
using literal values, then each item automatically gets a name by the identifier name used
for it:

CLASS CustomerInfo
 EXPORT Description := "Customer description" AS STRING
END CLASS

FUNCTION Start() AS VOID
 LOCAL name := "Unknown Customer" AS STRING
 LOCAL oInfo := CustomerInfo{} AS CustomerInfo

 VAR oTuple := TUPLE{name, oInfo:Description}
 ? oTuple:name // "Unknown Customer"
 ? oTuple:description // "Customer description"

Tuple deconstruction

A tuple can be deconstructed to multiple plain variables in one line of code, using the
(var1, var2, ...) syntax:

410X# Documentation

© 2015- 2024 XSharp BV

FUNCTION Start() AS VOID
 LOCAL oCustomer AS TUPLE(Name AS STRING, Age AS INT)
 oCustomer := TUPLE{"Nikos", 47}

 LOCAL name AS STRING
 LOCAL age AS INT

 (name, age) := oCustomer
 ? name, age // "Nikos", 47

The local variables can also be defined and assigned to the tuple item values in a single
line, with a special LOCAL syntax for tuples:

FUNCTION Start() AS VOID
 LOCAL oCustomer AS TUPLE(Name AS STRING, Age AS INT)
 oCustomer := TUPLE{"Nikos", 47}

 LOCAL (name AS STRING, age AS INT) := oCustomer
 ? name, age // "Nikos", 47
 // You can also deconstruct into existing local variables
without the LOCAL keyword:
 (name, age) := oCustomer

Also the VAR keyword can be used for the tuple deconstruction, in which case the variable
types are inferred from the tuple item types:

FUNCTION Start() AS VOID
 LOCAL oCustomer AS TUPLE(Name AS STRING, Age AS INT)
 oCustomer := TUPLE{"Nikos", 47}

 VAR (name, age) := oCustomer
 ? name, age // "Nikos", 47

411 XSharp

© 2015- 2024 XSharp BV

1.7.9 XML Documentation Comments

In X#, you can create documentation for your code by including XML elements in special
comment fields (indicated by triple slashes) in the source code directly before the code
block to which the comments refer, for example.

/// <summary>
/// This class performs an important function.
/// </summary>
CLASS MyClass
.
.
END CLASS

When you compile with the -doc option, the compiler will search for all XML tags in the
source code and create an XML documentation file. To create the final documentation
based on the compiler-generated file, you can create a custom tool or use a tool such
Sandcastle.

To refer to XML elements (for example, your function processes specific XML elements
that you want to describe in an XML documentation comment), you can use the standard
quoting mechanism (< and >). To refer to generic identifiers in code reference (cref)
elements, you can use either the escape characters (for example, cref="List<T>") or
braces (cref="List{T}"). As a special case, the compiler parses the braces as angle
brackets to make the documentation comment less cumbersome to author when referring
to generic identifiers.

Since we use the same documentation engine that C# does we refer to the C#
documentation for the documentation tags that are allowed:

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/xmldoc/recommended-tags-for-documentation-comments
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/xmldoc/recommended-tags-for-documentation-comments

412X# Documentation

© 2015- 2024 XSharp BV

1.7.10 Strong Typing

413 XSharp

© 2015- 2024 XSharp BV

1.7.11 Runtime Scripting

XSharp 2.8 adds support for Runtime scripting through the ExecScript() function.
Scripting was added for the FoxPro dialect but also works for other dialects.
Inside scripts you will have the full X# language at your disposal.
The first time a script runs it will be compiled. If you run the same script a second time
then the script compiler can reuse the already compiled version of the first script.

An example (FoxPro dialect, MessageBox() is a FoxPro functon)

VAR cScript := 'MessageBox("Hello ExecScript")'
ExecScript(cScript)

Of course scripts can also be multiple lines and can call any function in the runtime and in
your code.
PUBLIC and PRIVATE variables that are visible when your script is started are accessible
by the script.
You can also declare new local variables in the script and use any statement and user
defined command that you would normally use.

We did an online session about scripting in Jan 2021 that shows several example scripts.
See https://www.youtube.com/watch?v=88crZsEiAOg&t=5s for the recording.
One sample script from that demo is

LPARAMETERS oForm
USE employees.dbf
PrintOut(oForm, 'private',MyPrivate, Used(), Alias())
GO TOP
DO WHILE ! Eof()
 PrintOut(oForm, RecNo(), FieldGet(1), FieldGet(2), FieldGet(3))

 SKIP
ENDDO
USE

That script calls a PrintOut function and passes it the form that was received as
parameter. The PrintOut function then adds a line of text to the terminal window that was
passed to the script. The USE, GO TOP and SKIP commands are all UDCs that are
handled by the script compiler without problems.

https://www.youtube.com/watch?v=88crZsEiAOg&t=5s

414X# Documentation

© 2015- 2024 XSharp BV

1.7.12 Calling conventions

Calling conventions are something from the unmanaged world. They describe how
parameters should be passed when you call a function or method and they also describe
who is responsible for adjusting the stack when the called function / method returns.
Different compilers have different default strategies for passing parameters to functions.

Convention Description

STRICT This is the most common calling convention in the C/C++ world. With
this convention parameters are pushed on the stack. Value types are
pushed completely and for reference types the address of the variable is
pushed. When a method is called then also the address of the “this”
object is pushed on the stack.
After the function / method returns then the calling method adjusts the
stack.
This calling convention allows for functions or methods with a variable
number of arguments, like printf(). The caller knows the # of parameters
that were passed, so the calling is the best candidate for adjusting the
stack.
In C/C++ this is also called __cdecl
In VO (and X#) there is also a synonym “ASPEN” for this.

PASCAL This calling convention is used a lot in the Pascal world. It looks a lot like
the STRICT calling convention, but now the function / method that gets
called adjusts the stack when it returns. Of course, this also means that
there cannot be a variable number of arguments. If and when that is
necessary, then usually the last parameter becomes an array of values,
so there still is some flexibility.
In C/C++ this is called the __stdcall calling convention.
This calling convention is used by most functions in the windows API.
In VO this is also called WINCALL or CALLBACK. In 16bits windows
WINCALL was different from PASCAL but 32 bits windows and later
dropped that difference.

THISCALL This is a special variant of the PASCAL calling convention, where the
“this” pointer is not pushed on the stack but passed in a register (usually
the ECX register). Passing the “this” in the register can be faster,
especially when the register is not used for something else, so repeated
calls for the same object to not have to push the “this” pointer. In C/C++
this is called __thisccall

FASTCALL This calling convention tries to pass as many parameters in registers as
possible.
In C/C++ this is called __fastcall.

CLIPPER This is a special calling convention in the Xbase world, where
parameters to a function are (technically) all optional and where you can
also pass more values than you have declared parameters. Originally in
the Xbase languages the calling code would push the values on the
stack and would also pass the parameter count, so the function that is
called “knows” how many parameters are passed.
In .Net there is no real equivalent for that. To emulate the CLIPPER
calling convention we generate a special PARAMS parameter that
contains an array of USUAL values. Parameters of type PARAMS must

415 XSharp

© 2015- 2024 XSharp BV

Convention Description

be the last (or only) parameter in the list of parameters. The Roslyn
compiler (that we use for x#) will automatically wrap all values that are
passed to a function / method with clipper calling convention in an array.
Of course, when you declare a function like this

FUNCTION Foo(a,b,c)

Then you expect that you will have 3 local variables in your code with the
names “a”, “b” and “c”.
The compiler however generates a function with a params argument.
Something like this:

FUNCTION Foo(args PARAMS USUAL[])

Inside the function we then generate local variables with the name of the
parameters that you have declared

LOCAL a := args[1] as USUAL
LOCAL b := args[2] as USUAL
LOCAL c := args[3] as USUAL

In reality, the code is a bit more complex, because you may decide to all
the function with less parameters than were declared. We have to take
that into account.
It looks like this then:

LOCAL numParams := args:Length
LOCAL a := iif(numParams > 0, args[1], NIL) AS USUAL

The names for “numParams” and “args” are generated by the complier
with a special character in them, to make sure that we do not introduce
variable names that conflict with names in your code.
The X# debugger support layer also hides these special variables.

For “normal” managed code, you really only have to deal with 2 calling conventions:
· For untyped methods the compiler uses the CLIPPER calling convention

· For typed methods the compiler there is no difference between STRICT and PASCAL.
They both produce the same code

Only when you call unmanaged code in other DLLs then you need to use one of the other
calling conventions. You have to “know” what the DLL uses. One problem is that quite
often the calling convention in C/C++ code is hidden in a compiler macro.
As a rule of thumb you should use STRICT for C/C++ code and PASCAL for windows api
funtions.
If it does not work (for example, the .Net runtime complains about stack problems), then
switch to the oher calling convention.

416X# Documentation

© 2015- 2024 XSharp BV

1.8 X# Language Reference

This section is a reference to the X# language

X# Language elements

The following table shows reference topics that provide tables of keywords, symbols and
literals used as tokens in X#.

Title Description

Keywords Contains links to information about all X# language keywords.

Expression A list of possible expressions

Symbol and Operators
Contains a table of symbols and operators that are used in
the X# language.

Literals (X#)
Describes the syntax for literal values in X# and how to
specify type information for X# literals.

Commands and
Statements

A List of commands and statements

417 XSharp

© 2015- 2024 XSharp BV

1.8.1 Keywords

The table below has the keywords that are available in the X# language.
· The Keywords in the VO column find their origin in the Visual Objects language. When

the compiler dialect is set to VO then these keywords may be abbreviated (4 letter
minimum)

· The Keywords in the VN column were introduced in Vulcan.NET. These keywords may
never be abbreviated, and most of these keywords are positional, so are only
recognized in certain positions in the language. That also means that these keywords
may be used as Variable Names or Method names

· The Keywords in the X# column were introduced in X#. Just like the VN keywords they
may never be abbreviated and they are also positional.

· The Keywords in the VFP column are FoxPro specific. Please note that many FoxPro
commands are implemented as "User Defined Commands" and their tokens are not
strictly Keywords inside X#.

· The Keywords in the Xb++ column are Xbase++ specific. Please note that many
FoxPro commands are implemented as "User Defined Commands" and their tokens
are not strictly Keywords inside X#.

· Keywords that are listed in the Id column may also be used as an identifier. These are
so called "context sensitive" keywords. You may see in the Visual Studio editor that
these keywords will change color depending on the position in the source.
For example if you start typing PROPERTY the word will be shown in the IDENTIFIER
color:

 But as soon as you continue to complete the PROPERTY definition it will get the
KEYWORD color:

Keyword VO VN X# VFP Xb++ Id

ABSTRAC
T

Y Y

ACCESS Y

ADD Y Y

ALIGN Y Y

418X# Documentation

© 2015- 2024 XSharp BV

Keyword VO VN X# VFP Xb++ Id

AND Y Y

ANNOUNC
E

Y2 Y

ANSI Y Y

ARRAY Y Y1

AS Y

ASCENDI
NG

Y Y

ASPEN Y Y

ASSEMBL
Y

Y

ASSIGN Y

ASSIGNM
ENT

Y Y

ASYNC Y Y

AUTO Y Y

AWAIT Y Y

BEGIN Y

BREAK Y

BY Y Y

BYTE Y Y1

CALLBAC
K

Y Y

CASE Y

CATCH Y

CCALL Y

CCALLNA
TIVE

Y

CHAR Y Y

CHECKE
D

Y Y

CLASS Y

CLIPPER Y Y

419 XSharp

© 2015- 2024 XSharp BV

Keyword VO VN X# VFP Xb++ Id

CODEBL
OCK

Y Y1

CONST Y Y

CONSTR
UCTOR

Y

DATE Y Y1

DECLARE Y Y

DEFAULT Y Y

DEFERRE
D

Y Y

DEFINE Y Y

DELEGAT
E

Y Y

DESCEN
DING

Y Y

DESTRUC
TOR

Y

DIM Y Y

DIMENSIO
N

Y Y

DLLEXPO
RT

Y Y

DO Y

DOWNTO Y Y

DWORD Y Y1

DYNAMIC Y Y

EACH Y Y

ELSE Y

ELSEIF Y

END Y

ENDCASE Y

ENDDO Y

ENDCLAS
S

Y Y

420X# Documentation

© 2015- 2024 XSharp BV

Keyword VO VN X# VFP Xb++ Id

ENDDEFI
NE

Y Y

ENDIF Y

ENDFOR Y2 Y2 Y

ENDFUNC Y2 Y

ENDPRO
C

Y2 Y

ENDSCAN Y2 Y

ENDSEQ
UENCE

Y2 Y

ENDTRY Y2 Y

ENDWITH Y2 Y

ENUM Y Y

EQUALS Y Y

EVENT Y Y

EXIT Y

EXCLUDE Y Y

EXPLICIT Y Y

EXPORT Y

EXPORTE
D

Y Y

EXTERN Y Y

FALSE Y

FASTCAL
L

Y Y

FIELD Y Y

FINAL Y Y

FINALLY Y

FIXED Y Y

FLOAT Y

FOR Y

FOREACH Y Y

421 XSharp

© 2015- 2024 XSharp BV

Keyword VO VN X# VFP Xb++ Id

FOR
EACH

Y2 Y2 Y

FREEZE ` Y Y

FROM Y Y

FUNC Y Y

FUNCTIO
N

Y

GET Y Y

GLOBAL Y Y

GROUP Y Y

HELPSTRI
NG

Y Y

HIDDEN Y

IF Y

IIF Y

IMPLEME
NTS

Y Y

IMPLICIT Y Y

IMPLIED Y Y

IN Y Y

INHERIT Y Y

INITONLY Y Y

INLINE Y Y

INSTANCE Y Y

INT Y Y1

INT64 Y Y1

INTERFAC
E

Y Y

INTO Y Y

INTERNAL Y Y

INTRODU
CE

Y Y

IS Y

422X# Documentation

© 2015- 2024 XSharp BV

Keyword VO VN X# VFP Xb++ Id

JOIN Y Y

LET Y Y

LOCAL Y

LOCK Y Y

LONG Y Y1

LONGINT Y Y1

LOOP Y

LPARAME
TERS

Y Y

MEMBER Y

MEMVAR Y

METHOD Y

MODULE Y Y

NAMEOF Y Y

NAMESPA
CE

Y Y

NEW Y Y

NEXT Y

NIL Y

NOINIT Y Y

NOP Y Y

NOSAVE Y Y

NOT Y Y

NULL Y

NULL_AR
RAY

Y

NULL_CO
DEBLOCK

Y

NULL_DA
TE

Y

NULL_OB
JECT

Y

NULL_PSZ Y

423 XSharp

© 2015- 2024 XSharp BV

Keyword VO VN X# VFP Xb++ Id

NULL_PT
R

Y

NULL_ST
RING

Y

NULL_SY
MBOL

Y

OBJECT Y Y1

OFF Y

OLEPUBLI
C

Y Y

ON Y Y

OPERAT
OR

Y Y

OPTIONS Y

OR Y Y

ORDERB
Y

Y Y

OTHERWI
SE

Y

OVERRID
E

Y Y

OUT Y

PARAMET
ERS

Y

PARAMS Y Y

PARTIAL Y Y

PASCAL Y Y

PCALL Y

PCALLNA
TIVE

Y

PCOUNT Y

POP Y

PRIVATE Y

PROC Y Y

424X# Documentation

© 2015- 2024 XSharp BV

Keyword VO VN X# VFP Xb++ Id

PROCED
URE

Y

PROPER
TY

Y Y

PROTECT
ED

Y

PSZ Y Y1

PTR Y Y1

PUBLIC Y

PUSH Y

REAL4 Y Y1

REAL8 Y Y1

RECOVE
R

Y

REF Y

REMOVE Y Y

REPEAT Y

REQUEST Y2 Y

RETURN Y

SCOPE Y Y

SEALED Y Y

SELECT Y Y

SELF Y

SEQUEN
CE

Y Y

SET Y Y

SHARED Y Y

SHARING Y Y

SHORT Y Y1

SHORTIN
T

Y Y1

SIZEOF Y

STATIC Y

425 XSharp

© 2015- 2024 XSharp BV

Keyword VO VN X# VFP Xb++ Id

STEP Y Y

STRICT Y Y

STRING Y Y1

STRUCT Y

STRUCTU
RE

Y Y

SUPER Y

SWITCH Y Y

SYMBOL Y Y1

SYNC Y Y

THEN Y Y

THISCALL Y Y

TO Y

THROW Y

TRUE Y

TRY Y Y

TUPLE Y Y

TYPEOF Y

UINT64 Y Y1

UNCHECK
ED

Y Y

UNICODE Y Y

UNION Y Y

UNSAFE Y Y

UNTIL Y Y

UPTO Y Y

USING Y Y

USUAL Y Y1

VALUE Y Y

VAR Y Y

VIRTUAL Y Y

VOID Y Y1

426X# Documentation

© 2015- 2024 XSharp BV

Keyword VO VN X# VFP Xb++ Id

VOLATILE Y Y

VOSTRUC
T

Y Y

WARNING
S

Y

_WINCALL Y Y

WHEN Y Y

WHERE Y Y

WHILE Y

WORD Y Y1

XOR Y Y

YIELD Y Y

__ARGLIS
T

Y

_AND Y

_CAST Y

_CODEBL
OCK

Y

_DLL Y

_FIELD Y

_GETFPA
RAM

_GETMPA
RAM

_INIT1,
_INIT2,
_INIT3

Y

_NOT Y

_OR Y

_SIZEOF Y

_TYPEOF Y

_XOR Y

.AND. Y

.F. Y

427 XSharp

© 2015- 2024 XSharp BV

Keyword VO VN X# VFP Xb++ Id

.NOT. Y

.OR. Y

.T. Y

.XOR. Y

... Y

#comman
d

Y

#define Y

#else Y

#endif Y

#endregion Y

#ifdef Y

#ifndef Y

#include Y

#line Y

#pragma Y

#region Y

#translate Y

#undef Y

#using Y

#warning Y

#xcomma
nd

Y

#xtranslate Y

#ycomma
nd

Y

#ytranslate Y

1 These type names can only be used as identifiers when the dialect is not Core, VO
or Vulcan.
2 This keyword is actually defined by a preprocessor command

428X# Documentation

© 2015- 2024 XSharp BV

1.8.2 Types

The X# language knows the following data types

Type Description

Native Types

xBase Specific Types

User Defined Types

1.8.2.1 Simple (Native) Types

By simple data types we mean data types that are not primarily used to hold other data,
e.g. Objects, Structures, Arrays, etc., that we will see later.

Most data types are identical across all .Net languages. This contributes to the ease with
which one can use assemblies written in different .Net languages within one application,
one of the main The simple data types come in various categories; some include several
types. The following table just groups data types by category:

Type Category .Net Name Size in Bits

BYTE Unsigned Integer Byte 8

CHAR Character Char 16

DWORD Unsigned Integer UInt32 32

DECIMAL Numeric Decimal 96

DYNAMIC Multi purpose Dynamic Reference (32 or 64
bits)

INT Signed Integer Int32 32

INT64 Signed Integer Int64 64

LOGIC Logic Boolean 8

LONGINT Signed Integer Int32 32

OBJECT Multi purpose Object Reference (32 or 64
bits)

PTR Multi purpose Intptr Reference (32 or 64
bits)

REAL4 Floating Point Single 32

REAL8 Floating Point Double 64

SBYTE Signed Integer SByte 8

429 XSharp

© 2015- 2024 XSharp BV

Type Category .Net Name Size in Bits

SHORT Signed Integer Int16 16

STRING String String Reference (32 or 64
bits)

UINT64 Unsigned Integer Uint64 64

VOID Not a type Void 0

WORD Unsigned Integer UInt16 16

1.8.2.1.1 BYTE

The BYTE keyword denotes an integral type that stores unsigned 8-bit values with values
that range from 0 to 255.

1.8.2.1.2 CHAR

The CHAR keyword denotes an type to represent a Unicode character. The Unicode
Standard identifies each Unicode character with a unique 21-bit scalar number called a
code point, and defines the UTF-16 encoding form that specifies how a code point is
encoded into a sequence of one or more 16-bit values. Each 16-bit value ranges from
hexadecimal 0x0000 through 0xFFFF and is stored in a Char structure. The value of a
Char object is its 16-bit numeric (ordinal) value.

1.8.2.1.3 DECIMAL

The DECIMAL keyword describes the .Net System.Decimal type.
The Decimal value type represents decimal numbers ranging from positive
79,228,162,514,264,337,593,543,950,335 to negative
79,228,162,514,264,337,593,543,950,335. The Decimal value type is appropriate for
financial calculations that require large numbers of significant integral and fractional digits
and no round-off errors. The Decimal type does not eliminate the need for rounding.
Rather, it minimizes errors due to rounding. For example, the following code produces a
result of 0.9999999999999999999999999999 instead of 1.

1.8.2.1.4 DWORD

The DWORD keyword denotes an integral type that stores unsigned 32-bit values with
values ranging from 0 to 4,294,967,295.

1.8.2.1.5 DYNAMIC

The dynamic type enables the operations in which it occurs to bypass compile-time type
checking. Instead, these operations are resolved at run time. The dynamic type simplifies
access to COM APIs such as the Office Automation APIs, and also to dynamic APIs such
as IronPython libraries, and to the HTML Document Object Model (DOM).

430X# Documentation

© 2015- 2024 XSharp BV

Type dynamic behaves like type object in most circumstances. However, operations that
contain expressions of type dynamic are not resolved or type checked by the compiler.
The compiler packages together information about the operation, and that information is
later used to evaluate the operation at run time. As part of the process, variables of type
dynamic are compiled into variables of type object. Therefore, type dynamic exists only at
compile time, not at run time.

Please not that to use the DYNAMIC type in your app you have to include the
Microsoft.CSharp DLL at this moment, and the property names and method names are
case sensitive at this moment.

1.8.2.1.6 INT

The INT or LONG keyword denotes an integral type that stores signed 32-bit values with
values that range from negative 2,147,483,648 (which is represented by the
Int32.MinValue constant) through positive 2,147,483,647 (which is represented by the
Int32.MaxValue constant) The .NET Framework also includes an unsigned 32-bit integer
value type, UInt32 or DWORD, which represents values that range from 0 to
4,294,967,295.

1.8.2.1.7 INT64

The INT64 keyword denotes an integral type that stores signed 64-bit values with values
that range from negative 9,223,372,036,854,775,808 through positive
9,223,372,036,854,775,807

1.8.2.1.8 LOGIC

The LOGIC keyword represents the .Net Boolean type. This type can have either of two
values: true, or false.

If you have members of type LOGIC in VOSTRUCT or UNION types then these will not be
represented with .Net Boolean types because the size of these Boolean is 1 byte but in
the Windows API LOGIC values are represented with 4 bytes. Therefore the compiler will
replace these with a special type __WinBool which has 4 bytes and has implicit
converters between Logic and __WinBool.

1.8.2.1.9 OBJECT

The OBJECT keyword is a generic type from which all objects in .Net automatically inherit.

X# does not require a class to declare inheritance from Object because the inheritance is
implicit.

Because all classes in the .NET Framework are derived from Object, every method
defined in the Object class is available in all objects in the system. Derived classes can
and do override some of these methods, including:

· Equals - Supports comparisons between objects.

· Finalize - Performs cleanup operations before an object is automatically reclaimed.

431 XSharp

© 2015- 2024 XSharp BV

· GetHashCode - Generates a number corresponding to the value of the object to support
the use of a hash table.

· ToString - Manufactures a human-readable text string that describes an instance of the
class.

1.8.2.1.10 PTR

The PTR keyword denotes an integral type that stores a pointer to a memory location. It is
usually compiled to the System.IntPtr .Net Type.
Please note that the size of the PTR depends on the underlying operating system and it
will also be different when your application runs in x86 or x64 mode.
In Visual Objects PTR is always 32 bits. Many people have written code that CAST INT
values to PTR and back. This works because both values are 32 bit in VO.
Safe code in .Net cannot do this, since the size of PTR is not fixed.

1.8.2.1.11 REAL4

The REAL4 keyword denotes a single precision 32 bit number with values ranging from
negative 3.402823e38 to positive 3.402823e38, as well as positive or negative zero,
PositiveInfinity, NegativeInfinity, and not a number (NaN). It is intended to represent values
that are extremely large (such as distances between planets or galaxies) or extremely
small (such as the molecular mass of a substance in kilograms) and that often are
imprecise (such as the distance from earth to another solar system). The REAL4 type
complies with the IEC 60559:1989 (IEEE 754) standard for binary floating-point arithmetic.

1.8.2.1.12 REAL8

The REAL8 keyword denotes an double precision 64-bit number with values ranging from
negative 1.79769313486232e308 to positive 1.79769313486232e308, as well as positive
or negative zero, PositiveInfinity, NegativeInfinity, and not a number (NaN). It is intended to
represent values that are extremely large (such as distances between planets or galaxies)
or extremely small (the molecular mass of a substance in kilograms) and that often are
imprecise (such as the distance from earth to another solar system), The Double type
complies with the IEC 60559:1989 (IEEE 754) standard for binary floating-point arithmetic.

1.8.2.1.13 SBYTE

The SBYTE keyword denotes an integral type that stores signed 8-bit values with values
ranging from negative 128 to positive 127.

1.8.2.1.14 SHORT

The SHORT keyword denotes an integral type that stores signed 16-bit values with values
ranging from negative 32768 through positive 32767.

432X# Documentation

© 2015- 2024 XSharp BV

1.8.2.1.15 STRING

A STRING is a sequential collection of Unicode characters that is used to represent text. A
String object is a sequential collection of System.Char objects that represent a string. The
value of theString object is the content of the sequential collection, and that value is
immutable (that is, it is read-only). For more information about the immutability of strings,
see the Immutability and the StringBuilder class section later in this topic. The maximum
size of a String object in memory is 2 GB, or about 1 billion characters.

Please note that you cannot CAST strings to PSZ like you can in Visual Objects. The PSZ
type consists of 8 bits per character where the STRING type has 16 bits per character.

1.8.2.1.16 UINT64

The UINT64 keyword denotes an integral type that stores unsigned 64-bit values with
values ranging from 0 to 18,446,744,073,709,551,615.

1.8.2.1.17 VOID

VOID specifies a return value type for a function or method that does not return a value.
Procedures implicitly define a return type of VOID

1.8.2.1.18 WORD

The WORD keyword denotes an integral type that stores unsigned 16-bit values with
values ranging from 0 to 65535.

1.8.2.2 xBase Specific Types

Type Description

ARRAY

BINARY

CODEBLOCK

CURRENCY

DATE

FLOAT

PSZ

SYMBOL

USUAL

433 XSharp

© 2015- 2024 XSharp BV

1.8.2.2.1 ARRAY

The ARRAY type is a dynamic array of USUAL values. Each element of the array may
contain another array, so arrays can be multidimensional.

Implementation

The ARRAY type is implemented in the class XSharp.__Array.
The Usualtype of ARRAY has the value 5

1.8.2.2.2 ARRAY (FoxPro)

The FoxPro dialect in X# has its own Array type. This type is not declared with an AS
keyword, but the array type is derived from the context.
The following lines of code all generate a FoxPro compatible array:

LOCAL ARRAY aTest(1,2) // LOCAL ARRAY
PUBLIC ARRAY aPublicArray[10] // PUBLIC ARRAY
DIMENSION AnotherArray(3,4) // DIMENSION with parentheses , but
angled brackets are supported too
DECLARE ThirdArray[10] // DIMENSION with angled brackets, but
parentheses are supported too

The elements of a Foxpro compatible array are all USUAL.
FoxPro arrays cannot be dynamically sized with AAdd(). To resize them you need to add a
DIMENSION statement with new dimensions.
Internally FoxPro arrays are single dimensional arrays. But you can also (re)dimension
them as two dimensional.
So the 3rd array in this example can also be treated as a single dimensional array of 12
elements.

We advise to use angled brackets to access elements of a FoxPro array. This is not
ambiguous and the compiler can resolve that at compile time.
If you want to use parentheses to access FoxPro array elements you need to enable
the /fox compiler option. This compiler option also enables the behavior that assigning a
single value to a FoxPro array will result in assigning that value to all elements in the array.

Internally FoxPro arrays are implemented as a class that derives from the generic XBase
array type.
So all functions in the X# runtime that take an array as parameter will also accept a
FoxPro array.
When there is different behavior between the FoxPro implementation of a function or the
Xbase implementation then this will be handled at runtime.

Implementation

The ARRAY type is implemented in the class XSharp.__FoxArray.
The Usualtype of ARRAY has the value 5

434X# Documentation

© 2015- 2024 XSharp BV

1.8.2.2.3 BINARY

The BINARY type is represented a series of bytes.

· Binary literals are written as 0h12345678abcdef

· The value behind 0h is a sequence of hex numbers. Each pair of hex numbers (nibble)
represents 1 byte. There must be an even number of 'nibbles'.

· The binary literals are encoded in an array of bytes. In the Core dialect the binary literals
are represented as a byte[]. In the other dialects the binary literals are a new type
(XSharp.__Binary) which can be specified as the new BINARY keyword.

· The UsualType() of BINARY is 29.

· The XSharp.__Binary type has operators to add a string to a binary and add a binary to a
string.
Binary + String will return a Binary
String + Binary will return a String
Binary + Binary will return a Binary.
There are also comparison operators on the Binary type (>, <, >=, <=). These will use
the string comparison routines that are defined with SetCollation() with the exception
that an = comparison with a single equals operator does not return TRUE when the
Right hand side is shorter than the Left hand side and the first bytes match.

· Conversions from Binary to String are done with the Encoding.GetBytes() and
Encoding.GetString() functions for the current Windows Encoding.
That means that on single byte code pages each character in the string will result in one
byte and each byte will result in one character.
For multibyte code pages (Chinese, Japanese, Korean etc) some characters will result
in more than one byte and some byte pairs will result in a single character.

· There are implicit operators that convert a BINARY to a byte[] and back. There are also
implicit operators that convert a Binary to a String and back.

· When compiling with the Vulcan Runtime then the byte[] array is stored in a USUAL
value for the non core dialects.

Implementation

The BINARY type is implemented in the class XSharp.__Binary
The Usualtype of BINARY has the value 29

1.8.2.2.4 CODEBLOCK

The codeblock type was introduced in the XBase language in the Clipper days.
They can be seen like unnamed functions. They can have 0 or more parameters and
return a value.
The most simple codeblock that returns a string literal looks like this

FUNCTION Start() AS VOID
LOCAL cb AS CODEBLOCK
cb := {|| "Hello World"}
? Eval(cb)
WAIT

RETURN

To use a codeblock you call the Eval() runtime function

435 XSharp

© 2015- 2024 XSharp BV

Codeblocks are not restricted to fixed expressions, because they can use parameters.
The following codeblock adds 2 parameters.

FUNCTION Start() AS VOID
LOCAL cb AS CODEBLOCK
cb := {|a,b| a + b}
? Eval(cb, 1,2)
? Eval(cb, "Helllo ", "World")
WAIT
RETURN

As you can see in the example, we can both use numeric parameters here or string
parameters. Both work. That is because the parameters to a codeblock are of the so
called USUAL type. They can contain any value. Of course the following will fail because
the USUAL type does not support multiplying strings:

FUNCTION Start() AS VOID
LOCAL cb AS CODEBLOCK
cb := {|a,b| a * b}
? Eval(cb, 1,2)
? Eval(cb, "Helllo ", "World")
WAIT
RETURN

More complicated codeblocks

Codeblocks are not restricted to single expressions.
They may also contain a (comma seperated) list of expressions. The value of the last
expression is the return value of the codeblock:

FUNCTION Start() AS VOID
LOCAL cb AS CODEBLOCK
cb := {|a,b,c| QOut("value 1", a) , QOut("value 2", b),
QOut("value 3", c), a*b*c}
? Eval(cb,10,20,30)
WAIT
RETURN

XSharp has also introduced codeblocks that contain of (lists of) statements:

FUNCTION Start() AS VOID
LOCAL cb AS CODEBLOCK
cb := {| a,b,c|
 ? "value 1" ,a
 ? "value 2" ,b

436X# Documentation

© 2015- 2024 XSharp BV

 ? "value 3" ,c
 RETURN a*b*c
 }
? Eval(cb,10,20,30)
WAIT
RETURN

Please note

· The first statement should start on a new line after the
parameter list

· There should be NO semi colon after the parameter list.

· The statement list should end with a RETURN statement.

Implementation

The CODEBLOCK type is implemented in the abstract class XSharp.Codeblock
The Usualtype of CODEBLOCK has the value 9.

In your code you will never have objects of type XSharp.Codeblock.
Compile time codeblocks are translated into a subclass of XSharp.Codeblock
Runtime (macro compiled) codeblocks are translated into a subclass of the class
XSharp._Codeblock which inherits from Codeblock.
Depending on the type of the runtime codeblock this is either an instance of the
MacroCodeblock class or of the MacroMemVarCodeblock class (when the macro creates
dynamic memory variables)

1.8.2.2.5 CURRENCY

· The currency type stored numbers with a precision of 4 decimals. Internally it contains a
.Net decimal value, rounded to 4 decimals.

·

Implementation

The CURRENCY type is implemented in the structure XSharp.__Currency
The Usual type of CURRENCY is 28.

1.8.2.2.6 DATE

The DATE type is an integral type that stores a date value.
The DATE is internally stored in 3 fields (DAY, MONTH and YEAR) that occupy a total of
32 bits in memory.

Implementation

The DATE type is implemented in the structure XSharp.__Date
The Usual type of DATE is 2.

437 XSharp

© 2015- 2024 XSharp BV

1.8.2.2.7 FLOAT

The FLOAT type is a type that stores a 64-bit floating point value, along with formatting
information. The precision and range of a FLOAT are the same as that from a REAL8,
since the value of the float is stored in a REAL8.

Implementation

The FLOAT type is implemented in the structure XSharp.__Float
The Usual type of FLOAT is 3.

1.8.2.2.8 PSZ

The PSZ type is a pointer type that points to a null terminated sequence of zero or more
bytes, typically representing a printable character string. This type is for backward
compatibility only. Don't use this type in new code unless you have to.

Implementation

The PSZ type is implemented in the class XSharp.__Psz
The Usual type of PSZ is 17.

1.8.2.2.9 SYMBOL

The SYMBOL type is a 32-bit integer that represents an index into an array of strings.

Since a SYMBOL represents a string, there is a built-in implicit conversion from SYMBOL
to STRING, and from STRING to SYMBOL.

Since the underlying value of a SYMBOL is an integer, there is a built-in explicit conversion
from SYMBOL to DWORD and from DWORD to SYMBOL. A cast is necessary in order
to perform explicit conversions.

Unlike with Visual Objects, the number of symbols is not limited by available memory or
symbols that are declared in another library.

Literal symbols consist of the '#' character followed by one or more alphanumeric
character. The first character must be a letter or an underscore.

Some examples of literal symbols are shown below:
#XSharp
#XSHARP

Note that although literal symbols can be specified with lower or upper case letters, the
strings they represent are converted to uppercase at compile time, for compatibility with
Visual Objects. It is not possible to specify a literal symbol that contains lower case
letters, the StringToAtom() function must be used.

The compiler-defined constant NULL_SYMBOL can be used to express a null symbol, i.e.
a symbol that has no associated string value.

Implementation

The SYMBOL type is implemented in the structure XSharp.__Symbol
The Usual type of SYMBOL is 10.

438X# Documentation

© 2015- 2024 XSharp BV

1.8.2.2.10 USUAL

The USUAL type is datatype that can contain any data type. It consists internally of a type
flag and a value. This type can store any value.
The compiler treats this type in a special way. The compiler will not warn you when you
assign a value of type USUAL to another type, but will automatically generate the
necessary conversion operation/

USUAL is provided primarily for compatibility with untyped code. It is not recommended for
use in new code because the compiler cannot perform any type checking on expressions
where one or more operands are USUAL. Any data type errors will only be discovered at
runtime.

Locals, parameters and fields declared as USUAL also incur considerably more runtime
overhead than strongly typed variables.

The literal value NIL may be assigned into any storage location typed as USUAL. The
value NIL indicates the absence of any other data type or value, and is conceptually
equivalent to storing NULL into a reference type. NIL is the default value for a local USUAL
variable that has not been initialized.

When the left operand of the ':' operator is a USUAL, the compiler will generate a late
bound call to the method, field or property specified as the right operand. This call may fail
if the value contained in the USUAL at runtime does not have such a member, the
member type is incorrect or inaccessible, or if the name evaluates to a method and the
number of parameters or their types is incorrect. The /lb compiler option must be enabled
in order to use a USUAL as the left operand of the ':' operator, otherwise a compile-time
error will be raised.

Numeric operations and USUAL variables of mixed types.

When you combine 2 USUAL variables in a numeric operation then the type of the result is
derived from the types of operands.
The leading principle has been that we try not to loose decimals.

The generic rule is:
· When the Left Hand Side is fractional then the result is also fractional of the type of the

LHS
· When the LHS is NOT fractional and the Right Hand Side (RHS) is fractional then the

result is the type of the RHS
· When both sides are integral then the result has the type of the largest of the two.

LHS \
R
H
S

LONG INT64 FLOAT CURRENC
Y

DECIMAL

LONG LONG INT64 FLOAT CURRENC
Y

DECIMAL

INT64 INT64 INT64 FLOAT CURRENC
Y

DECIMAL

439 XSharp

© 2015- 2024 XSharp BV

FLOAT FLOAT FLOAT FLOAT FLOAT FLOAT

CURRENCY CURRENC
Y

CURRENC
Y

CURRENC
Y

CURRENC
Y

CURRENC
Y

DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL

Implementation

The USUAL type is implemented in the structure XSharp.__Usual

1.8.2.3 User defined Types

The X# language allows you to define your own types (in fact the XBase Specific types
have all been defined that way).
The language has the following keywords that define User defined Types.

Type Description

CLASS Defines a class, using a generic syntax
that is available in all dialect.

CLASS (FoxPro syntax) Defines a class, using the FoxPro specific
syntax.

CLASS (Xbase++ syntax) Defines a class, using the Xbase++
specific syntax.

DELEGATE Defines a delegate, a description of a
method or a function.

ENUM Defines an enum, a list of possible options.

INTERFACE Defines an interface.

STRUCTURE Defines a structure, a value type

UNION Defines a Union, a special kind of structure.
Only available in the VO and Vulcan
dialects.

VOSTRUCT Defines a VOStruct, a special kind of
structure. Only available in the VO and
Vulcan dialects.

440X# Documentation

© 2015- 2024 XSharp BV

1.8.3 Literals

The X# language knows the following literal types

Keyword Description

Char Literals

Date Literals

Logic Literals

Macros

NULL Literals

Numeric Literals

String Literals

Symbol Literals

1.8.3.1 Char Literals

There are different notations for a char literal depending on the dialect selected.
In the many dialects the single quotes are string delimiters and therefore the 'c' prefix is
needed for character literals.
Only in the Core and Vulcan dialects single quotes are always reserved for character
literals

Literal VO, XPP, FoxPro &
Harbour

Vulcan & Core

c'<char>' or c"<char>" Char literal* Char literal*

'<char>' String literal Char literal*

The <char> literals in the table that are marked with an asterisk (*) may contain a special
escape code

Character Description

Character that does NOT start with a
backslash

Normal character

\\ Backslash

\" Double quote

\' Single quote

\0 0 character

\a Alert

441 XSharp

© 2015- 2024 XSharp BV

\b Backspace

\f Form feed

\n Line feed

\r New Line

\t Tab

\v Vertical tab

\x HEXDIGIT(1-4) Hex number of character. 1-4 hex digits

\u HEXGDIGIT (4 or 8) Unicode number of character. 4 or 8 hex
digits

1.8.3.2 String Literals

There are a couple of different string types inside X#. For normal strings the notation can
be different for different dialects:

Literal VO, FoxPro & Harbour Vulcan & Core

'<char>' String literal Char literal*

'<char>...<char>' String literal Not Supported

"<char>...<char>" String literal String literal

e"<char>...<char>" Extended string literal* Extended string literal*

i"<char>..
<char>{expression}"

Interpolated string literal Interpolated string literal

ei"<char>..
<char>{expression}" or
ie"<char>..
<char>{expression}"

Extended interpolated string
literal*

Extended interpolated string
literal*

The <char> literals in the table that are marked with an asterisk (*) may contain a special
escape code

Character Description

Character that does NOT start with a
backslash

Normal character

\\ Backslash

\" Double quote

\' Single quote

\0 0 character

\a Alert

\b Backspace

442X# Documentation

© 2015- 2024 XSharp BV

\f Form feed

\n Line feed

\r New Line

\t Tab

\v Vertical tab

\x HEXDIGIT(1-4) Hex number of character. 1-4 hex digits

\u HEXGDIGIT (4 or 8) Unicode number of character. 4 or 8 hex
digits

1.8.3.3 Date Literals

Date literals are formatted

YYYY.MM.DD

or alternatively
 {^YYYY-MM-DD}

DateTime Literals can be constructed with the followin syntax
{^YYYY-MM-DD HH:MM:SS}.

Examples:

 2000.01.01
 2012.02.29
 2015.09.25
 // foxpro date and datetime literals
 {^2019.02.28}
 {^2020.02.29 23:59:59}

Date and DateTime literals are supported in all dialects. In the Core dialect both date and
datetime literals will be translated to a DateTime value. In the other dialects the Date
literals are translated to a Date value.
Of course you can also use runtime functions to construct a literal, such as
STOD("20150925") or ConDate(2019,9,25) but a literal is more efficient.

1.8.3.4 Logic Literals

X# uses the following Logical literals.

Value Description

TRUE or .T. or .Y. Logical TRUE

FALSE or .F. or .N. Logical FALSE

443 XSharp

© 2015- 2024 XSharp BV

1.8.3.5 Null Literals

X# uses the following NULL literals. They indicate the absense of a value.
Some of these literals require the runtime.

Value Description Requires Runtime

NULL "Multi purpose" NULL. Can
be used for OBJECT type
and Pointer types.

N

NULL_ARRAY Null reference to the xBase
ARRAY type

Y

NULL_CODEBLOCK Null reference to the xBase
CODEBLOCK type

Y

NULL_DATE Empty date (0000-00-00) Y

NULL_OBJECT Null reference to an
OBJECT value

N

NULL_PSZ Null PSZ value Y

NULL_PTR Null PTR value N

NULL_STRING Null reference to a string.
When the compiler
option /vo2 is used then this
will become the equivalent
of String.Empty

N

NULL_SYMBOL NULL reference to the
xBase SYMBOL type

Y

.NULL. This FoxPro literal null is
translated to a NULL
reference

N

1.8.3.6 Numeric Literals

The X# language knows the following numeric literal types

Keyword Description

Integer Literals

Real Liteals

444X# Documentation

© 2015- 2024 XSharp BV

1.8.3.6.1 Integer Literals

Literal INT values may be specified in decimal, hexadecimal or binary notation:

12345
0x1234ABCD
0b010010101

Integer literals may have one of the following suffixes:

Suffix

L or l Signed 32 bits integer

U or u Unsigned integer

1.8.3.6.2 Floating point Literals

Single or double precision literals may be used to store numeric values in your code.

123.456
123.0
0.123
.123
123.456e+7
123.456e-7
$123.45

Real literals may have one of the following suffixes:

Suffix

S or s Single precision (REAL4)

D or d Double precision (REAL8)

M or m Decimal

Floating point literals without suffix are stored as REAL8, unless you have specified
the /vo14 compiler option, in which case they are stored as FLOAT literals.

Prefix

$ Currency Literal

445 XSharp

© 2015- 2024 XSharp BV

1.8.3.7 Symbol Literals

Symbol literals consist of the '#' character followed by one of more alphanumeric
characters

#XSharp
#AnExample

Even though the examples above are written in mixed case, the compiler will treat them
as all uppercase.
Symbol literals are compiled only once by the X# compiler for performance reasons.
Each .Net assembly created by the X# compiler will have a special, compiler generated,
class that contains all the literal symbols found in that assembly.
These literals are initialized at startup and stored in the symbol table in the runtime.

1.8.3.8 Escape codes

The <char> literals in the table that are marked with an asterisk (*) may contain a special
escape code

Character Description

Character that does NOT start with a
backslash

Normal character

\\ Backslash

\" Double quote

\' Single quote

\0 0 character

\a Alert

\b Backspace

\f Form feed

\n Line feed

\r New Line

\t Tab

\v Vertical tab

\x HEXDIGIT(1-4) Hex number of character. 1-4 hex digits

\u HEXGDIGIT (4 or 8) Unicode number of character. 4 or 8 hex
digits

446X# Documentation

© 2015- 2024 XSharp BV

1.8.3.9 Binary Literals

Binary literals are written as 0h12345678abcdef
The value behind 0h is a sequence of hex numbers. Each pair of hex numbers (nibble)
represents 1 byte. There must be an even number of 'nibbles'.
The compiler compiles these literals into a byte[] array which is stored into a variable of
the type BINARY

447 XSharp

© 2015- 2024 XSharp BV

1.8.4 Commands and Statements

The X# language knows commands and statements. The difference between these two
is:
· Statements are defined by the compiler. Examples are the declarations of

functions,local variables and control structures such as IF statements and FOR
statements

· Commands are defined in a header file and are preprocessed by the compiler into
function calls. Examples of a Command are the USE command and APPEND BLANK
command

Statements are available in almost all dialects, with only a few exceptions.
The available commands are very much dependent on the dialect. For example in the
Core dialect no commands are available at all. Most commands have optional parameters
and depend on the X# runtime types such as USUAL

This reference lists both the commands that are 'built-in' into the compiler and commands
that are defined as default 'User Defined Commands' in STD.UDC.
Some commands are marked with an asterisk as 'deprecated'. They may not be available
in future versions of %APP%

Built-in
Statements

Commands in
header file

Commands in
header file

Grouped by
category

#ifdef #else #endif
#ifndef #else #endif
?|??
\|\\
_DLL
ACCESS
ASSIGN
BEGIN SEQUENCE
BREAK
CLASS
DECLARE
DELEGATE
DEFINE
DO*
DO CASE
DO WHILE
ENUM
EXIT
FIELD
FOR
FOREACH
FUNCTION
GLOBAL
IF
LOCAL
LOOP
MEMVAR
METHOD
PARAMETERS
PRIVATE

ACCEPT
APPEND BLANK
APPEND FROM
AVERAGE
CANCEL
CLEAR ALL*
CLEAR MEMORY*
CLOSE
COMMIT
CONTINUE
COPY FILE
COPY STRUCTURE
COPY STRUCTURE
EXTENDED
COPY TO
COUNT
CREATE
CREATE FROM
DEFAULT
DELETE
DELETE FILE
DELETE TAG
DIR
ERASE
EXTERNAL*
FIND
GO
INDEX
JOIN
LOCATE

SAVE*
SEEK
SELECT
SET ANSI
SET CENTURY
SET COLLATION
SET COLOR
SET DATE
SET DATE FORMAT
SET DECIMALS
SET DEFAULT
SET DELETED
SET DESCENDING
SET DIGITFIXED
SET DIGITS
SET DRIVER
SET EPOCH
SET EXCLUSIVE
SET FILTER
SET FIXED
SET INDEX
SET INTERNATIONAL
SET MEMOBLOCK
SET OPTIMIZE
SET ORDER
SET PATH
SET RELATION
SET SCOPE
SET SCOPEBOTTOM
SET SCOPETOP

Comment
Concurrency Control
Database
Date
Entity Declaration
Environment
File
Index/Order
International
Memory Variable
Numeric
Program Control
Runtime Declaration
Terminal Window
Variable Declaration

448X# Documentation

© 2015- 2024 XSharp BV

PROCEDURE
PUBLIC
REPEAT
RETURN
STATIC
STRUCTURE
TEXT
UNION
VOSTRUCT

NOTE
PACK
QUIT
RECALL
REINDEX
RELEASE*
RENAME
REPLACE
RESTORE*
RUN

SET SOFTSEEK
SET UNIQUE
SKIP
SORT
STORE
SUM
TOTAL
UNLOCK
UPDATE
USE
WAIT
ZAP

1.8.4.1 Identifiers

Identifiers in X# appear on many places in the language. They consist of a character
followed by one or more characters, numbers or digits. The lexer definition for identifiers is
below. As you can see we also allow 'special characters' and 'unicode characters' , but in
general that is not recommended.

New keywords that are introduced in Vulcan and X# (see the keyword table) can also be
used as Identifier
When an identifier must be used that has the same value as a keyword, then you can
prefix the identifier with a double @@ sign, like in the following example.
This is not recommended. But it can happen that code in an external DLL has properties
or method names that are keywords in X#. In that case using the @@ prefix can work too.

LOCAL @@Class as STRING
LOCAL @@Local as LOGIC

ID : IDStartChar IDChar*
 ;

fragment IDStartChar: 'A'..'Z' | 'a'..'z'
 | '_'
 | '\u00C0'..'\u00D6'
 | '\u00D8'..'\u00F6'
 | '\u00F8'..'\u02FF'
 | '\u0370'..'\u037D'
 | '\u037F'..'\u1FFF'
 | '\u200C'..'\u200D'
 ;

fragment IDChar : IDStartChar
 | '0'..'9'
 | '\u00B7'
 | '\u0300'..'\u036F'
 | '\u203F'..'\u2040'

449 XSharp

© 2015- 2024 XSharp BV

 ;

1.8.4.2 Blocks and Namespaces

There are several block statements that allow you to group a block of code. Variables
declared inside a block are only visible for the duration of the block.

BEGIN CHECKED
BEGIN FIXED
BEGIN LOCK
BEGIN SCOPE
BEGIN UNCHECKED
BEGIN UNSAFE
BEGIN USING

1.8.4.2.1 BEGIN (UN)CHECKED

Purpose

The BEGIN (UN)CHECKED and END (UN)CHECKED keywords mark a block of
statements that are compiled with overflow checking enabled or disabled

Syntax

BEGIN CHECKED
 statements
END CHECKED

BEGIN UNCHECKED
 statements
END CHECKED

Arguments

statements One or more statements or expressions that are compiled
with the specified overflow checking

Remarks

BEGIN CHECKED ... END CHECKED ensures that a block of code is compiled with a
clear overflow checking option, regardless of the compiler option -ovf.

450X# Documentation

© 2015- 2024 XSharp BV

BEGIN CHECKED
 LOCAL intValue as INT
 LOCAL dwordValue as DWORD
 intValue := -1
 dwordValue := (DWORD) intValue // Overflow error
END CHECKED

BEGIN UNCHECKED
 LOCAL intValue as INT
 LOCAL dwordValue as DWORD
 intValue := -1
 dwordValue := (DWORD) intValue // NO Overflow error,
dwordValue now has the value UInt32.MaxValue
END UNCHECKED

1.8.4.2.2 BEGIN FIXED

Purpose

The BEGIN FIXED and END FIXED keyword prevent the garbage collector from
relocating a movable variable. The BEGIN FIXED statement is only allowed in an unsafe
context.

The fixed statement sets a pointer to a managed variable and "pins" that variable during
the execution of the statement. Pointers to movable managed variables are useful only in
a fixed context. Without a fixed context, garbage collection could relocate the variables
unpredictably. The X# compiler only lets you assign a pointer to a managed variable in a
fixed statement.
You can initialize a pointer by using an array, a string, a fixed-size buffer, or the address of
a variable.

Syntax

BEGIN FIXED declaration
 statements
END FIXED

Arguments

declaration Declaration of a variable and assignment that

451 XSharp

© 2015- 2024 XSharp BV

statements Code including one or more statements that may contain
unsafe code.

Example

UNSAFE FUNCTION Start AS VOID
 VAR s := "SDRS"
 BEGIN FIXED LOCAL p := s AS CHAR PTR
 VAR i := 0
 WHILE p[i] != 0
 p[i++]++
 END
 END FIXED
 Console.WriteLine(s)
 Console.Read()
 RETURN

1.8.4.2.3 BEGIN LOCK

Purpose

The BEGIN LOCK and END LOCK keywords mark a block of statements as a critical
section.

Syntax

BEGIN LOCK object
 statements
END LOCK

Arguments

object An expression that evaluates to an object reference that is
used as a locking object.

statements One or more statements or expressions that are guarded by
a mutual exclusion lock on the object specified in object.

Remarks

BEGIN LOCK ... END LOCK insures that multiple threads cannot execute the
statements within the block at the same time. If one thread is executing code within the

452X# Documentation

© 2015- 2024 XSharp BV

block, any other thread that attempts to enter the block will be suspended until the thread
that is executing leaves the block.
The object used as the locking object must be a reference type, it cannot be a value type
and the expression cannot evaluate to NULL or a runtime error will occur.
BEGIN LOCK ... END LOCK uses Monitor.Enter() and Monitor.Exit() to acquire and
release a lock on the specified object. The following example:

BEGIN LOCK lockObj
? "In guarded block"
END LOCK

is equivalent to:

System.Threading.Monitor.Enter(lockObj)
TRY
? "In guarded block"
FINALLY
System.Threading.Monitor.Exit(lockObj)
END TRY

Using BEGIN LOCK ... END LOCK is recommended over using the Monitor class
directly because the code is more concise and insures that the monitor object is released
even if an exception occurs within the guarded block.
BEGIN LOCK ... END LOCK provides functionality similar to the Windows API functions
EnterCriticalSection() and LeaveCriticalSection(). However, instead of using an object
created by InitializeCriticalSection(), any instance of a reference type may be used for the
locking object.
Please see the documentation for the System.Threading.Monitor class for more
information.

1.8.4.2.4 BEGIN NAMESPACE

Purpose

The BEGIN NAMESPACE and END NAMESPACE keyword pairs declare a scope and add
a namespace prefix to all types declared inside this scope

Syntax

BEGIN NAMESPACE namespaceName
typeDeclarations

453 XSharp

© 2015- 2024 XSharp BV

namespaceDeclarations
END NAMESPACE

Arguments

namespaceName The name of the namespace being declared.
typeDeclarations One or more type declarations (CLASS, STRUCTURE,

etc.).
namespaceDeclarations Zero or more namespace declarations.

Any types declared within a namespace scope have the namespace name prepended to
the type name. For example, a class named "MyClass" that is declared within a
namespace named "MyNamespace" will have a type name of "MyNamespace.MyClass".

Types declared outside any namespace scope are declared in the "global" or "unnamed"
namespace.

BEGIN NAMESPACE ... END NAMESPACE blocks can be nested to any depth. Nested
namespace names have the enclosing namespace name prepended to it, separated by a
period.

The same namespace name may be declared multiple times in the same or different files.
The BEGIN NAMESPACE and END NAMESPACE statements do not cause any code to
be generated, they simply affect the name of any types declared within the namespace
block.

using directives that appear within a namespace are only in effect within the enclosing
namespace block, and any nested namespace blocks.

Compatibility Note:

Code migrated from Visual Objects to Vulcan.NET using the Transporter is not placed
within any BEGIN NAMESPACE ... END NAMESPACE blocks, because Visual Objects
has no concept of namespaces. Therefore, all classes in transported code are in the
global or "unnamed" namespace and do not have a namespace name prepended to
them.

Example

BEGIN NAMESPACE a

 CLASS one // actual type name is 'a.one'
 ...
 END CLASS

454X# Documentation

© 2015- 2024 XSharp BV

 BEGIN NAMESPACE b // the namespace name is 'a.b'

 CLASS two // actual type name is 'a.b.two'
 ...
 END CLASS

 END NAMESPACE

END NAMESPACE

CLASS three // actual type name is 'three'
 ...
END CLASS

1.8.4.2.5 BEGIN SCOPE

Purpose

The BEGIN SCOPE and END SCOPE keyword pairs declare a scope of visibility and
lifetime of LOCAL variables

Syntax

BEGIN SCOPE
 statements
END SCOPE

Arguments

statements Code including one or more LOCAL declarations.

Remarks

BEGIN SCOPE...END SCOPE are used within a function/member body to define an area
of restricted scope for LOCAL variables. Attempt to use a LOCAL variable that is declared
with a BEGIN SCOPE...END SCOPE block outside the scope results in a compiler error.

Example

455 XSharp

© 2015- 2024 XSharp BV

FUNCTION Test() AS VOID
BEGIN SCOPE
LOCAL n AS INT
n++
? n
END SCOPE
// n does not exist here

1.8.4.2.6 BEGIN SEQUENCE

Purpose

The BEGIN SEQUENCE keyword declares the beginning of an exception handling block.

Syntax

BEGIN SEQUENCE
 tryStatements
[RECOVER [USING localVariable]
 recoveryStatements
]
[FINALLY
 finallyStatements
]
END [SEQUENCE]

where:
tryStatements One or more statements or expressions that may cause an

exception to be thrown.
localVariable A local variable that will receive the exception thrown by any

code between the BEGIN SEQUENCE and RECOVER
statements. This must be a variable typed as USUAL.

recoveryStatements One or more statements or expressions that will execute if
an exception is thrown by any of the tryStatements.

finallyStatements One or more statements or expressions that will always
execute regardless of whether an exception is thrown or
not.

Remarks

BEGIN SEQUENCE ... END SEQUENCE is a control structure used for exception and
runtime error handling. It delimits a block of statements defining a discrete operation,
including invoked procedures and functions.

456X# Documentation

© 2015- 2024 XSharp BV

When an exception is thrown anywhere anywhere in the block of statements following the
BEGIN SEQUENCE statement up to the corresponding RECOVER statement, control
branches to the program statement immediately following the RECOVER statement. If a
RECOVER statement is not specified, control branches to the statement following the
FINALLY statement, terminating the sequence. If a FINALLY statement is not specified,
control branches to the statement following the END SEQUENCE statement, terminating
the sequence.
If control reaches a RECOVER statement without an exception being thrown, control
branches to the statement following the FINALLY statement. If a FINALLY statement is not
specified, control branches to the statement following the END SEQUENCE statement,
terminating the sequence.
The RECOVER statement optionally receives an exception thrown by a statement in the
tryStatements block. This is usually an error object, generated and returned by the current
error handling block defined by ErrorBlock(). If an error object is returned, it can be sent
messages to query information about the error. With this information, a runtime error can
be handled within the context of the operation rather than in the current runtime error
handler.
The FINALLY statement block is useful for cleaning up any resources allocated in the
BEGIN SEQUENCE block. Control is always passed to the FINALLY block (if present)
regardless of how the BEGIN SEQUENCE block exits.
You cannot RETURN, LOOP, or EXIT between a BEGIN SEQUENCE and RECOVER
statement. From within the RECOVER and FINALLY statement blocks however, you can
LOOP, EXIT, BREAK, or RETURN since the sequence is essentially completed at that
point. Using LOOP from within the RECOVER statement block is useful for re-executing
the sequence statement block.
BEGIN SEQUENCE ... END SEQUENCE control structures can be nested to any depth.
The CanBreak() function returns TRUE if execution is within any BEGIN SEQUENCE
block.

Example

FUNCTION Start() AS VOID
LOCAL x := 4, y := 0 AS INT
BEGIN SEQUENCE
? x / y
RECOVER
? "oops"
FINALLY
? "in finally block"
END SEQUENCE
RETURN

See Also

BREAK
THROW
TRY-CATCH-FINALLY

457 XSharp

© 2015- 2024 XSharp BV

1.8.4.2.7 BEGIN UNSAFE

Purpose

The BEGIN UNSAFE and END UNSAFE keyword pairs declare a scope of code that
contains unsafe statements, such as typed pointers.

Syntax

BEGIN UNSAFE
 statements
END UNSAFE

Arguments

statements Code including one or more statements that may contain
unsafe code.

Example

FUNCTION Start() AS VOID
LOCAL a AS INT[]
a := <INT>{1,2,3,4,5}

BEGIN UNSAFE
 LOCAL p AS INT PTR
 p := @a
 FOR VAR i := 1 to 5
 ? p[i]
 NEXT
END UNSAFE
RETURN

458X# Documentation

© 2015- 2024 XSharp BV

1.8.4.2.8 BEGIN USING

Purpose

The BEGIN USING and END USING keyword declare a block of code that ensures the
correct use of disposable objects.

Syntax

BEGIN USING declaration
 statements
END USING

Arguments

declaration Declaration of a variable and assignment that
statements Code including one or more statements that may contain

unsafe code.

Description

When the lifetime of an IDisposable object is limited to a single method, you should
declare and instantiate it in the using statement. The using statement calls the Dispose
method on the object in the correct way, and (when you use it as shown earlier) it also
causes the object itself to go out of scope as soon as Dispose is called. Within the using
block, the object is read-only and cannot be modified or reassigned.

Example

BEGIN USING VAR oTest := Test{}
oTest:DoSomething()

END USING

this is the equivalent of

VAR oTest := Test{}
TRY
 oTest:DoSomething()

https://docs.microsoft.com/en-us/dotnet/api/system.idisposable.dispose
https://docs.microsoft.com/en-us/dotnet/api/system.idisposable.dispose

459 XSharp

© 2015- 2024 XSharp BV

FINALLY
 IF oTest != NULL_OBJECT
 ((IDisposable)oTest):Dispose()
 ENDIF
END TRY

1.8.4.2.9 LOCAL FUNCTION

Purpose

Declare a local function

Syntax

[Modifiers] LOCAL FUNCTION <idFunction>
[Typeparameters]
[([<idParam> [AS | REF|OUT|IN <idType>] [, ...])]
[AS <idType>]
[TypeparameterConstraints]
[=> <expression>]
CRLF
[<Body>]
END FUNCTION

Arguments

[Modifiers] The only valid modifiers for a local function are UNSAFE
and/or ASYNC

<idFunction> A valid identifier name for the function. A function is an entity
and, as such, shares the same name space as other
entities. This means that it is not possible to have a function
and a class, for example, with the same name.

TypeParameters This is supported for methods with generic type arguments.
This something like <T> for a method with one type
parameter named T. Usually one of the parameters in the
parameter list is then also of type T.

<idParam> A parameter variable. A variable specified in this manner is
automatically declared local. These variables, also called
formal parameters, are used to receive arguments that you
pass when you call the entity.

AS | REF|OUT|IN <idType> Specifies the data type of the parameter variable (called
strong typing). AS indicates that the parameter must be

460X# Documentation

© 2015- 2024 XSharp BV

passed by value, and REF indicates that it must be passed
by reference with the @ operator. OUT is a special kind of
REF parameter that does not have to be assigned before
the call and must be assigned inside the body of the entity.
IN parameters are passed as READONLY references.
The last parameter in the list can also be declared as
PARAMS <idType>[] which will tell the compiler that the
function/method may receive zero or more optional
parameters.
Functions or Methods of the CLIPPER calling convention
are compiled to a function with a single parameter that this
declared as Args PARAMS USUAL[]

AS <idType> Specifies the data type. If omitted, then depending on the
compiler options the type will be either USUAL or
determined by the compiler.

TypeParameterConstraints Here you can specify constraints for the Type parameters,
such as WHERE T IS SomeName or WHERE T IS New

=> <Expression> Single expression that replaces the multiline body for the
entity. CANNOT be compiled with a body

<Body> Program statements that form the code of this entity.
The <Body> can contain one or more RETURN statements
to return control to the calling routine and to serve as the
function return value. If no return statement is specified,
control passes back to the calling routine when the function
definition ends, and the function will return a default value
depending on the return value data type specified (NIL if the
return value is not strongly typed).
CANNOT be combined with an Expression Body

END FUNCTION These mandatory keywords indicate the logical end of the
function.

Description

A local function is defined as a nested function inside a containing member. The END
FUNCTION is mandatory so the compiler knows where the function ends and its
surrounding container continues.
In the example below the WAIT command is part of the Start() function and will be
executed after result of the call to Fact() is shown.

461 XSharp

© 2015- 2024 XSharp BV

Example

FUNCTION Start AS VOID
 ? Fact(10)
 LOCAL FUNCTION Fact(nNum AS LONG) AS LONG
 IF nNum == 1
 RETURN 1
 ENDIF
 RETURN nNum * Fact(nNum-1)
 END FUNCTION
 WAIT
 RETURN

See Also

FIELD, LOCAL, MEMVAR, METHOD, PROCEDURE, RETURN, FUNCTION

1.8.4.2.10 LOCAL PROCEDURE

Purpose

Declare a local procedure

Syntax

[Modifiers] LOCAL PROCEDURE <idFunction>
[Typeparameters]
[([<idParam> [AS | REF|OUT|IN <idType>] [, ...])]
[TypeparameterConstraints]
[=> <expression>]
CRLF
[<Body>]
END PROCEDURE

Arguments

[Modifiers] The only valid modifiers for a local function are UNSAFE
and/or ASYNC

<idFunction> A valid identifier name for the function. A function is an entity
and, as such, shares the same name space as other
entities. This means that it is not possible to have a function
and a class, for example, with the same name.

462X# Documentation

© 2015- 2024 XSharp BV

TypeParameters This is supported for methods with generic type arguments.
This something like <T> for a method with one type
parameter named T. Usually one of the parameters in the
parameter list is then also of type T.

<idParam> A parameter variable. A variable specified in this manner is
automatically declared local. These variables, also called
formal parameters, are used to receive arguments that you
pass when you call the entity.

AS | REF|OUT|IN <idType> Specifies the data type of the parameter variable (called
strong typing). AS indicates that the parameter must be
passed by value, and REF indicates that it must be passed
by reference with the @ operator. OUT is a special kind of
REF parameter that does not have to be assigned before
the call and must be assigned inside the body of the entity.
IN parameters are passed as READONLY references.
The last parameter in the list can also be declared as
PARAMS <idType>[] which will tell the compiler that the
function/method may receive zero or more optional
parameters.
Functions or Methods of the CLIPPER calling convention
are compiled to a function with a single parameter that this
declared as Args PARAMS USUAL[]

AS <idType> Specifies the data type. If omitted, then depending on the
compiler options the type will be either USUAL or
determined by the compiler.

TypeParameterConstraints Here you can specify constraints for the Type parameters,
such as WHERE T IS SomeName or WHERE T IS New

=> <Expression> Single expression that replaces the multiline body for the
entity. CANNOT be compiled with a body

<Body> Program statements that form the code of this entity.
The <Body> can contain one or more RETURN statements
to return control to the calling routine and to serve as the
function return value. If no return statement is specified,
control passes back to the calling routine when the function
definition ends, and the function will return a default value
depending on the return value data type specified (NIL if the
return value is not strongly typed).
CANNOT be combined with an Expression Body

END PROCEDURE These mandatory keywords indicate the logical end of the
function.

463 XSharp

© 2015- 2024 XSharp BV

Description

A local function is defined as a nested function inside a containing member. The END
PROCEDURE is mandatory so the compiler knows where the function ends and its
surrounding container continues.
In the example below the WAIT command is part of the Start() function and will be
executed after the call to Log(3)

Example

FUNCTION Start AS VOID
 Log(1)
 Log(2)
 Log(3)

 LOCAL PROCEDURE Log(nNum AS LONG)
 ? nNum
 RETURN
 END PROCEDURE
 WAIT

 RETURN

See Also

FIELD, LOCAL, MEMVAR, METHOD, PROCEDURE, RETURN, PROCEDURE

1.8.4.2.11 USING

The USING statement allows the types in a namespace to be used without having to
specify the fully-qualified type name.

using namespaceName
using alias := namespaceName
using static typeName

Arguments

namespaceName Specifies a fully-qualified namespace name that the
compiler will use when attempting to resolve type names.

alias An alias for the namespace.

464X# Documentation

© 2015- 2024 XSharp BV

typeName Specifies the name of the type whose static members and
nested types can be referenced without specifying a type na

All types in .NET have fully-qualified names consisting of a namespace name and a type
name. For example, "System.Windows.Forms.MessageBox" refers to a type named
"MessageBox" (a class, in this case) in the "System.Windows.Forms" namespace.

The use of namespaces in .NET helps prevent naming conflicts between class libraries.
However, it can be cumbersome to type the fully qualified name. The using statement
instructs the compiler to treat the specified namespace as if it were part of the current
namespace, for purposes of type resolution. This allows you to specify partial type names
in your source code, rather than fully-qualified names. You can, of course, always use a
fully-qualified name regardless of any using statements present.

Note that the using statement only imports the type names in the specified namespace; it
does not import names in nested or parent namespaces.

Also note that every source file has an implied using System and using XSharp
directive, since the System and XSharp namespace contain classes that virtually every
application will use. Explicitly specifying using System or using XSharp is allowed, but
unnecessary.

Examples

USING System.Windows.Forms

FUNCTION Start() AS VOID
 LOCAL dlg1 AS OpenFileDialog // error, without the using
statement
 LOCAL dlg2 AS System.Windows.Forms.OpenFileDialog // always ok,
but cumbersome to type

 dlg1 := OpenFileDialog{} // error, without the using statement
 dlg2 := System.Windows.Forms.OpenFileDialog{} // always ok, but
cumbersome to type
 ...
 RETURN

or

USING SWF := System.Windows.Forms

FUNCTION Start() AS VOID
 LOCAL dlg1 AS SWF.OpenFileDialog // use the alias in stead of
the full name

 dlg1 := SWF.OpenFileDialog{}

465 XSharp

© 2015- 2024 XSharp BV

 ...
 RETURN

or

USING STATIC System.Console
FUNCTION Start as VOID

WriteLine("Hello world") // this calls
System.Console.WriteLine()

ReadLine() // this calls
System.Console.ReadLine()
RETURN

1.8.4.3 Comment

NOTE

1.8.4.3.1 Comments

Purpose

X# has many comment formats.

Syntax

/* this is a multiline
 comment */
// this is a single line comment
&& this is a single line comment. It may appear after other
statements on a line
* this is also a comment. the * must be the first non whitespace
character on the line

Description

X# has many different comment formats

Examples

These examples show the various comment symbols:

466X# Documentation

© 2015- 2024 XSharp BV

// This is a comment
/* This is a comment */
* This is a comment
&& This is a comment

1.8.4.4 Concurrency Control

COMMIT
SET EXCLUSIVE
UNLOCK
USE

1.8.4.4.1 COMMIT Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Flush all pending updates in all work areas.

Syntax

COMMIT [ALL]

Description

COMMIT causes all pending updates to all work areas to be written to disk. It is
functionally equivalent to DBCommit() for every occupied work area.
COMMIT ALL is functionally equivalent to DBCommitAll().
All updated database and order buffers are written to disk, and a OS Commit request is
issued for all files associated with all work areas.

Notes

Shared mode: COMMIT makes database updates visible to other processes. To insure
data integrity, issue DBCommit() before an unlock operation.

467 XSharp

© 2015- 2024 XSharp BV

Examples

In this example, COMMIT forces a write to disk after a series of memory variables are
assigned to field variables:

USE sales EXCLUSIVE NEW

APPEND BLANK
REPLACE Sales->Name WITH "Jones"
REPLACE Sales->Amount WITH 123.45
COMMIT

Assembly

XSharp.RT.DLL

See Also

DBCommit(), DBCommitAll(), GO, SKIP

1.8.4.4.2 SET EXCLUSIVE Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Change the setting that determines whether to open database files in exclusive or shared
mode.

Syntax

SET EXCLUSIVE ON | OFF | (<lToggle>)

Arguments

ON Limits accessibility of a table opened on a network to the
user who opened it. The table isn't accessible to other users
on the network. Unlike FLOCK(), SET EXCLUSIVE ON also
prevents all other users from having read-only access. A file
can also be opened on a network for exclusive use by
including the EXCLUSIVE clause with the USE command. It

468X# Documentation

© 2015- 2024 XSharp BV

isn't necessary to perform record or file locking on a table
opened for exclusive use.
Opening a table for exclusive use ensures that the file can't
be changed by other users. For some commands,
execution isn't possible until a table is opened for exclusive
use. These commands are PACK, REINDEX, and ZAP.

OFF Allows a table opened on a network to be shared and
modified by any user on the network.

lToggle A logical expression which must appear in parentheses.
True is equivalent to ON, False to OFF

Description

SET EXCLUSIVE is functionally equivalent to SetExclusive().
Changing the setting of SET EXCLUSIVE doesn't change the status of previously opened
tables. For example, if a table is opened with SET EXCLUSIVE set to ON, and SET
EXCLUSIVE is later changed to OFF, the table retains its exclusive-use status.

Assembly

XSharp.RT.DLL

See Also

FLock(), NetErr(), RLock(), SetExclusive(), USE

1.8.4.4.3 UNLOCK Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Release all locks for a work area.

Syntax

UNLOCK [RECORD nRecordNumber] [[IN|ALIAS] workarea] [ALL]

Arguments
RECORD nRecordNumber Releases the record lock on record number

nRecordNumber. Issuing UNLOCK RECORD
nRecordNumber for a record in a table with a file lock
releases the file lock.

IN|ALIAS <workarea> Specifies the work area for which the operation must be
performed

469 XSharp

© 2015- 2024 XSharp BV

ALL Releases all record and file locks in all work areas. If not
specified, only the lock in the current work area is released.
ALL cannot be combined with the RECORD or IN|ALIAS
clause.

Description

UNLOCK is functionally equivalent to DBUnlock() and UNLOCK ALL is functionally
equivalent to DBUnlockAll().

Examples

This example attempts an update operation that requires a record lock. If the RLock() is
successful, the record is updated with a function and the RLock() is released with
UNLOCK:

USE sales INDEX salesman SHARED NEW
IF RLock()
 UpdateRecord()
 UNLOCK
ELSE
 ? "Record update failed"
 BREAK
ENDIF

Assembly

XSharp.RT.DLL

See Also

DbRLock(), DbUnlock(), DbUnlockAll(), FLock(), RLock(), SetExclusive(), USE

1.8.4.5 Database

Most Database commands are implemented as User Defined command in the standard
header files, and call Runtime Functions under the hood.
Make sure that you include the standard header file during compilation (so do NOT use the
option -nostddefs).
If you use the compiler option -stddefs to use an alternate standard header file then it is
your responsibilty to make sure that these commands are implemented.

APPEND BLANK
APPEND FROM
AVERAGE
CLEAR ALL
CLOSE

470X# Documentation

© 2015- 2024 XSharp BV

COMMIT
CONTINUE
COPY STRUCTURE
COPY STRUCTURE EXTENDED
COPY TO
COUNT
CREATE
CREATE FROM
DELETE
DELETE TAG
FIELD
FIND
GO|GOTO
INDEX
JOIN
LOCATE
PACK
RECALL
REINDEX
REPLACE
SEEK
SELECT
SET DELETED
SET DESCENDING
SET DRIVER
SET EXCLUSIVE
SET FILTER
SET INDEX
SET MEMOBLOCK
SET OPTIMIZE
SET ORDER
SET RELATION
SET SCOPE
SET SCOPEBOTTOM
SET SCOPETOP
SET SOFTSEEK
SET UNIQUE
SKIP
SORT
SUM
TOTAL
UNLOCK
UPDATE
USE
ZAP

471 XSharp

© 2015- 2024 XSharp BV

1.8.4.5.1 APPEND BLANK Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Add a new record to the end of the current database file and make it the current record.

Syntax

APPEND BLANK [[IN|ALIAS] <workarea>]

Arguments
IN|ALIAS <workarea> Specifies the work area for which the operation must be

performed

Description

The new field values are initialized to the empty values for each data type: character fields
are assigned with spaces; numeric fields are assigned 0; logical fields are assigned
FALSE; date fields are assigned NULL_DATE; and memo fields are left empty.

For a shared database, APPEND BLANK automatically places a record lock on the new
record. If the record cannot be locked, NetErr() is set to TRUE, indicating that the record
was not added, and execution continues.

Note: APPEND BLANK will not release any file locks set by the current process.
If NetErr() returns FALSE, the record was successfully added and locked, you can begin
updating it. The newly appended record remains locked until you explicitly release the lock
(for example, with UNLOCK), close the database file, or attempt another lock.

Examples

This example attempts to add a record to a shared database file and uses NetErr() to test
if the operation succeeded:

USE sales SHARED NEW
<Statements>...
APPEND BLANK
IF !NetErr()
 <Update EMPTY record>...
ELSE
 ? "Append operation failed"

472X# Documentation

© 2015- 2024 XSharp BV

 BREAK
ENDIF

Assembly

XSharp.RT.DLL

See Also

APPEND FROM, DBAppend(), DBRLock(), FLock(), NetErr(), RLock()

1.8.4.5.2 APPEND FROM ARRAY Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Adds one record to the currently selected table for each row in an array and fills each
record with data from the corresponding array row.

Syntax

APPEND FROM ARRAY <ArrayName> [FOR <lCondition>]
 [FIELDS <idFieldList> | FIELDS LIKE <Skeleton> | FIELDS EXCEPT
<Skeleton>]

Arguments

<ArrayName> Specifies the name of the array that contains the data to be
copied to the new records. New records are added to the
table until all rows in the array are appended.

FIELDS <idFieldList> The list of fields to process. The default is all fields with the
exception of memo fields, unless the command supports
the MEMO clause.
Only fields with the same names and types in both files are
appended. If fields with the same name do not match in
data type, a runtime error is raised.

FIELDS LIKE <Skeleton> You can specify field names with a wild card, such as
FIELDS LIKE *name

FIELDS EXCEPT <Skeleton> You can exclude fields, such as for example the
primary keys: FIELDS EXCEPT Id

473 XSharp

© 2015- 2024 XSharp BV

<Skeleton> supports wildcards (* and ?). For example, to
replace all fields that begin with the letters A and P, use:
FIELDS LIKE A*,P*

Please note that you can combine FIELDS LIKE and FIELDS EXCEPT but you cannot
combine a fields list with the LIKE and EXCEPT clauses.

FOR <lCondition> A condition that each visible record within the scope must
meet in order to be processed. If a record does not meet
the specified condition, it is ignored and the next visible
record is processed. If no <Scope> or WHILE clause is
specified, having a for condition changes the default scope
to all visible records.

See Also

COPY TO ARRAY, GATHER, SCATTER

1.8.4.5.3 APPEND FROM Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Import records from a database or text file.

Syntax

APPEND FROM <xcSourceFile> [FIELDS <idFieldList>]
[<Scope>] [WHILE <lCondition>] [FOR <lCondition>]
[SDF] | [DELIMITED [WITH <xcDelimiter> | BLANK]] |
[VIA <cDriver>] [INHERIT FROM <acRDDs>]

Arguments

FROM <xcSourceFile> The name of the source file from which to add records,
including an optional drive, directory, and extension. See
SetDefault() and SetPath() for file searching and creation
rules. The default extension for database files is determined
by the RDD. For text files, it is .TXT.
This command attempts to open <xcSourceFile> in shared
mode. If the file does not exist, a runtime error is raised. If
the file is successfully opened, the operation proceeds. If
access is denied because, for example, another process
has exclusive use of the file, NetErr() is set to TRUE.

474X# Documentation

© 2015- 2024 XSharp BV

FIELDS <idFieldList> The list of fields to append from <xcSourceFile>. The
default is all fields.
Only fields with the same names and types in both files are
appended. If fields with the same name do not match in
data type, a runtime error is raised.

<Scope> The portion of the current database file to process. The
default is all visible records. Scope is one or more clauses
of:
[NEXT <NEXT>] Optionally specifies the
number of records to process starting

with the first record of the
source file.
[RECORD <rec>] An optional record ID If
specified, the processing begins

with this data record in the
source file.
[<rest:REST>] The option REST specifies
whether records are sequentially

searched only from the current
up to the last record.

If a condition is specified, the
option ALL is the default value.
[ALL] The option ALL specifies that
all records from the source file are imported.

This is the default setting.

WHILE <lCondition> A condition that each visible record within the scope must
meet, starting with the current record. As soon as the while
condition fails, the process terminates. If no <Scope> is
specified, having a while condition changes the default
scope to the rest of the visible records in the file.

FOR <lCondition> A condition that each visible record within the scope must
meet in order to be processed. If a record does not meet
the specified condition, it is ignored and the next visible
record is processed. If no <Scope> or WHILE clause is
specified, having a for condition changes the default scope
to all visible records.

SDF A System Data Format file with format specifications as
shown in the table below. Records and fields are fixed
length.

File Element Format
Character fields Padded with trailing blanks
Date fields yyyymmdd
Logical fields T or F
Memo fields Ignored
Numeric fields Padded with leading blanks or zeros
Field separator None

475 XSharp

© 2015- 2024 XSharp BV

Record separator Carriage return/linefeed
End of file marker 1A hex or Chr(26)

DELIMITED [WITH <xcDelimiter>]
A text file in which character fields are enclosed in double
quote marks (the default delimiter) or the specified
<xcDelimiter>. Fields and records are variable length, and
the format specifications are shown in the table below:

File Element Format
Character fields Can be delimited, with trailing blanks truncated
Date fields yyyymmdd
Logical fields T or F
Memo fields Ignored
Numeric fields Leading zeros can be truncated
Field separator Comma
Record separator Carriage return/linefeed
End of file marker 1A hex or Chr(26)
Note: Delimiters are not required and APPEND FROM correctly handles character fields

not enclosed with them.

DELIMITED WITH BLANK
A text file in which fields are separated by one space and
character fields are not enclosed in delimiters. The format
specifications are shown in the table below:

File Element Format
Character fields Not delimited, trailing blanks can be truncated
Date fields yyyymmdd
Logical fields T or F
Memo fields Ignored
Numeric fields Leading zeros can be truncated
Field separator Single blank space
Record separator Carriage return/linefeed
End of file marker 1A hex or Chr(26)
Warning! If the DELIMITED WITH clause is specified on an APPEND FROM command

line, it must be the last clause specified.

VIA <cDriver> The name of the RDD that will service the work area. If not
specified, the default RDD as determined by
RDDSetDefault() is used.

INHERIT FROM <acRDDs>
A one-dimensional array with the names of RDDs from
which the main RDD inherits special functionality. This
allows you to use RDDs with special capabilities, like
encryption or decryption, in different work areas with
different database drivers. These RDDs overlay special
functions of the main RDD (specified with the VIA clause). If
multiple RDDs (specified with this INHERIT FROM clause)
implement the same function, the function associated with
the last RDD in the list takes precedence.

476X# Documentation

© 2015- 2024 XSharp BV

Notes

Deleted records: If SetDeleted() is FALSE, deleted records in <xcSourceFile> are
appended to the current database file and retain their deleted status. If SetDeleted() is
TRUE, however, deleted records are not visible and are, therefore, not processed.

Unmatched field widths: If a field in the current database file is character type and has a field
length greater than the incoming <xcSourceFile> data, APPEND FROM pads the source
data with blanks. If the current field is character data type and its field length is less than
the incoming source data, the source data is truncated to fit. If the current field is numeric
type and the incoming source data has more digits than the current field length, a runtime
error is raised.

Examples

This example demonstrates an APPEND FROM command using a fields list and a
condition:

USE sales NEW
APPEND FROM branchfile FIELDS Branch, Salesman, Amount FOR Branch
= 100

The next example demonstrates how a <Scope> can be specified to import a particular
record from another database file:

APPEND RECORD 5 FROM temp

Assembly

XSharp.RT.DLL

See Also

COPY TO, DbApp(), DbAppDelim(), DbAppSDF(), RDDSetDefault(), SetDefault(),
SetPath(), SetDeleted()

1.8.4.5.4 APPEND FROM Command (FoxPro)

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

477 XSharp

© 2015- 2024 XSharp BV

Purpose

Import records from a database or text file.

Syntax

APPEND FROM <xcSourceFile>
 [FIELDS <idFieldList> | FIELDS LIKE <Skeleton> | FIELDS EXCEPT
<Skeleton>]

[<Scope>] [WHILE <lCondition>] [FOR <lCondition>]
 [[TYPE] [DELIMITED [WITH <Delim> | WITH BLANK | WITH TAB
 | WITH CHARACTER <cDelim>] | DIF | FW2 | MOD | PDOX | RPD |
 SDF | SYLK | WK1 | WK3 | WKS | WR1 | WRK | CSV | XLS | XL5
 [SHEET <cSheetName>] | XL8 [SHEET <cSheetName>]]] [AS
<nCodePage>]

Arguments

FROM <xcSourceFile> The name of the source file from which to add records,
including an optional drive, directory, and extension. See
SetDefault() and SetPath() for file searching and creation
rules. The default extension for database files is determined
by the RDD. For text files, it is .TXT.
This command attempts to open <xcSourceFile> in shared
mode. If the file does not exist, a runtime error is raised. If
the file is successfully opened, the operation proceeds. If
access is denied because, for example, another process
has exclusive use of the file, NetErr() is set to TRUE.

FIELDS <idFieldList> The list of fields to process. The default is all fields with the
exception of memo fields, unless the command supports
the MEMO clause.
Only fields with the same names and types in both files are
appended. If fields with the same name do not match in
data type, a runtime error is raised.

FIELDS LIKE <Skeleton> You can specify field names with a wild card, such as
FIELDS LIKE *name

FIELDS EXCEPT <Skeleton> You can exclude fields, such as for example the
primary keys: FIELDS EXCEPT Id
<Skeleton> supports wildcards (* and ?). For example, to
replace all fields that begin with the letters A and P, use:
FIELDS LIKE A*,P*

Please note that you can combine FIELDS LIKE and FIELDS EXCEPT but you cannot
combine a fields list with the LIKE and EXCEPT clauses.

<Scope> The portion of the current database file to process. The

478X# Documentation

© 2015- 2024 XSharp BV

default is all visible records. Scope is one or more clauses
of:
[NEXT <NEXT>] Optionally specifies the
number of records to process starting

with the first record of the
source file.
[RECORD <rec>] An optional record ID If
specified, the processing begins

with this data record in the
source file.
[<rest:REST>] The option REST specifies
whether records are sequentially

searched only from the current
up to the last record.

If a condition is specified, the
option ALL is the default value.
[ALL] The option ALL specifies that
all records from the source file are imported.

This is the default setting.

WHILE <lCondition> A condition that each visible record within the scope must
meet, starting with the current record. As soon as the while
condition fails, the process terminates. If no <Scope> is
specified, having a while condition changes the default
scope to the rest of the visible records in the file.

FOR <lCondition> A condition that each visible record within the scope must
meet in order to be processed. If a record does not meet
the specified condition, it is ignored and the next visible
record is processed. If no <Scope> or WHILE clause is
specified, having a for condition changes the default scope
to all visible records.

DELIMITED WITH <Delim> Indicates that character fields are separated by a character
other than the quotation mark.

DELIMITED WITH BLANK Specifies files that contain fields separated by spaces
instead of commas.

DELIMITED WITH TAB Specifies files that contain fields separated by tabs rather
than commas.

WITH CHARACTER <cDelim> Specifies files that contain fields all enclosed by the
character specified with Delimiter. If Delimiter is a
semicolon (the character used in Visual FoxPro to indicate
command line continuation), enclose the semicolon in
quotation marks. You can also specify the BLANK and TAB
keywords for Delimiter.
The WITH Delimiter clause can be combined with the WITH
CHARACTER clause.

TYPE From the various types that FoxPro allows only the following
ones are supported in X# at this moment:
SDF An SDF file is an ASCII text file in which records
have a fixed length and end with a carriage return and line

479 XSharp

© 2015- 2024 XSharp BV

feed. Fields are not delimited.
The file name extension is assumed to be .txt for

SDF files.

CSV A comma separated value file. A CSV file has field
names as the first line in the file; the field names are ignored
when the file is imported.

The file name extension is assumed to be .csv for
CSV files.
OTHER NOT SUPPORTED AT THIS MOMENT

AS <nCodePage> Specifies the codepage to use for the source file. NOT
SUPPORTED AT THIS MOMENT

Notes

Deleted records: If SetDeleted() is FALSE, deleted records in <xcSourceFile> are
appended to the current database file and retain their deleted status. If SetDeleted() is
TRUE, however, deleted records are not visible and are, therefore, not processed.

Unmatched field widths: If a field in the current database file is character type and has a field
length greater than the incoming <xcSourceFile> data, APPEND FROM pads the source
data with blanks. If the current field is character data type and its field length is less than
the incoming source data, the source data is truncated to fit. If the current field is numeric
type and the incoming source data has more digits than the current field length, a runtime
error is raised.

Examples

This example demonstrates an APPEND FROM command using a fields list and a
condition:

USE sales NEW
APPEND FROM branchfile FIELDS Branch, Salesman, Amount FOR Branch
= 100

The next example demonstrates how a <Scope> can be specified to import a particular
record from another database file:

APPEND RECORD 5 FROM temp

Assembly

XSharp.RT.DLL

480X# Documentation

© 2015- 2024 XSharp BV

See Also

COPY TO, DbApp(), DbAppDelim(), DbAppSDF(), RDDSetDefault(), SetDefault(),
SetPath(), SetDeleted()

1.8.4.5.5 AVERAGE Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Calculate the average of one or more numeric expressions to variables for a range of
records in the current database file.

Syntax

AVERAGE <nValueList> TO <idVarList> [<Scope>] [WHILE <lCondition>]
[FOR <lCondition>]

Arguments

<nValueList> A list of the numeric values to average for each record
processed.

TO <idVarList> A list of receiving variable or field names which will contain
the average results. Variables that either do not exist or are
not visible are created as private variables. <idVarList>
must contain the same number of elements as
<nValueList>.

<Scope> The portion of the current database file to process. The
default is all visible records. Scope is one or more clauses
of:
[NEXT <NEXT>] Optionally specifies the
number of records to process starting

with the first record of the
source file.
[RECORD <rec>] An optional record ID If
specified, the processing begins

with this data record in the
source file.
[<rest:REST>] The option REST specifies
whether records are sequentially

searched only from the current

481 XSharp

© 2015- 2024 XSharp BV

up to the last record.
If a condition is specified, the

option ALL is the default value.
[ALL] The option ALL specifies that
all records from the source file are imported.

This is the default setting.

WHILE <lCondition> A condition that each visible record within the scope must
meet, starting with the current record. As soon as the while
condition fails, the process terminates. If no <Scope> is
specified, having a while condition changes the default
scope to the rest of the visible records in the file.

FOR <lCondition> A condition that each visible record within the scope must
meet in order to be processed. If a record does not meet
the specified condition, it is ignored and the next visible
record is processed. If no <Scope> or WHILE clause is
specified, having a for condition changes the default scope
to all visible records.

Description

Zero (0) values are counted in the AVERAGE unless explicitly ruled out with a FOR
condition.

Examples

This example averages a single numeric field using a condition to select a subset of
records from the database file:

USE sales NEW
AVERAGE Amount TO nAvgAmount FOR Branch = "100"

The next example finds the average date for a range of dates:

AVERAGE (SaleDate - CToD("00/00/00")) ;

TO nAvgDays FOR !Empty(SaleDate)
dAvgDate := CToD("00/00/00") + nAvgDays

Assembly

XSharp.RT.DLL

482X# Documentation

© 2015- 2024 XSharp BV

See Also

COUNT, DBEval(), SUM, TOTAL

1.8.4.5.6 CLEAR ALL Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Release all public and private variables, close all open database, index, alternate, and
memo files in all active work areas, and select work area 1.

Note: CLEAR ALL is a compatibility command and is no longer recommended. It is
superseded by the command or function that performs the specific action you need. See
the list below.

Syntax

CLEAR ALL

Notes

Declared Variables: CLEAR ALL does not release declared variables or constants.
You can close files associated with work areas with one of the various forms of the
CLOSE command. You can release private and public variables using the RELEASE
command although explicitly releasing variables is discouraged in most cases.

Assembly

XSharp.RT.DLL

See Also

CLEAR MEMORY, CLOSE, DBCloseArea(), FClose(), RELEASE, Select(),

1.8.4.5.7 CLOSE Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

483 XSharp

© 2015- 2024 XSharp BV

Purpose

Close specified file type.

Syntax

CLOSE [<xcAlias> | ALL | ALTERNATE | DATABASES | INDEXES]

Arguments

<xcAlias> The alias identifier for the work area where all files are
closed.

ALL Closes database and index files in all work areas, releasing
all active filters, relations, and format definitions.

ALTERNATE Closes the currently open alternate file.

DATABASES Closes all database, memo, and associated index files in all
work areas, and releases all active filters and relations. It
does not, however, have any effect on the active format.

INDEXES Closes all index files and clears the order list in the current
work area.

Description

CLOSE with no option closes the current database and associated files. A number of
other operations close files as a side effect, but it is always a good idea to explicitly close
files when you are finished using them.

Assembly

XSharp.RT.DLL

See Also

DBCloseArea(), FClose(), SET INDEX, USE

1.8.4.5.8 CONTINUE Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

484X# Documentation

© 2015- 2024 XSharp BV

Purpose

Resume a pending locate.

Syntax

CONTINUE

Description

CONTINUE searches from the current record position for the next record meeting the
most recent locate condition executed in the current work area. (You can set the locate
condition with the LOCATE command or with the VODBLocate() or VODBSetLocate()
functions.)

The search terminates when a match is found or end of file is encountered. If CONTINUE
is successful, the matching record becomes the current record and Found() returns
TRUE; if unsuccessful, Found() returns FALSE.
Each work area can have an active locate condition. A locate condition remains pending
until a new one is specified.

Notes

Scope and WHILE condition: The scope and WHILE condition of the locate condition are
ignored; only the for condition is used with CONTINUE. If you are using a LOCATE
command with a while condition and want to continue the search for a matching record,
use SKIP and then repeat the original LOCATE command, adding REST as the scope.

Examples

This example scans records in SALES.DBF for a particular salesman and displays a
running total sales amount:

LOCAL nRunTotal := 0
USE sales NEW
LOCATE FOR Sales->Salesman = "1002"
DO WHILE Found()
 ? Sales->SalesName, nRunTotal += Sales->Amount
 CONTINUE
ENDDO

This example demonstrates how to continue if the pending LOCATE scope contains a
WHILE condition:

485 XSharp

© 2015- 2024 XSharp BV

LOCAL nRunTotal := 0
USE sales INDEX salesman NEW
SEEK "1002"
LOCATE REST WHILE Sales->Salesman = "1002";

FOR Sales->Amount > 5000
DO WHILE Found()

? Sales->Salesname, nRunTotal += Sales->Amount
SKIP
LOCATE REST WHILE Sales->Salesman = "1002";

FOR Sales->Amount > 5000
ENDDO

Assembly

XSharp.RT.DLL

See Also

DbContinue(), DbLocate(), EoF(), Found(), LOCATE, SEEK

1.8.4.5.9 COPY STRUCTURE Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Create an empty database file with field definitions from the current database file.

Syntax

COPY STRUCTURE [FIELDS <idFieldList>] TO <xcTargetFile>

Arguments

FIELDS <idFieldList> The set of fields to copy to the new database structure in the
order specified. The default is all fields.

TO <xcTargetFile> The name of the target database file, including an optional
drive, directory, and extension. See SetDefault() and
SetPath() for file searching and creation rules. The default
extension for database files is determined by the RDD .

486X# Documentation

© 2015- 2024 XSharp BV

If <xcTargetFile> does not exist, it is created. If it exists, this
command attempts to open the file in exclusive mode and, if
successful, the file is overwritten without warning or error. If
access is denied because, for example, another process is
using the file, NetErr() is set to TRUE.

Examples

In this example, COPY STRUCTURE creates a temporary file. After the user enters data
into the temporary file, the master database file is updated with the new information:

USE sales NEW
COPY STRUCTURE TO temp
USE temp NEW
lMore := TRUE
DO WHILE lMore
 APPEND BLANK
 @ 10, 10 GET Temp->Salesman
 @ 11, 11 GET Temp->Amount
 READ
 IF Updated()
 SELECT sales
 APPEND BLANK
 REPLACE Sales->Salesman WITH Temp->Salesman
 REPLACE Sales->Amount WITH Temp->Amount
 SELECT Temp
 ZAP
 ELSE
 lMore := FALSE
 ENDIF
ENDDO
CLOSE DATABASES

Assembly

XSharp.RT.DLL

See Also

COPY STRUCTURE EXTENDED, CREATE, DbCopyStruct(), SetDefault(), SetPath()

1.8.4.5.10 COPY STRUCTURE EXTENDED Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

487 XSharp

© 2015- 2024 XSharp BV

Purpose

Copy the field definitions in a database file structure to a structure-extended file as data.

Syntax

COPY STRUCTURE EXTENDED TO <xcTargetFile>

Arguments

TO <xcTargetFile> The name of the target structure-extended database file,
including an optional drive, directory, and extension. See
SetDefault() and SetPath() for file searching and creation
rules. The default extension for database files is determined
by the RDD .

If <xcTargetFile> does not exist, it is created. If it exists, this
command attempts to open the file in exclusive mode and, if
successful, the file is overwritten without warning or error. If
access is denied because, for example, another process is
using the file, NetErr() is set to TRUE.

Description

COPY STRUCTURE EXTENDED creates a database file whose contents is the structure
of the current database file, with a record for the definition of each field.
The structure-extended database file has the following structure:

Field Name Type Length Decimals

Field_Name Character 10
Field_Type Character 1
Field_Len Numeric 3 0
Field_Dec Numeric 3 0

Used in application programs, COPY STRUCTURE EXTENDED permits you to create or
modify the structure of a database file programmatically. To create a new database file
from the structure-extended file, use CREATE FROM. If you need an empty structure-
extended file, use CREATE.

Notes

Character field lengths greater than 255: Field lengths greater than 255 are represented as a
combination of the Field_Dec and Field_Len fields. After performing COPY STRUCTURE
EXTENDED, you can use the following formula to determine the length of any character
field:

488X# Documentation

© 2015- 2024 XSharp BV

nFieldLen := IIf((Field_Type = "C" .AND. ;
Field_Dec != 0), Field_Dec * 256 + ;
Field_Len, Field_Len)

Examples

This example creates STRUC.DBF from SALES.DBF as a structure-extended file, then
lists the contents of STRUC.DBF to illustrate the typical layout of field definitions:

USE sales NEW
COPY STRUCTURE EXTENDED TO struc
USE struc NEW
LIST Field_Name, Field_Type, Field_Len, Field_Dec

// Result:
1 BRANCH C 3 0
2 SALESMAN C 4 0
3 CUSTOMER C 4 0
4 PRODUCT C 25 0
5 AMOUNT N 8 2
6 NOTES C 0 125
// Field length is 32,000 characters

Assembly

XSharp.RT.DLL

See Also

COPY STRUCTURE, CREATE, CREATE FROM, FieldName(), DbCopyXStruct(),
SetDefault(), SetPath(), Type()

1.8.4.5.11 COPY TO ARRAY Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose
Copies data from the currently selected table to an array.

489 XSharp

© 2015- 2024 XSharp BV

Syntax

COPY TO ARRAY <ArrayName>
 [FIELDS FieldList | FIELDS LIKE <Skeleton> | FIELDS EXCEPT
<Skeleton>]
 [<Scope>] [WHILE <lCondition>] [FOR <lCondition>] [NOOPTIMIZE]

Arguments

<ArrayName> Specifies the name of the array that contains the data to be
copied to the new records. New records are added to the
table until all rows in the array are appended.

FIELDS <idFieldList> The list of fields to process. The default is all fields with the
exception of memo fields, unless the command supports
the MEMO clause.
Only fields with the same names and types in both files are
appended. If fields with the same name do not match in
data type, a runtime error is raised.

FIELDS LIKE <Skeleton> You can specify field names with a wild card, such as
FIELDS LIKE *name

FIELDS EXCEPT <Skeleton> You can exclude fields, such as for example the
primary keys: FIELDS EXCEPT Id
<Skeleton> supports wildcards (* and ?). For example, to
replace all fields that begin with the letters A and P, use:
FIELDS LIKE A*,P*

Please note that you can combine FIELDS LIKE and FIELDS EXCEPT but you cannot
combine a fields list with the LIKE and EXCEPT clauses.

<Scope> The portion of the current database file to process. The
default is all visible records. Scope is one or more clauses
of:
[NEXT <NEXT>] Optionally specifies the
number of records to process starting

with the first record of the
source file.
[RECORD <rec>] An optional record ID If
specified, the processing begins

with this data record in the
source file.
[<rest:REST>] The option REST specifies
whether records are sequentially

searched only from the current
up to the last record.

If a condition is specified, the
option ALL is the default value.
[ALL] The option ALL specifies that

490X# Documentation

© 2015- 2024 XSharp BV

all records from the source file are imported.
This is the default setting.

WHILE <lCondition> A condition that each visible record within the scope must
meet, starting with the current record. As soon as the while
condition fails, the process terminates. If no <Scope> is
specified, having a while condition changes the default
scope to the rest of the visible records in the file.

FOR <lCondition> A condition that each visible record within the scope must
meet in order to be processed. If a record does not meet
the specified condition, it is ignored and the next visible
record is processed. If no <Scope> or WHILE clause is
specified, having a for condition changes the default scope
to all visible records.

NOOPTIMIZE This clause is parsed but not yet supported.

See Also

APPEND FROM ARRAY, GATHER, SCATTER

1.8.4.5.12 COPY TO Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Export records to a new database or text file.

Syntax

COPY TO <xcTargetFile> [FIELDS <idFieldList>] [<Scope>]
[WHILE <lCondition>] [FOR <lCondition>]
[SDF] | [DELIMITED [WITH BLANK | <xcDelimiter>]] |
[VIA <cDriver>] [INHERIT FROM <acRDDs>]

Arguments

TO <xcTargetFile> The name of the target file, including an optional drive,
directory, and extension. See SetDefault() and SetPath() for
file searching and creation rules. The default extension for
database files is determined by the RDD. For text files, it is
.TXT.

491 XSharp

© 2015- 2024 XSharp BV

If <xcTargetFile> does not exist, it is created. If it exists, this
command attempts to open the file in exclusive mode and, if
successful, the file is overwritten without warning or error. If
access is denied because, for example, another process is
using the file, NetErr() is set to TRUE.

FIELDS <idFieldList> The list of fields to append from <xcSourceFile>. The
default is all fields.
Only fields with the same names and types in both files are
appended. If fields with the same name do not match in
data type, a runtime error is raised.

<Scope> The portion of the current database file to process. The
default is all visible records. Scope is one or more clauses
of:
[NEXT <NEXT>] Optionally specifies the
number of records to process starting

with the first record of the
source file.
[RECORD <rec>] An optional record ID If
specified, the processing begins

with this data record in the
source file.
[<rest:REST>] The option REST specifies
whether records are sequentially

searched only from the current
up to the last record.

If a condition is specified, the
option ALL is the default value.
[ALL] The option ALL specifies that
all records from the source file are imported.

This is the default setting.

WHILE <lCondition> A condition that each visible record within the scope must
meet, starting with the current record. As soon as the while
condition fails, the process terminates. If no <Scope> is
specified, having a while condition changes the default
scope to the rest of the visible records in the file.

FOR <lCondition> A condition that each visible record within the scope must
meet in order to be processed. If a record does not meet
the specified condition, it is ignored and the next visible
record is processed. If no <Scope> or WHILE clause is
specified, having a for condition changes the default scope
to all visible records.

SDF A System Data Format file with format specifications as
shown in the table below. Records and fields are fixed
length.

File Element Format
Character fields Padded with trailing blanks
Date fields yyyymmdd

492X# Documentation

© 2015- 2024 XSharp BV

Logical fields T or F
Memo fields Ignored
Numeric fields Padded with leading blanks for zeros
Field separator None
Record separator Carriage return/linefeed
End of file marker 1A hex or Chr(26)

DELIMITED [WITH <xcDelimiter>]
A text file in which character fields are enclosed in double
quote marks (the default delimiter) or the specified
<xcDelimiter>. Fields and records are variable length, and
the format specifications are shown in the table below:

File Element Format
Character fields Delimited, with trailing blanks truncated
Date fields yyyymmdd
Logical fields T or F
Memo fields Ignored
Numeric fields Leading zeros truncated
Field separator Comma
Record separator Carriage return/linefeed
End of file marker 1A hex or Chr(26)

DELIMITED WITH BLANK
A text file in which fields are separated by one space and
character fields are not enclosed in delimiters. The format
specifications are shown in the table below:

File Element Format
Character fields Not delimited, trailing blanks truncated
Date fields yyyymmdd
Logical fields T or F
Memo fields Ignored
Numeric fields Leading zeros truncated
Field separator Single blank space
Record separator Carriage return/linefeed
End of file marker 1A hex or Chr(26)

Warning! If the DELIMITED WITH clause is specified on a
COPY TO command line, it must be the last clause
specified.

VIA <cDriver> The name of the RDD that will service the work area. If not
specified, the default RDD as determined by
RDDSetDefault() is used.

INHERIT FROM <acRDDs>
A one-dimensional array with the names of RDDs

from which the main RDD inherits special functionality. This
allows you to use RDDs with special capabilities, like
encryption or decryption, in different work areas with
different database drivers. These RDDs overlay special
functions of the main RDD (specified with the VIA clause). If

493 XSharp

© 2015- 2024 XSharp BV

multiple RDDs (specified with this INHERIT FROM clause)
implement the same function, the function associated with
the last RDD in the list takes precedence.

Notes

Deleted records: If SetDeleted() is FALSE, deleted records in the source file are copied to
<xcTargetFile> where they retain their deleted status.

Visibility: If SetDeleted() is TRUE, however, deleted records are not visible and are,
therefore, not processed. Similarly, filtered records (with DbSetFilter() or a conditional
controlling order) are not processed.

Examples

This example demonstrates copying to another database file:

USE sales NEW
COPY TO temp

This example demonstrates the layout of an SDF file with four fields, one for each data
type:

USE testdata NEW
COPY NEXT 1 TO temp SDF
TYPE temp.txt
// Result: Character 12.0019890801T

The next example demonstrates the layout of a DELIMITED file:

COPY NEXT 1 TO temp DELIMITED
TYPE temp.txt
// Result: "Character",12.00,19890801,T

Finally, this example demonstrates the layout of a DELIMITED file WITH a different
delimiter:

COPY NEXT 1 TO temp DELIMITED WITH '
TYPE temp.txt
// Result: 'Character',12.00,19890801,T

494X# Documentation

© 2015- 2024 XSharp BV

Assembly

XSharp.RT.DLL

See Also

APPEND FROM, COPY FILE, COPY STRUCTURE, DbCopy(), DbCopyDelim(),
DbCopySDF(), RDDSetDefault(), SetDefault(), SetPath(), SetDeleted()

1.8.4.5.13 COPY TO Command (FoxPro)

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Export records to a new database or text file.

Syntax

COPY TO <xcTargetFile> [DATABASE <DbName> [NAME <LongName>]
 [FIELDS FieldList | FIELDS LIKE <Skeleton> | FIELDS EXCEPT
<Skeleton>]
 [<Scope>] [FOR <lCondition>] [WHILE <lCondition>]
 [[WITH] CDX] | [[WITH] PRODUCTION] [NOOPTIMIZE]
 [[TYPE] [FOXPLUS | FOX2X | DIF | MOD | SDF | SYLK | WK1 | WKS
| WR1
 | WRK | CSV | XLS | XL5 | DELIMITED [WITH <Delim> | WITH
BLANK
 | WITH TAB | WITH CHARACTER <cDelim>]]] [AS <nCodePage>]

Arguments

TO <xcTargetFile> The name of the target file, including an optional drive,
directory, and extension. See SetDefault() and SetPath() for
file searching and creation rules. The default extension for
database files is determined by the RDD. For text files, it is
.TXT.

If <xcTargetFile> does not exist, it is created. If it exists, this
command attempts to open the file in exclusive mode and, if
successful, the file is overwritten without warning or error. If
access is denied because, for example, another process is
using the file, NetErr() is set to TRUE.

495 XSharp

© 2015- 2024 XSharp BV

DATABASE <DbName> Specifies a database to which the new table is added. NOT
SUPPORTED AT THIS MOMENT

NAME <LongName> Specifies a long name for the new table. Long names can
contain up to 128 characters and can be used instead of
short file names in the database NOT SUPPORTED AT
THIS MOMENT

FIELDS <idFieldList> The list of fields to process. The default is all fields with the
exception of memo fields, unless the command supports
the MEMO clause.
Only fields with the same names and types in both files are
appended. If fields with the same name do not match in
data type, a runtime error is raised.

FIELDS LIKE <Skeleton> You can specify field names with a wild card, such as
FIELDS LIKE *name

FIELDS EXCEPT <Skeleton> You can exclude fields, such as for example the
primary keys: FIELDS EXCEPT Id
<Skeleton> supports wildcards (* and ?). For example, to
replace all fields that begin with the letters A and P, use:
FIELDS LIKE A*,P*

Please note that you can combine FIELDS LIKE and FIELDS EXCEPT but you cannot
combine a fields list with the LIKE and EXCEPT clauses.

WHILE <lCondition> A condition that each visible record within the scope must
meet, starting with the current record. As soon as the while
condition fails, the process terminates. If no <Scope> is
specified, having a while condition changes the default
scope to the rest of the visible records in the file.

<Scope> The portion of the current database file to process. The
default is all visible records. Scope is one or more clauses
of:
[NEXT <NEXT>] Optionally specifies the
number of records to process starting

with the first record of the
source file.
[RECORD <rec>] An optional record ID If
specified, the processing begins

with this data record in the
source file.
[<rest:REST>] The option REST specifies
whether records are sequentially

searched only from the current
up to the last record.

If a condition is specified, the
option ALL is the default value.
[ALL] The option ALL specifies that
all records from the source file are imported.

This is the default setting.

FOR <lCondition> A condition that each visible record within the scope must
meet in order to be processed. If a record does not meet

496X# Documentation

© 2015- 2024 XSharp BV

the specified condition, it is ignored and the next visible
record is processed. If no <Scope> or WHILE clause is
specified, having a for condition changes the default scope
to all visible records.

DELIMITED WITH <Delim> Indicates that character fields are separated by a character
other than the quotation mark.

DELIMITED WITH BLANK Specifies files that contain fields separated by spaces
instead of commas.

DELIMITED WITH TAB Specifies files that contain fields separated by tabs rather
than commas.

WITH CHARACTER <cDelim> Specifies files that contain fields all enclosed by the
character specified with Delimiter. If Delimiter is a
semicolon (the character used in Visual FoxPro to indicate
command line continuation), enclose the semicolon in
quotation marks. You can also specify the BLANK and TAB
keywords for Delimiter.
The WITH Delimiter clause can be combined with the WITH
CHARACTER clause.

TYPE Specifies the file type if the file you create is not a XBase
table. Although you must specify a file type, you do not need
to include the TYPE keyword.
From the various types that FoxPro allows only the following
ones are supported in X# at this moment:
SDF An SDF file is an ASCII text file in which records
have a fixed length and end with a carriage return and line
feed. Fields are not delimited.

The file name extension is assumed to be .txt for
SDF files.

CSV A comma separated value file. A CSV file has field
names as the first line in the file; the field names are ignored
when the file is imported.

The file name extension is assumed to be .csv for
CSV files.
FOXPLUS Visual FoxPro memo files have a different
structure than FoxBASE memo files.

If your source table contains a memo field,
include the FOXPLUS clause to create a table that can be
used in FoxBASE+.

The Visual FoxPro memo field cannot contain
binary data because FoxBASE+ does not support binary
data in memo fields.
FOX2X Creates a new table that can be opened in
earlier versions of FoxPro (versions 2.0, 2.5, and 2.6).
OTHER NOT SUPPORTED AT THIS MOMENT

AS <nCodePage> Specifies the codepage to use for the target file. NOT
SUPPORTED AT THIS MOMENT

497 XSharp

© 2015- 2024 XSharp BV

Notes

Deleted records: If SetDeleted() is FALSE, deleted records in the source file are copied to
<xcTargetFile> where they retain their deleted status.

Visibility: If SetDeleted() is TRUE, however, deleted records are not visible and are,
therefore, not processed. Similarly, filtered records (with DbSetFilter() or a conditional
controlling order) are not processed.

Examples

This example demonstrates copying to another database file:

USE sales NEW
COPY TO temp

This example demonstrates the layout of an SDF file with four fields, one for each data
type:

USE testdata NEW
COPY NEXT 1 TO temp SDF
TYPE temp.txt
// Result: Character 12.0019890801T

The next example demonstrates the layout of a DELIMITED file:

COPY NEXT 1 TO temp DELIMITED
TYPE temp.txt
// Result: "Character",12.00,19890801,T

Finally, this example demonstrates the layout of a DELIMITED file WITH a different
delimiter:

COPY NEXT 1 TO temp DELIMITED WITH '
TYPE temp.txt
// Result: 'Character',12.00,19890801,T

498X# Documentation

© 2015- 2024 XSharp BV

Assembly

XSharp.RT.DLL

See Also

APPEND FROM, COPY FILE, COPY STRUCTURE, DbCopy(), DbCopyDelim(),
DbCopySDF(), RDDSetDefault(), SetDefault(), SetPath(), SetDeleted()

1.8.4.5.14 COUNT Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Tally the number of records from the current work area that match the specified record
scope and condition, and place the result in the specified variable.

Syntax

COUNT TO <idVar> [<Scope>] [WHILE <lCondition>] [FOR <lCondition>]

Arguments

TO <idVar> The variable or field that holds the COUNT result. A variable
that either does not exist or is invisible is created as a
private variable.

<Scope> The portion of the current database file to process. The
default is all visible records. Scope is one or more clauses
of:
[NEXT <NEXT>] Optionally specifies the
number of records to process starting

with the first record of the
source file.
[RECORD <rec>] An optional record ID If
specified, the processing begins

with this data record in the
source file.
[<rest:REST>] The option REST specifies
whether records are sequentially

searched only from the current
up to the last record.

If a condition is specified, the

499 XSharp

© 2015- 2024 XSharp BV

option ALL is the default value.
[ALL] The option ALL specifies that
all records from the source file are imported.

This is the default setting.

WHILE <lCondition> A condition that each visible record within the scope must
meet, starting with the current record. As soon as the while
condition fails, the process terminates. If no <Scope> is
specified, having a while condition changes the default
scope to the rest of the visible records in the file.

FOR <lCondition> A condition that each visible record within the scope must
meet in order to be processed. If a record does not meet
the specified condition, it is ignored and the next visible
record is processed. If no <Scope> or WHILE clause is
specified, having a for condition changes the default scope
to all visible records.

Examples

This example demonstrates a COUNT using a particular Branch in SALES.DBF:

USE sales NEW
COUNT TO nBranchCnt FOR Branch = 100
? nBranchCnt // Result: 4

The next example tallies the number of records in SALES.DBF whose Branch has the
value of 100 and assigns the result to the Count field in BRANCH.DBF for branch 100:

USE branch INDEX branch NEW
SEEK 100
USE sales INDEX salesbranch NEW
SEEK 100
COUNT TO Branch->Count WHILE Sales->Branch = 100

Assembly

XSharp.RT.DLL

See Also

AVERAGE, DBEval(), SUM, TOTAL

500X# Documentation

© 2015- 2024 XSharp BV

1.8.4.5.15 CREATE Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Create an empty structure-extended file.

Syntax

CREATE <xcTargetFile> [NEW] [ALIAS <xcAlias>] [VIA <cDriver>]

Arguments

<xcTargetFile> The name of the empty structure-extended database file,
including an optional drive, directory, and extension. See
SetDefault() and SetPath() for file searching and creation
rules. The default extension for database files is determined
by the RDD. After the file is created, it remains open in the
mode specified by the SetExclusive() flag for the work area.

If <xcTargetFile> does not exist, it is created. If it exists, this
command attempts to open the file in exclusive mode and, if
successful, the file is overwritten without warning or error. If
access is denied because, for example, another process is
using the file, NetErr() is set to TRUE.

The structure of <xcTargetFile> is the same as the
structure generated by COPY STRUCTURE EXTENDED,
which you can refer to for more details.

NEW Selects the next unoccupied work area before opening
<xcTargetFile>. If this clause is not specified, the current
work area is used.

ALIAS <xcAlias> An identifier name to associate with the work area when
<xcTargetFile> is opened. If this clause is not specified, the
alias defaults to the database file name. Duplicate alias
names are not allowed within a single application.

VIA <cDriver> The name of the RDD that will service the work area. If not
specified, the default RDD as determined by
RDDSetDefault() is used.

501 XSharp

© 2015- 2024 XSharp BV

Notes

Unlike COPY STRUCTURE EXTENDED, the file created by CREATE is empty. You
must add records to the structure-extended file before you can use it to create a new
database file with CREATE FROM.

Examples

This example creates a new structure-extended file, places the definition of one field into
it, then creates a new database file from the extended structure:

CREATE tempstru
APPEND BLANK
REPLACE Field_Name WITH "Name",;

Field_Type WITH "C",;
Field_Len WITH 25,;
Field_Dec WITH 0

CLOSE
CREATE newfile FROM tempstru

Assembly

XSharp.RT.DLL

See Also

COPY STRUCTURE EXTENDED, CREATE FROM, DbCopyStruct(), DbCreate(),
RDDSetDefault(),SetDefault(), SetPath(), SetExclusive()

1.8.4.5.16 CREATE FROM Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Produce a new database file with the field definitions taken from the contents of a
structure-extended file.

502X# Documentation

© 2015- 2024 XSharp BV

Syntax

CREATE <xcTargetFile> FROM <xcSourceFile> [NEW] [ALIAS <xcAlias>] [VIA
<cDriver>]

Arguments

<xcTargetFile> The name of the target database file to create, including an
optional drive, directory, and extension. After the file is
created, it remains open in the mode specified by the
SetExclusive() flag for the work area.

If <xcTargetFile> does not exist, it is created. If it exists, this
command attempts to open the file in exclusive mode and, if
successful, the file is overwritten without warning or error. If
access is denied because, for example, another process is
using the file, NetErr() is set to TRUE.

<xcSourceFile> The name of a structure-extended file to use as the
structure definition for the new database file, including an
optional drive, directory, and extension.

If <xcSourceFile> does not exist, a runtime error is raised. If
it exists, this command attempts to open the file in shared
mode and, if successful, it proceeds. If access is denied
because, for example, another process has exclusive use of
the file, NetErr() is set to TRUE.

See SetDefault() and SetPath() for file searching and
creation rules. The default extension for database files is
determined by the RDD.

To qualify as a structure-extended file, the structure of the
database file must be the same as the structure generated
by COPY STRUCTURE EXTENDED, which you can refer
to for more details.

Note: For data dictionary applications, you can have
additional fields within the structure-extended file to describe
the extended field attributes. You can, for example, have
fields to describe such field attributes as a description, key
flag, label, color, picture, and a validation expression for the
VALID clause. CREATE FROM creates the new database
file from the required fields only, ignoring all other fields in
the extended structure. Moreover, it is not sensitive to the
order of the required fields.

503 XSharp

© 2015- 2024 XSharp BV

NEW Selects the next unoccupied work area before opening
<xcTargetFile>. If this clause is not specified, the current
work area is used.

ALIAS <xcAlias> An identifier name to associate with the work area when
<xcTargetFile> is opened. If this clause is not specified, the
alias defaults to the database file name. Duplicate alias
names are not allowed within a single application.

VIA <cDriver> The name of the RDD that will service the work area. If not
specified, the default RDD as determined by
RDDSetDefault() is used.

Notes

Character field lengths greater than 255: There are two methods for creating a character field
with a length greater than 255 digits:
· Specify the field length using both the Field_Len and Field_Dec fields according to

the following formulation:
· _FIELD->Field_Len := <nLength> % 256

· _FIELD->Field_Dec := Integer(<nLength> / 256)

· Modify the structure of the structure-extended file by changing the length of
Field_Len to 5, then specify the actual field length.

Examples

This example is a procedure that simulates an interactive CREATE utility:

FUNCTION Start()
CreateDatabase("newfile")

FUNCTION CreateDatabase(cNewDbf)
// Create empty structure-extended file
CREATE tmpext
USE tmpext
lMore := TRUE
DO WHILE lMore

// Input new field definitions
APPEND BLANK
CLEAR
@ 5, 0 SAY "Name.....: " GET Field_Name
@ 6, 0 SAY "Type.....: " GET Field_Type
@ 7, 0 SAY "Length...: " GET Field_Len
@ 8, 0 SAY "Decimals.: " GET Field_Dec
READ
lMore := (!EMPTY(Field_Name))

ENDDO

504X# Documentation

© 2015- 2024 XSharp BV

// Remove all blank records
DELETE ALL FOR EMPTY(Field_Name)
PACK
CLOSE

// Create new database file
CREATE (cNewDbf) FROM tmpext
ERASE tmpext.dbf

The next example creates a new definition in a structure-extended file for a character field
with a length of 4000 characters:

APPEND BLANK
REPLACE Field_Name WITH "Notes",;

Field_Type WITH "C",;
Field_Len WITH 4000 % 256,;
Field_Dec WITH INTEGER(4000 / 256)

Assembly

XSharp.RT.DLL

See Also

COPY STRUCTURE, COPY STRUCTURE EXTENDED, CREATE, DbCopyXStruct(),
DbCreate(), RDDSetDefault(), SetDefault(), SetExclusive(), SetPath()

1.8.4.5.17 DELETE Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Tag records so they can be filtered with SetDeleted(TRUE), queried with Deleted(), or
physically removed from the database file with PACK.

505 XSharp

© 2015- 2024 XSharp BV

Syntax

DELETE [<Scope>] [WHILE <lCondition>] [FOR <lCondition>] [[IN|ALIAS]
<workarea>]

Arguments

<Scope> The portion of the current database file to process. The
default is all visible records. Scope is one or more clauses
of:
[NEXT <NEXT>] Optionally specifies the
number of records to process starting

with the first record of the
source file.
[RECORD <rec>] An optional record ID If
specified, the processing begins

with this data record in the
source file.
[<rest:REST>] The option REST specifies
whether records are sequentially

searched only from the current
up to the last record.

If a condition is specified, the
option ALL is the default value.
[ALL] The option ALL specifies that
all records from the source file are imported.

This is the default setting.

WHILE <lCondition> A condition that each visible record within the scope must
meet, starting with the current record. As soon as the while
condition fails, the process terminates. If no <Scope> is
specified, having a while condition changes the default
scope to the rest of the visible records in the file.

FOR <lCondition> A condition that each visible record within the scope must
meet in order to be processed. If a record does not meet
the specified condition, it is ignored and the next visible
record is processed. If no <Scope> or WHILE clause is
specified, having a for condition changes the default scope
to all visible records.

IN|ALIAS <workarea> Specifies the work area for which the operation must be
performed

506X# Documentation

© 2015- 2024 XSharp BV

Description

This command merely marks the records for deletion. To permanently remove records
that are marked for deletion, PACK the file Before packing, you can reinstate deleted
records with RECALL.

Notes

Visibility: If the current record is deleted and SetDeleted() is TRUE, it
will be visible until the record pointer is moved.

Display of delete marker: Display commands, such as LIST and DISPLAY, identify
deleted records with an asterisk character (*).

Deleting all records: To permanently remove all records from a database file
regardless of their delete status, ZAP the file.

Shared mode: For a shared database, this command requires all records
that it operates on to be locked. You can accomplish this
using one or more record locks or a file lock, depending on
the scope of the command.

Examples

This example demonstrates use of the FOR clause to mark a set of records for deletion:

USE sales INDEX salesman NEW
DELETE ALL FOR Inactive

Assembly

XSharp.RT.DLL

See Also

DbDelete(), DBRLock(), Deleted(), FLock(), PACK, RECALL, RLock(), SetDeleted(), ZAP

1.8.4.5.18 GATHER Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

507 XSharp

© 2015- 2024 XSharp BV

Purpose

Replaces the data in the current record of the currently selected table with data from an
array, a set of variables, or an object.

Syntax

GATHER FROM ArrayName | MEMVAR | NAME ObjectName
 [FIELDS FieldList | FIELDS LIKE Skeleton | FIELDS EXCEPT
Skeleton]
 [MEMO]

Arguments

FIELDS <idFieldList> The list of fields to process. The default is all fields with the
exception of memo fields, unless the command supports
the MEMO clause.
Only fields with the same names and types in both files are
appended. If fields with the same name do not match in
data type, a runtime error is raised.

FIELDS LIKE <Skeleton> You can specify field names with a wild card, such as
FIELDS LIKE *name

FIELDS EXCEPT <Skeleton> You can exclude fields, such as for example the
primary keys: FIELDS EXCEPT Id
<Skeleton> supports wildcards (* and ?). For example, to
replace all fields that begin with the letters A and P, use:
FIELDS LIKE A*,P*

Please note that you can combine FIELDS LIKE and FIELDS EXCEPT but you cannot
combine a fields list with the LIKE and EXCEPT clauses.

FROM <ArrayName> Specifies the array whose data replaces the data in the
current record. The contents of the elements of the array,
starting with the first element, replace the contents of the
corresponding fields of the record. The contents of the first
array element replace the first field of the record; the
contents of the second array element replace the second
field, and so on.
If the array has fewer elements than the table has fields, the
additional fields are ignored. If the array has more elements
than the table has fields, the additional array elements are
ignored.

MEMVAR Specifies the variables or array from which data is copied to
the current record. Data is transferred from the variable to

508X# Documentation

© 2015- 2024 XSharp BV

the field that has the same name as the variable. The
contents of a field are not replaced if a variable doesn't exist
with the same name as the field.

NAME <ObjectName> Specifies an object whose properties have the same names
as fields in the table. The contents of each field are replaced
by the value of the property with the same names as the
fields. The contents of a field are not replaced if a property
doesn't exist with the same name as the field.

MEMO Specifies that the contents of memo or Blob fields are
replaced with the contents or array elements or variables. If
you omit MEMO, memo and Blob fields are skipped when
GATHER replaces the contents of fields with the contents of
an array or variable. General and picture fields are always
ignored in GATHER, even if you include the MEMO keyword.

See Also

APPEND FROM ARRAY, COPY TO ARRAY, SCATTER

1.8.4.5.19 GO Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Move the pointer to the specified record.

Syntax

GO[TO] <uRecID> | TOP | BOTTOM [[IN|ALIAS] <workarea>]

Arguments

<uRecID> The record to go to. The data type and interpretation of
<uRecID> is determined by the RDD. For .DBF files, it is
the record number. If <uRecID> does not exist, the work
area is positioned to LastRec() + 1, and both EoF() and
BoF() return TRUE.

TOP Specifies the first logical record in the current work area.

BOTTOM Specifies the last logical record in the current work area.

IN|ALIAS <workarea> Specifies the work area for which the operation must be
performed

509 XSharp

© 2015- 2024 XSharp BV

Notes

Visibility: Even though a particular record may not be visible (because, for example, of
DbSetFilter(), SetDeleted(TRUE), or a conditional controlling order), you can still go to that
record.

Examples

This example saves the current record number, searches for a key, then restores the
record pointer to the saved position:

FUNCTION KeyExists(uKeyExpr)
LOCAL nSavRecord := RECNO()
// Save the current record pointer position
LOCAL lFound

SEEK uKeyExpr
IF (lFound := Found())

.

. <Statements>

.
ENDIF

GOTO nSavRecord // Restore the record pointer
// position

RETURN lFound

Assembly

XSharp.RT.DLL

See Also

DbGoTo(), DbSetFilter(), DBSetRelation(), LastRec(), RecNo(), SetDeleted() , SET
RELATION, SKIP

1.8.4.5.20 JOIN Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

510X# Documentation

© 2015- 2024 XSharp BV

Purpose

Create a new database file by merging selected records and fields from two work areas
based on a specified condition.

Syntax

JOIN WITH <xcAlias> TO <xcTargetFile> FOR <lCondition> [FIELDS
<idFieldList>]

Arguments

WITH <xcAlias> The alias identifier for the work area to merge with the
current work area. If there is no open database associated
with <xcAlias>, a runtime error is raised.

TO <xcTargetFile> The name of the target database file, including an optional
drive, directory, and extension. See SetDefault() and
SetPath() for file searching and creation rules. The default
extension for database files is determined by the RDD .

If <xcTargetFile> does not exist, it is created. If it exists, this
command attempts to open the file in exclusive mode and, if
successful, the file is overwritten without warning or error. If
access is denied because, for example, another process is
using the file, NetErr() is set to TRUE.

FOR <lCondition> A condition that is processed for each visible record in the
current work area using every visible record in the WITH
work area. If a record meets the condition, a new record is
written to <xcTargetFile>. If a record does not meet the
specified condition, it is ignored and the next record is
processed.

Warning! The number of records processed will be the
LastRec() of the primary work area multiplied by the
LastRec() of the secondary work area. For example, if you
have two database files with 100 records each, the number
of records JOIN processes is the equivalent of sequentially
processing a single database file of 10,000 records.
Therefore, use this command carefully.

FIELDS <idFieldList> The projection of fields from both work areas into the new
database file. To specify fields in the secondary work area,
reference them with the alias operator (->). If the FIELDS
clause is not specified, all fields from the current work area
are included in the target database file.

511 XSharp

© 2015- 2024 XSharp BV

Notes

Deleted records: If SetDeleted() is FALSE, deleted records in both source files are
processed, but their deleted status is not retained in <xcTargetFile>; thus, no record in the
target file is marked for deletion, regardless of its deleted status in the source files.
Visibility: If SetDeleted() is TRUE, deleted records (in both files) are not visible and are,
therefore, not processed. Similarly, records that are filtered (with DbSetFilter() or a
conditional controlling order) are not processed.

Examples

This example joins the CUSTOMER.DBF with INVOICES.DBF to produce
PURCHASES.DBF:

USE invoices NEW
USE customer NEW
JOIN WITH Invoices TO purchases;

FOR Last = Invoices->Last;
FIELDS First, Last, Invoices->Number, ;

Invoices->Amount

Assembly

XSharp.RT.DLL

See Also

DbJoin(), SET RELATION, SetDefault(), SetPath()

1.8.4.5.21 LOCATE Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Search for the first record in the current work area that matches the specified condition
and scope.

Syntax

LOCATE [<Scope>] FOR <lCondition> [WHILE <lCondition>]

512X# Documentation

© 2015- 2024 XSharp BV

Arguments

<Scope> The portion of the current database file to process. The
default is all visible records. Scope is one or more clauses
of:
[NEXT <NEXT>] Optionally specifies the
number of records to process starting

with the first record of the
source file.
[RECORD <rec>] An optional record ID If
specified, the processing begins

with this data record in the
source file.
[<rest:REST>] The option REST specifies
whether records are sequentially

searched only from the current
up to the last record.

If a condition is specified, the
option ALL is the default value.
[ALL] The option ALL specifies that
all records from the source file are imported.

This is the default setting.

WHILE <lCondition> A condition that each visible record within the scope must
meet, starting with the current record. As soon as the while
condition fails, the process terminates. If no <Scope> is
specified, having a while condition changes the default
scope to the rest of the visible records in the file.

FOR <lCondition> A condition that each visible record within the scope must
meet in order to be processed. If a record does not meet
the specified condition, it is ignored and the next visible
record is processed. If no <Scope> or WHILE clause is
specified, having a for condition changes the default scope
to all visible records.

Description

LOCATE evaluates each visible record within the scope using the for condition. As soon
as a record meets the condition, the process terminates, leaving the record pointer on the
matching record and setting the Found() flag to TRUE. If the for condition is FALSE for all
records in the scope, the Found() flag is set to FALSE, and the position of the record
pointer depends on the scope.

Each work area has its own locate condition which remains active until you execute
another locate operation (for example, with LOCATE or DBLocate()), reset the locate
condition (for example, with VODBSetLocate()), or terminate the application.

513 XSharp

© 2015- 2024 XSharp BV

Notes

CONTINUE: Once you locate a record and have processed it, you can resume the search
from the current record pointer position with CONTINUE (or DBContinue()). Both the
<Scope> and the while condition, however, apply only to the initial locate operation and are
not known by subsequent continue operations. To continue a pending locate with a scope
or while condition, use SKIP then LOCATE REST WHILE <lCondition> instead of
CONTINUE as shown in the example below.

Examples

These examples show typical LOCATE constructs:

USE sales INDEX salesman
LOCATE FOR Branch = "200"
? Found(), EOF(), RECNO() // Result: TRUE FALSE 5
LOCATE FOR Branch = "5000"
? Found(), EOF(), RECNO() // Result: FALSE TRUE 85

The next example shows a LOCATE with a WHILE condition that is continued by using
LOCATE REST:

SEEK "Bill"
LOCATE FOR Branch = "200" WHILE Salesman = "Bill"
DO WHILE Found()

? Branch, Salesman
SKIP
LOCATE REST FOR Branch = "200" WHILE ;

Salesman = "Bill"
ENDDO

Assembly

XSharp.RT.DLL

See Also

CONTINUE, DbContinue(), DbLocate(), EoF(), Found(), RecNo(), SEEK, DbSetFilter()

514X# Documentation

© 2015- 2024 XSharp BV

1.8.4.5.22 PACK Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Remove all records marked for deletion from the current database file, rebuild all active
orders, and recover all physical space occupied by the deleted records. Note that this will
not affect memo files. Unused space in memo files can only be recovered by using
COPY.

Syntax

PACK [[IN|ALIAS] <workarea>]

Arguments

IN|ALIAS <workarea> Specifies the work area for which the operation must be
performed

Description

PACK is functionally equivalent to DBPack().

Warning! PACK does not create backup files. You may want to make a backup of the file
(using COPY FILE, for example) before issuing this command; otherwise, you will not be
able to recover deleted records.

Examples

The following shows the result of a simple PACK:

USE sales NEW
? LastRec() // Result: 84

DELETE RECORD 4
PACK
? LastRec() // Result: 83

Assembly

XSharp.RT.DLL

515 XSharp

© 2015- 2024 XSharp BV

See Also

DbPack(), DELETE, Deleted(), RECALL, REINDEX, SetDeleted() , SetExclusive(), ZAP

1.8.4.5.23 RECALL Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Restore records marked for deletion in the current work area.

Syntax

RECALL [<Scope>] [WHILE <lCondition>] [FOR <lCondition>] [[IN|ALIAS]
<workarea>

Arguments

<Scope> The portion of the current database file to process. The
default is all visible records. Scope is one or more clauses
of:
[NEXT <NEXT>] Optionally specifies the
number of records to process starting

with the first record of the
source file.
[RECORD <rec>] An optional record ID If
specified, the processing begins

with this data record in the
source file.
[<rest:REST>] The option REST specifies
whether records are sequentially

searched only from the current
up to the last record.

If a condition is specified, the
option ALL is the default value.
[ALL] The option ALL specifies that
all records from the source file are imported.

This is the default setting.

WHILE <lCondition> A condition that each visible record within the scope must
meet, starting with the current record. As soon as the while
condition fails, the process terminates. If no <Scope> is
specified, having a while condition changes the default

516X# Documentation

© 2015- 2024 XSharp BV

scope to the rest of the visible records in the file.

FOR <lCondition> A condition that each visible record within the scope must
meet in order to be processed. If a record does not meet
the specified condition, it is ignored and the next visible
record is processed. If no <Scope> or WHILE clause is
specified, having a for condition changes the default scope
to all visible records.

IN|ALIAS <workarea> Specifies the work area for which the operation must be
performed

RECALL is the inverse of the DELETE command. If SetDeleted() is TRUE, RECALL can
restore the current record or a specific record if you specify a RECORD scope.

Important! Once you PACK a database file, all marked records are physically removed
from the file and cannot be recalled.

Shared mode: For a shared database, this command requires all records that it operates
on to be locked. You can accomplish this using one or more record locks or a file lock,
depending on the scope of the command.

Examples

This example shows the results of RECALL:

USE sales NEW
DELETE RECORD 4
? Deleted() // Result: TRUE
RECALL
? Deleted() // Result: FALSE

Assembly

XSharp.RT.DLL

See Also

DELETE, DbRecall(), Deleted(),, FLock(), PACK, RLock(), SetDeleted() , ZAP

1.8.4.5.24 REPLACE Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

517 XSharp

© 2015- 2024 XSharp BV

Purpose

Assign new values to the contents of one or more fields in the current record.

Syntax

REPLACE <idField> WITH <uValue> [, <idField> WITH <uValue>...]
[<Scope>] [WHILE <lCondition>]

[FOR <lCondition>] [[IN|ALIAS] <workarea>]

Arguments

<idField> The name of the field variable to assign a new value. If
<idField> is prefaced with an alias or declared using FIELD
<idField> IN <idAlias>, the assignment takes place in the
designated work area. Otherwise, the current work area is
assumed.

WITH <uValue> Defines the value to assign to <idField>.

<Scope> The portion of the current database file to process. The
default is all visible records. Scope is one or more clauses
of:
[NEXT <NEXT>] Optionally specifies the
number of records to process starting

with the first record of the
source file.
[RECORD <rec>] An optional record ID If
specified, the processing begins

with this data record in the
source file.
[<rest:REST>] The option REST specifies
whether records are sequentially

searched only from the current
up to the last record.

If a condition is specified, the
option ALL is the default value.
[ALL] The option ALL specifies that
all records from the source file are imported.

This is the default setting.

FOR <lCondition> A condition that each visible record within the scope must
meet in order to be processed. If a record does not meet
the specified condition, it is ignored and the next visible
record is processed. If no <Scope> or WHILE clause is
specified, having a for condition changes the default scope
to all visible records.

518X# Documentation

© 2015- 2024 XSharp BV

WHILE <lCondition> A condition that each visible record within the scope must
meet, starting with the current record. As soon as the while
condition fails, the process terminates. If no <Scope> is
specified, having a while condition changes the default
scope to the rest of the visible records in the file.

IN|ALIAS <workarea> Specifies the work area for which the operation must be
performed

Description

REPLACE performs the same function as the assignment operator (:=) except that it
assumes field variables.

Warning! When you REPLACE a key field, the index is updated and the relative position of
the record pointer within the index is changed. This means that replacing a key field with a
scope or a condition can yield an erroneous result. To update a key field, suppress the
controlling order (with, for example, SET ORDER TO 0 or DBSetOrder(0)) before the
REPLACE. This insures that the record pointer moves sequentially in natural order and
that all orders in the order list are updated properly.

Shared mode: For a shared database, this command requires all records that it operates
on to be locked. You can accomplish this using one or more record locks or a file lock,
depending on the scope of the command.

Examples

This example shows a simple use of REPLACE:

USE customer NEW
APPEND BLANK
USE invoices NEW
APPEND BLANK

REPLACE Charges WITH Customer->Markup * Cost,;
CustID WITH Customer->CustID,;
Customer->TranDate WITH TODAY()

Using assignment statements in place of the REPLACE command looks like this:

Invoices->Charges := Customer->Markup * ;
Invoices->Cost

Invoices->CustID := Customer->CustID
Customer->TranDate := TODAY()

519 XSharp

© 2015- 2024 XSharp BV

Assembly

XSharp.RT.DLL

See Also

COMMIT, DbRLock(), DbSetOrder(), FLock(), RLock(), SET ORDER

1.8.4.5.25 SCATTER Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Assign new values to the contents of one or more fields in the current record.

Syntax

SCATTER [FIELDS <idFieldList> | FIELDS LIKE <Skeleton>
 | FIELDS EXCEPT <Skeleton>] [MEMO] [BLANK]
 | TO ArrayName | MEMVAR
 | NAME ObjectName [ADDITIVE]

Arguments

FIELDS <idFieldList> The list of fields to process. The default is all fields with the
exception of memo fields, unless the command supports
the MEMO clause.
Only fields with the same names and types in both files are
appended. If fields with the same name do not match in
data type, a runtime error is raised.

FIELDS LIKE <Skeleton> You can specify field names with a wild card, such as
FIELDS LIKE *name

FIELDS EXCEPT <Skeleton> You can exclude fields, such as for example the
primary keys: FIELDS EXCEPT Id
<Skeleton> supports wildcards (* and ?). For example, to
replace all fields that begin with the letters A and P, use:
FIELDS LIKE A*,P*

Please note that you can combine FIELDS LIKE and FIELDS EXCEPT but you cannot
combine a fields list with the LIKE and EXCEPT clauses.

MEMO Specifies that the field list include one or more memo fields.

520X# Documentation

© 2015- 2024 XSharp BV

BLANK Include the BLANK keyword to create a set of empty
variables or to fill the array or object with empty values.
Each variable is assigned the same name, data type, and
size as its field. If a field list is included, a variable is created
for each field in the field list.

TO <ArrayName> Specifies an array to which the record contents are copied.
Starting with the first field, SCATTER copies the contents of
each field into each element of the array in sequential order.
SCATTER automatically creates a new array. The array
elements have the same size and data types as the
corresponding fields.

MEMVAR Scatters the data to a set of variables instead of an array.
SCATTER creates one variable for each field in the table
and fills each variable with data from the corresponding field
in the current record, assigning to the variable the same
name, size, and type as its field.

NAME <ObjectName> Creates an object whose properties have the same names
as fields in the table. To copy the value of each field in the
table to each object property, do not include the BLANK
keyword. To leave the properties empty, include the BLANK
keyword

ADDITIVE To update the property values of an existing and valid Visual
FoxPro object specified by ObjectName. Using BLANK with
ADDITIVE omits the values for existing properties that have
matching field names.

See Also

GATHER, COPY TO ARRAY, APPEND FROM ARRAY

1.8.4.5.26 SELECT Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Change the current work area.

Syntax

SELECT <xnWorkArea> | <xcAlias>

521 XSharp

© 2015- 2024 XSharp BV

Arguments

<xnWorkArea> A number from 0 to 250 that specifies the work area to
select.

<xcAlias> The alias identifier for the work area to select. If there is no
open database file associated with the specified alias, a
runtime error is raised.

Description

SELECT causes the specified work area to become the current work area. All
subsequent database operations will apply to this work area unless another work area is
explicitly specified for an operation.
SELECT is functionally equivalent to DBSelectArea().

Notes

Selecting 0: Selecting work area 0 causes the lowest numbered
unoccupied work area to become the current work area.
Using SELECT 0 before opening a file is equivalent to USE
with the NEW option.

Aliased expressions: The alias operator (->) can temporarily select a work area
while an expression is evaluated and automatically restore
the previously selected work area afterward.

Examples

This example opens a series of database files by selecting each work area by number,
then using each database file in that work area:

SELECT 1
USE customer
SELECT 2
USE invoices
SELECT 3
USE parts
SELECT customer

To make your code independent of the work area number used, a better method is to
open each database in the next available work area by specifying the NEW clause on the
USE command line. In this example USE...NEW is employed instead of SELECT 0, then
USE:

522X# Documentation

© 2015- 2024 XSharp BV

USE customer NEW
USE invoices NEW
SELECT customer

This code fragment changes work areas while saving the current work area name to a
variable by using the Select() function. After executing an operation for the new work area,
the original work area is restored:

nLastArea := Select()
USE newfile NEW

<Statements>...

SELECT (nLastArea)s

Assembly

XSharp.RT.DLL

See Also

Alias(), DbSelectArea(), Select(), USE, Used()

1.8.4.5.27 SET DELETED Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Change the setting that determines whether to ignore or include records that are marked
for deletion.

Syntax

SET DELETED ON | OFF | (<lToggle>)

523 XSharp

© 2015- 2024 XSharp BV

Arguments

ON Specifies that commands that operate on records, including
records in related tables, using a scope ignore records that
are marked for deletion

OFF Specifies that commands that operate on records, including
records in related tables, using a scope can access records
marked for deletion. (Default)

lToggle A logical expression which must appear in parentheses.
True is equivalent to ON, False to OFF

Description

SET DELETED is functionally equivalent to SetDeleted().

Assembly

XSharp.RT.DLL

See Also

DELETE, DbSetFilter(), Deleted(), RECALL, SET FILTER, SetDeleted()

1.8.4.5.28 SET DRIVER Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Change the default RDD for the application.

Syntax

SET DRIVER TO <idDriverName>

Description

SET DRIVER is functionally equivalent to DBSetDriver().

Assembly

XSharp.RT.DLL

524X# Documentation

© 2015- 2024 XSharp BV

See Also

DbSetDriver()

1.8.4.5.29 SET FILTER Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Set or clear a filter condition for the current work area.

Syntax

SET FILTER TO [<lCondition>]

Arguments

TO <lCondition> The condition used to filter records.

SET FILTER TO without an argument clears the filter
condition.

Description

When a filter is set, records that do not meet the filter condition are not logically visible.
The filter condition can be returned as a string using the DBFilter() function.
That is, database operations which act on logical records will not consider these records
except to access them specifically by record number. So, for example, you can GOTO a
filtered record or process one using the RECORD <nRecord> scope.

Note: Once a filter is set, it is not activated until the record pointer is moved from its
current position. You can use GO TOP to activate it.

SET FILTER TO when specified with a condition is functionally equivalent to DbSetFilter()
with the condition expressed as a code block and a string. SET FILTER TO with no
arguments is equivalent to DBClearFilter().

Tip: If the RDD you are using supports optimization, use SET OPTIMIZE to control
whether the RDD will optimize the filter search based on the available orders in the work
area.

525 XSharp

© 2015- 2024 XSharp BV

Notes

Visibility: As with SetDeleted() , a filter has no effect on INDEX and REINDEX. To create a
conditional index, use the FOR condition of the INDEX command.

Examples

This example filters EMPLOYEE.DBF to only those records where the age is greater than
50:

USE employee INDEX name NEW
SET FILTER TO Age > 50
LIST Lastname, Firstname, Age, Phone
SET FILTER TO

Assembly

XSharp.RT.DLL

See Also

DbClearFilter(), DbFilter(), DbSetFilter(), SET OPTIMIZE, SetDeleted()

1.8.4.5.30 SET MEMOBLOCK Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Change the block size for memo files.

Syntax

SET MEMOBLOCK TO <nSize>

Description

The initial memo file block size depends on the RDD. For most drivers that support the
.DBT memo file format, it is 512 bytes. However, if you are using BLOB files (.DBV) via
inheritance from the DBFBLOB driver, the default is 1.

526X# Documentation

© 2015- 2024 XSharp BV

SET MEMOBLOCK is functionally equivalent to calling
RDDInfo(_SET_MEMOBLOCKSIZE, <nSize>).

Assembly

XSharp.RT.DLL

See Also

RDDInfo()

1.8.4.5.31 SET OPTIMIZE Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Change the setting that determines whether to optimize using the open orders when
processing a filtered database file.

Syntax

SET OPTIMIZE ON | OFF | (<lToggle>)

Arguments

ON Turns optimization on.

OFF Turns optimization off.

<lToggle> Turns optimization on if TRUE or off is FALSE.

Note: The initial default of this setting depends on the RDD.
 Check RDDInfo(_SET_OPTIMIZE) to find out the setting for
the RDD in use for the current work area.

Description

For RDDs that support optimization, such as DBFCDX, SET OPTIMIZE determines
whether to optimize filters based on the orders open in the current work area. If this flag is
ON, the RDD will optimize the search for records that meet the filter condition to the fullest
extent possible, minimizing the need to read the actual data from the database file.
If this flag is OFF, the RDD will not optimize.

527 XSharp

© 2015- 2024 XSharp BV

Assembly

XSharp.RT.DLL

See Also

DbSetFilter(), RDDInfo(), SET FILTER

1.8.4.5.32 SET RELATION Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Link a parent work area to one or more child work areas using a key expression, record
number, or numeric expression.

Syntax

SET RELATION TO [<uRecID> INTO <xcAlias>] [, [TO] <uRecId> INTO
<xcAlias>...] [ADDITIVE] [SCOPED]

Arguments

TO <uRecID> Performs an <xcAlias>->DBSeek(<uRecID>) operation if
the child work area has a controlling order; otherwise,
performs an <xcAlias>->DBGoTo(<uRecID>) operation.
The operation serves to position the child work area to a
matching index key value or record number each time the
record pointer moves in the parent work area.

INTO <xcAlias> The alias identifier for the child work area. If there is no
open database file associated with the specified alias, a
runtime error is raised.

ADDITIVE Specifies that relations are to be added to the existing
relations in the work area. If not specified, existing relations
are cleared before the new ones are set.

SCOPED Causes the SET RELATION command to map to the
OrdSetRelation(). If not specified, SET RELATION maps to
DBSetRelation().

528X# Documentation

© 2015- 2024 XSharp BV

SET RELATION TO with no arguments clears all relations defined in the current work
area.

Description

Each parent work area can be linked to as many as eight child work areas.

Relating work areas synchronizes the child work area with the parent work area. This is
achieved by automatically repositioning the child work area whenever the parent work area
moves to a new record.

SET RELATION TO when specified with a list of expressions and alias names is
functionally equivalent to using several DBSetRelation() (or OrdSetRelation(), if SCOPED
is specified) function calls. If no ADDITIVE clause is specified, the command calls
DBClearRelation() first.

Notes

Soft seeking: Seek operations that occur as part of relational positioning are never soft
seeks (they do not respect the SetSoftSeek() flag). If a relational movement is
unsuccessful, the child work area is positioned to LastRec() + 1, its Found() status
returns FALSE, and its EoF() status returns TRUE.

Cyclical relations: Do not relate a parent work area to itself either directly or indirectly.

Record number relations: To relate two work areas based on matching record numbers, use
RecNo() for the SET RELATION TO expression and make sure the child work area has
no active indexes.

Examples

This example relates three work areas in a multiple parent-child configuration with
CUSTOMER related to both INVOICES and ZIP:

USE invoices INDEX invoices NEW
USE zip INDEX zipcode NEW
USE customer NEW
SET RELATION TO CustNum INTO Invoices, Zipcode INTO Zip
LIST Customer, Zip->City, Invoices->Number, Invoices->Amount

Sometime later, you can add a new child relation using the ADDITIVE clause, like this:

USE backorder INDEX backorder NEW
SELECT customer
SET RELATION TO CustNum INTO Backorder ADDITIVE

529 XSharp

© 2015- 2024 XSharp BV

Assembly

XSharp.RT.DLL

See Also

DbGoTo(), DBRelation(), DBRSelect(),, DbSeek(), DbSetIndex(), DbSetOrder() ,
DBSetRelation(), Found(), OrdSetRelation(), RecNo(), SET INDEX, SET ORDER,

SetSoftSeek()

1.8.4.5.33 SKIP Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Move the record pointer relative to the current record.

Syntax

SKIP [<nRecords>] [[IN|ALIAS] <workarea>]

Arguments

<nRecords> The number of logical records to move, relative to the
current record. A positive value means to skip forward, and
a negative value means to skip backward. If <nRecords> is
omitted, a value of 1 is assumed.

IN|ALIAS <workarea> Specifies the work area for which the operation must be
performed

Description

SKIP is functionally equivalent to DBSkip(). Specifying the alias is like using DBSkip() in
an aliased expression (such as, <xcAlias>->DBSkip(<nRecords>).

Examples

This example uses SKIP with various arguments and shows the result:

530X# Documentation

© 2015- 2024 XSharp BV

USE customer NEW
SKIP
? RECNO() // Result: 2
SKIP 10
? RECNO() // Result: 12
SKIP -5
? RECNO() // Result: 7

This example moves the record pointer in a remote work area:

USE customer NEW
USE invoices NEW
SKIP ALIAS customer

This example prints a report using SKIP to move the record pointer sequentially through
the CUSTOMER database file:

LOCAL nLine := 99
USE customer NEW
SET PRINTER ON
DO WHILE !EOF()

IF nLine > 55
EJECT
nLine := 1

ENDIF
Customer, Address, City, State, Zip
++nLine
SKIP

ENDDO
SET PRINTER OFF
CLOSE customer

Assembly

XSharp.RT.DLL

See Also

BoF(), COMMIT, DbSetFilter(), DbSkip(), EoF(), GO, LOCATE, RecNo(), SEEK,

SetDeleted()

531 XSharp

© 2015- 2024 XSharp BV

1.8.4.5.34 SORT Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Copy records from the current work area to a database file in sorted order.

Syntax

SORT TO <xcTargetFile> ON <idFieldList> [<Scope>] [WHILE
<lCondition>] [FOR <lCondition>]

Arguments

TO <xcTargetFile> The name of the target database file to write the sorted
records, including an optional drive, directory, and extension.
 See SetDefault() and SetPath() for file searching and
creation rules. The default extension for database files is
determined by the RDD.

If <xcTargetFile> does not exist, it is created. If it exists, this
command attempts to open the file in exclusive mode and, if
successful, the file is overwritten without warning or error. If
access is denied because, for example, another process is
using the file, NetErr() is set to TRUE.

ON <idFieldList> The sort keys, specified as a comma-separated list of field
names. You may optionally add, after each field name, /A
(to sort in dictionary order), /C (to ignore capitalization),
or /D (to sort in descending order). The default setting is /A.

<Scope> The portion of the current database file to process. The
default is all visible records. Scope is one or more clauses
of:
[NEXT <NEXT>] Optionally specifies the
number of records to process starting

with the first record of the
source file.
[RECORD <rec>] An optional record ID If
specified, the processing begins

with this data record in the
source file.
[<rest:REST>] The option REST specifies
whether records are sequentially

searched only from the current
up to the last record.

532X# Documentation

© 2015- 2024 XSharp BV

If a condition is specified, the
option ALL is the default value.
[ALL] The option ALL specifies that
all records from the source file are imported.

This is the default setting.

WHILE <lCondition> A condition that each visible record within the scope must
meet, starting with the current record. As soon as the while
condition fails, the process terminates. If no <Scope> is
specified, having a while condition changes the default
scope to the rest of the visible records in the file.

FOR <lCondition> A condition that each visible record within the scope must
meet in order to be processed. If a record does not meet
the specified condition, it is ignored and the next visible
record is processed. If no <Scope> or WHILE clause is
specified, having a for condition changes the default scope
to all visible records.

Description

SORT is functionally equivalent to DBSort().

Examples

This example copies a mailing list using a descending sort key to a smaller list for printing:

USE mailing INDEX zip
SEEK "900"
SORT ON Lastname /D, Firstname /D TO invite ;

WHILE Zip = "900"
USE invite NEW
REPORT FORM rsvplist TO PRINTER

Assembly

XSharp.RT.DLL

See Also

ASort(), DbSort(), FLock(), INDEX,SetDefault(), SetPath(), USE

533 XSharp

© 2015- 2024 XSharp BV

1.8.4.5.35 SUM Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Total a series of numeric expressions for a range of records in the current work area, and
assign the results to a series of variables.

Syntax

SUM <nValueList> TO <idVarList> [<Scope>] [WHILE <lCondition>]
[FOR <lCondition>]

Arguments

<nValueList> The list of values to sum for each record processed. Note
that the <nValueList> is required and not optional as it is in
other dialects.

TO <idVarList> Defines a list of one or more variables to assign the results
of the sum. If any variable reference in the list is ambiguous
(that is, not declared at compile time or not explicitly
qualified with an alias), it is assumed to be MEMVAR. If any
variable in the list is not visible or does not exist, a private
variable is created using <uValue>.

<Scope> The portion of the current database file to process. The
default is all visible records. Scope is one or more clauses
of:
[NEXT <NEXT>] Optionally specifies the
number of records to process starting

with the first record of the
source file.
[RECORD <rec>] An optional record ID If
specified, the processing begins

with this data record in the
source file.
[<rest:REST>] The option REST specifies
whether records are sequentially

searched only from the current
up to the last record.

If a condition is specified, the
option ALL is the default value.
[ALL] The option ALL specifies that
all records from the source file are imported.

This is the default setting.

534X# Documentation

© 2015- 2024 XSharp BV

WHILE <lCondition> A condition that each visible record within the scope must
meet, starting with the current record. As soon as the while
condition fails, the process terminates. If no <Scope> is
specified, having a while condition changes the default
scope to the rest of the visible records in the file.

FOR <lCondition> A condition that each visible record within the scope must
meet in order to be processed. If a record does not meet
the specified condition, it is ignored and the next visible
record is processed. If no <Scope> or WHILE clause is
specified, having a for condition changes the default scope
to all visible records.

Examples

This example illustrates the use of SUM:

LOCAL nTotalPrice, nTotalAmount
USE sales NEW
SUM Price * .10, Amount TO nTotalPrice, nTotalAmount

? nTotalPrice // Result: 151515.00
? nTotalAmount // Result: 150675.00

Assembly

XSharp.RT.DLL

See Also

AVERAGE, COUNT, DBEval(), TOTAL

1.8.4.5.36 TOTAL Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Summarize records in the current work area by key value to a database file.

535 XSharp

© 2015- 2024 XSharp BV

Syntax

TOTAL TO <xcTargetFile> ON <uKeyValue> FIELDS <idFieldList>
[<Scope>] [WHILE <lCondition>] [FOR <lCondition>]

Arguments

TO <xcTargetFile> The name of the target database file to write the totaled
records, including an optional drive, directory, and extension.
 See SetDefault() and SetPath() for file searching and
creation rules. The default extension for database files is
determined by the RDD.

If <xcTargetFile> does not exist, it is created. If it exists, this
command attempts to open the file in exclusive mode and, if
successful, the file is overwritten without warning or error. If
access is denied because, for example, another process is
using the file, NetErr() is set to TRUE.

ON <uKeyValue> The key value used to summarize the records. To make the
summarizing operation accurate, the current database file
should be indexed or sorted on this expression.

FIELDS <idFieldList> The list of numeric fields to total. If the FIELDS clause is not
specified, no numeric fields are totaled. Instead each
numeric field in the target file contains the value for the first
record in the source file matching the key value.

<Scope> The portion of the current database file to process. The
default is all visible records. Scope is one or more clauses
of:
[NEXT <NEXT>] Optionally specifies the
number of records to process starting

with the first record of the
source file.
[RECORD <rec>] An optional record ID If
specified, the processing begins

with this data record in the
source file.
[<rest:REST>] The option REST specifies
whether records are sequentially

searched only from the current
up to the last record.

If a condition is specified, the
option ALL is the default value.
[ALL] The option ALL specifies that
all records from the source file are imported.

This is the default setting.

536X# Documentation

© 2015- 2024 XSharp BV

WHILE <lCondition> A condition that each visible record within the scope must
meet, starting with the current record. As soon as the while
condition fails, the process terminates. If no <Scope> is
specified, having a while condition changes the default
scope to the rest of the visible records in the file.

FOR <lCondition> A condition that each visible record within the scope must
meet in order to be processed. If a record does not meet
the specified condition, it is ignored and the next visible
record is processed. If no <Scope> or WHILE clause is
specified, having a for condition changes the default scope
to all visible records.

Description

TOTAL works by first copying the structure of the current database file to specified target
file, except for memo fields. It then sequentially scans the current database file within the
specified scope of records.

As each record with a unique key value is encountered, that record is copied to the target
database file. The values of numeric fields specified in the FIELDS list from successive
records with the same key value are added to fields with the same names in the target file.
 Summarization proceeds until a record with a new key value is encountered at which
point the process is repeated.

Important! To successfully total numeric fields, the numeric fields in the current database
file structure must be large enough to hold the largest total possible for that numeric field.
A runtime error will be raised if there is a numeric field overflow.

TOTAL is functionally equivalent to DBTotal().

Notes

Deleted records: If SetDeleted() is FALSE, deleted records in the source file are
processed. Records in the target file inherit the deleted status of the first matching record
in the source file.

Visibility: If SetDeleted() is TRUE, however, deleted records are not visible and are,
therefore, not processed. Similarly, filtered records (with DbSetFilter() or a conditional
controlling order) are not processed.

Examples

In this example, a database file is totaled on the key expression of the controlling order
using a macro expression. When the macro expression is encountered, the expression is
evaluated and the resulting string is substituted for the TOTAL <uKeyValue> argument:

537 XSharp

© 2015- 2024 XSharp BV

USE sales INDEX branch NEW
TOTAL ON &(IndexKey(0)) FIELDS Amount TO Summary

Assembly

XSharp.RT.DLL

See Also

AVERAGE, DBTotal(), INDEX, SetDefault(), SetPath(), SORT, SUM, UPDATE

1.8.4.5.37 UPDATE Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Replace fields in the current work area with values from another work area, based on the
specified key value.

Syntax

UPDATE FROM <xcAlias> ON <uKeyValue> [RANDOM]REPLACE <idField>
WITH <uValue> [, <idField> WITH <uValue>...]

Arguments

FROM <xcAlias> The alias identifier for the work area used to update records
in the current work area. If there is no open database file
associated with the specified alias, a runtime error is raised.

ON <uKeyValue> The expression that defines matching records in the FROM
work area.

REPLACE <idField> A field in the current work area to update with a new value.

WITH <uValue> The value used to update the current field. You must
reference any field contained in the FROM work area with
the correct alias.

RANDOM If specified, the current work area must be ordered (using an
index order) by <uKeyValue> but the FROM work area

538X# Documentation

© 2015- 2024 XSharp BV

records can be in any order. If not specified, both the
current work area and the FROM work area must be
ordered (logically or physically) by <uKeyValue>.

Description

UPDATE can only update records in the current work area with unique key values. When
there is more than one instance of a key value, only the first record with the key value is
updated. The FROM work area, however, can have duplicate key values.

UPDATE is functionally equivalent to DBUpdate().

Notes

Deleted records: If SetDeleted() is FALSE, deleted records in both files are processed.
Records in the file being updated retain their deleted status and are not affected by the
deleted status of records in the FROM file.

Visibility: If SetDeleted() is TRUE, however, deleted records are not visible and are,
therefore, not processed. Similarly, filtered records (with DbSetFilter() or a conditional
controlling order) are not processed.

Shared mode: For a shared database, UPDATE requires a file lock on the current database
file. The FROM database file can be open in any mode.

Examples

This example updates the CUSTOMER database file with outstanding invoice amounts:

USE invoices NEW
USE customer INDEX customer NEW
UPDATE FROM Invoices ON Last;
 REPLACE Owed WITH Owed + Invoices->Amount RANDOM

Assembly

XSharp.RT.DLL

See Also

DBCreateIndex(), DBUpdate(), FLock(), INDEX, JOIN, REPLACE, SetUnique(), SORT,

TOTAL

539 XSharp

© 2015- 2024 XSharp BV

1.8.4.5.38 USE Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Open an existing database file, its associated memo file, and optionally associated index
files in the current or the next available work area.

Syntax

USE [<xcDataFile> [INDEX <xcIndexList>] [ALIAS <xcAlias>] [FIELDS
<aFields>] [NEW] [READONLY]

[EXCLUSIVE | SHARED] [VIA <cDriver>] [INHERIT <acRDDs>]]

Arguments

<xcDataFile> The name of the database file to open, including an optional
drive, directory, and extension. If the database file has a
corresponding memo file, it is also opened. The default
extension for database and memo files is determined by the
RDD.

INDEX <xcIndexFileList>
The names of the index files to open, including an optional
drive, directory, and extension for each. The default
extension is determined by the RDD and can be obtained
using DBOrderInfo(DBOI_INDEXEXT).

If you specify <xcIndexList> as an expression and the value
returned is spaces or NIL, it is ignored.

It is recommended that you open index files with SET INDEX
or DBSetIndex() for proper resolution in case of a
concurrency conflict.

If the database file, its corresponding memo file, or any of
the index files does not exist, a runtime error is raised. See
SetDefault() and SetPath() for file searching and creation
rules.

ALIAS <xcAlias> An identifier name to associate with the work area when
<xcDataFile> is opened. If not specified, the alias defaults
to the database file name. Duplicate alias names are not
allowed within a single application.

540X# Documentation

© 2015- 2024 XSharp BV

FIELDS <aFields> An array containing field descriptions in the format returned
by DBStruct().

This argument does not apply to DBF files. It is intended for
use with file formats that do not store field descriptions. For
example, if you use an RDD that supports SDF or delimited
files, you can use this argument to define the file structure,
which can then be used with other commands or functions
to access the field descriptions. Here is an example of this
argument:

aFields := {;
 {"First", "C", 35, 0};

 {"Last", "C", 35, 0};
 {"Birthday", "D", 8, 0}}
 USE Names FIELDS aFields VIA "DELIM"

 ? First // Return: Josie

NEW Selects the next available work area before opening
<xcDataFile>. If not specified, <xcDataFile> is opened in
the current work area.

READONLY Attempts to open <xcDataFile> with a read-only attribute,
prohibiting updates to the work area. If not specified,
<xcDataFile> is opened read-write, allowing updates. If
<xcDataFile> cannot be accessed using the indicated
attribute, a runtime error is raised.

EXCLUSIVE Attempts to open <xcDataFile> for exclusive (non-shared)
use. All other processes are denied access until the
database file is closed.

SHARED Attempts to open <xcDataFile> for shared use.

If neither SHARED nor EXCLUSIVE is specified, the USE
command attempts to open <xcDataFile> in the mode
indicated by the SetExclusive() flag. However, it is highly
recommended that you specify the open mode as part of the
USE command rather than relying on SetExclusive() to
determine it for you.

VIA <cDriver> The name of the RDD that will service the work area. If not
specified, the default RDD as determined by
RDDSetDefault() is used.

INHERIT <acRDDs> A one-dimensional array with the names of RDDs from
which the main RDD inherits special functionality. This
allows you to use RDDs with special capabilities, like
encryption or decryption, in different work areas with
different database drivers. These RDDs overlay special

541 XSharp

© 2015- 2024 XSharp BV

functions of the main RDD (specified with the VIA clause). If
multiple RDDs (specified with this INHERIT clause)
implement the same function, the function associated with
the last RDD in the list takes precedence.

USE specified with no arguments closes the database file
open in the current work area.

Description

The USE command attempts to open <xcDataFile> (and its associated .DBF file, if any)
in the indicated mode. If the file is successfully opened, the operation proceeds to open
any indicated index files in the same mode — any files that were already open in the work
area are closed. The first order in the first index file in the list becomes the controlling
order.

If access is denied because, for example, another process has exclusive use of the
database file, NetErr() is set to TRUE but no runtime error is raised. For this reason, it is
recommended that you open index files as a separate operation (with SET INDEX or
DBSetIndex()). Otherwise, a runtime error will result when the USE command tries to
open the first index file in the list because the database file will not be open.
When a database file is first opened, the record pointer is positioned at the first logical
record in the file (record one if there is no controlling order).

If the database file is opened in shared mode, other processes can have concurrent
access to the file and responsibility for data integrity falls on the application program. File
and record locking (using, FLock(), RLock(), or DBRLock()) are the basic means of
denying other processes access to a particular file or record.

Refer to the CLOSE command for information on how to close files of all types.

USE is functionally equivalent to DBUseArea().

Examples

This example opens a shared database file with associated index files. If NetErr() returns
FALSE, indicating the USE was successful, the indexes are opened:

USE accounts SHARED NEW
IF !NetErr()
 SET INDEX TO acctnames, acctzip
ELSE
 ? "File open failed"
 BREAK
ENDIF

This example opens a database file with several index files specified as extended
expressions:

542X# Documentation

© 2015- 2024 XSharp BV

cDataFile = "MyDbf"
acIndex = {"MyIndex1", "MyIndex2", "MyIndex3"}
USE (cDataFile) INDEX (acIndex[1]), ;
 (acIndex[2]), (acIndex[3])

Assembly

XSharp.RT.DLL

See Also

CLOSE, DbSelect(), DbSetIndex(), DbSetOrder(), DbUseArea(), NetErr(),
RddSetDefault() SELECT, SET INDEX, Used()

1.8.4.5.39 ZAP Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Permanently remove all records from database file in the current work area.

Syntax

ZAP [[IN|ALIAS] <workarea>]

Arguments

IN|ALIAS <workarea> Specifies the work area for which the operation must be
performed

Description

ZAP is functionally equivalent to DBZap().

Assembly

XSharp.RT.DLL

543 XSharp

© 2015- 2024 XSharp BV

See Also

DBZap(), DELETE, PACK, USE

1.8.4.6 Date and Time

SET CENTURY
SET DATE
SET DATE FORMAT
SET EPOCH

1.8.4.6.1 SET CENTURY Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Change the setting that determines whether to include or omit century digits in the date
format.

Syntax

SET CENTURY ON | OFF | (<lToggle>)

Arguments

ON, OFF, lToggle A logical expression which must appear in parentheses.
True is equivalent to ON, False to OFF

Description

SET CENTURY is functionally equivalent to SetCentury().

Assembly

XSharp.RT.DLL

See Also

CToD(), DToC(), DToS(), SetCentury(), SetDateCountry(), SetDateFormat(), SetEpoch(),
 Today()

544X# Documentation

© 2015- 2024 XSharp BV

1.8.4.6.2 SET DATE Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Change the setting that determines the XSharp date format by selecting from a list of
constants with corresponding date formats.

Syntax

SET DATE [TO] <kCountrySetting>

Description

SET DATE is functionally equivalent to SetDateCountry().

Examples

This example illustrates various system-defined country settings:

SET DATE German
? Today() // Result: 15.10.19
SET DATE Ansi
? Today() // Result: 19.10.15

Assembly

XSharp.RT.DLL

See Also

CToD(), DToC(), DToS(), SetCentury(), SetDateCountry(), SetDateFormat(), SetEpoch(),
 Today()

1.8.4.6.3 SET DATE FORMAT Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

545 XSharp

© 2015- 2024 XSharp BV

Purpose

Change the setting that determines the XSharp date format.

Syntax

SET DATE FORMAT [TO] <cDateFormat>

Description

SET DATE FORMAT is functionally equivalent to SetDateFormat().

Examples

In this example the FORMAT clause directly specifies the date format:

SET DATE FORMAT "yyyy:mm:dd"
SetCentury(TRUE)
? Today() // Result: 2019:10:15

Assembly

XSharp.RT.DLL

See Also

CToD(), DToC(), DToS(), SetCentury(), SetDateCountry(), SetDateFormat(), SetEpoch(),
 Today(),

1.8.4.6.4 SET EPOCH Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Change the setting that determines how dates without century digits are interpreted.

546X# Documentation

© 2015- 2024 XSharp BV

Syntax

SET EPOCH TO <nYear>

Description

SET EPOCH is functionally equivalent to SetEpoch().

Assembly

XSharp.RT.DLL

See Also

CToD(), DToC(), DToS(), SetCentury(), SetDateCountry(), SetDateFormat(), SetEpoch(),
 Today()

1.8.4.7 Entity Declaration

_DLL
ACCESS
ASSIGN
CLASS (Generic)
CLASS (FoxPro)
CLASS (Xbase++)
CONSTRUCTOR
DECLARE METHOD
DEFINE
DELEGATE
DESTRUCTOR
ENUM
EVENT
FUNCTION
GLOBAL
INTERFACE
METHOD
OPERATOR
PROCEDURE
PROPERTY
STRUCTURE
UNION
VOSTRUCT

547 XSharp

© 2015- 2024 XSharp BV

1.8.4.7.1 _DLL Statement

Purpose

Declare an entity defined in a DLL to the compiler.

Syntax

[Attributes] [Modifiers] _DLL FUNCTION | PROCEDURE
[([<idParam> [AS | REF <idType>] [, ...])]
[AS <idType>]
[<idConvention>]
:<idDLL>.<idEntity>
[CharSet= AUTO|ANSI|UNICODE]

Arguments

<idEntity> The name or number of the entity as defined in the DLL.
This is normally, but not necessarily, the same as the entity
name defined in <EntityDeclaration>, which may define an
alias by which the entity is called in your application.
<idEntity> must be part of the public protocol of the DLL
identified by <idDLL>.
IdEntity may also be specified as a literal string. This should
be done to specify names of exported functions in DLLs that
contain characters that are not allowed as part of an
identifier in X#.

<idParam> A parameter variable. A variable specified in this manner is
automatically declared local. These variables, also called
formal parameters, are used to receive arguments that you
pass when you call the entity.

AS | REF|OUT|IN <idType> Specifies the data type of the parameter variable (called
strong typing). AS indicates that the parameter must be
passed by value, and REF indicates that it must be passed
by reference with the @ operator. OUT is a special kind of
REF parameter that does not have to be assigned before
the call and must be assigned inside the body of the entity.
IN parameters are passed as READONLY references.
The last parameter in the list can also be declared as
PARAMS <idType>[] which will tell the compiler that the
function/method may receive zero or more optional
parameters.
Functions or Methods of the CLIPPER calling convention
are compiled to a function with a single parameter that this
declared as Args PARAMS USUAL[]

548X# Documentation

© 2015- 2024 XSharp BV

<idConvention> Specifies the calling convention for this entity.
<idConvention> must be one of the following:
o CLIPPER
o STRICT
o PASCAL
o CALLBACK
o THISCALL

Most calling conventions are for backward compatibility
only.
There are 2 exceptions:
CLIPPER declares that a method has untyped parameters.
This is usually only needed for methods without any
declared parameters. Otherwise the compiler will assume
CLIPPER calling convention when it detects untyped
parameters.
Methods and Functions in external DLL may have STRICT,
PASCAL, CALLBACK

<idDLL> The name of the DLL file that contains the entity definition,
specified without an extension or path name (that is, its
base name). A .DLL extension is assumed (with some
exceptions determined by Windows that may have an .EXE
extension), and the rules used to search for the file at
runtime are explained in the Description section below.

Charset Optionally specifies which character set string parameters
have

Description

_DLL declares an entity that is used by your application but defined in a DLL. This
statement tells the compiler not only the location and name (or number) of the DLL entity,
but also its calling convention (that is, what parameters it expects and the type of value
that it returns). When you declare an entity with the _DLL statement, it also indicates to
the compiler that the entity has no additional source code following its declaration.
Once declared, the entity may be called in your application in the standard way.

Warning: Entity names contained within the _DLL statement are case sensitive. This is in
direct contradiction to the X# compiler which is not case sensitive but is consistent with
Windows calling protocols. For this reason you must take extra care if Case Sensitization
is turned on or you have the Caps Lock on.

Examples

The following examples illustrate _DLL declarations for two Windows API functions:

_DLL FUNCTION MessageBeep(siLevel AS SHORTINT) AS VOID
PASCAL:User.MessageBeep

_DLL FUNCTION MessageBox(hwndParent AS PTR, pszText AS PSZ,

549 XSharp

© 2015- 2024 XSharp BV

pszCapt AS PSZ, dwFlags AS DWORD) ;
 AS LONG PASCAL:User.MessageBox
// You can also declare a function with "normal" string parameters
if you want. Add the ANSI or UNICODE clause to indicate which
version you want to call.
_DLL FUNCTION MessageBox(hwndParent AS PTR, pszText AS STRING,
pszCapt AS STRING, dwFlags AS DWORD) ;
 AS LONG PASCAL:User.MessageBox ANSI

See Also

ACCESS, ASSIGN, FUNCTION, METHOD, PROCEDURE

1.8.4.7.2 CLASS Members

Enter topic text here.

1.8.4.7.2.1 ACCESS Statement

Purpose

Declare a method to access a non-exported or virtual instance variable.

Syntax

[Attributes] [Modifiers] ACCESS <idName>
[([<idParam> [AS | REF <idType>] [, ...])]
[AS <idType>] [<idConvention>]
[CLASS <idClass>]
[=> <expression>]
CRLF
[<Body>]
[END ACCESS]

Arguments

Attributes An optional list of one or more attributes that describe meta
information for am entity, such as for example the
[TestMethod] attribute on a method/function containing tests
in a MsTest class library. Please note that Attributes must
be on the same line or suffixed with a semi colon when they
are written on the line above that keyword.

Modifiers An optional list of modifiers that specify the visibility or scope
of the entity, such as PUBLIC, PROTECTED, HIDDEN,
INTERNAL, SEALED, ABSTRACT or STATIC.

550X# Documentation

© 2015- 2024 XSharp BV

<idName> A valid identifier name for the instance variable whose
access method you are defining. Like other methods,
access methods are entities; however, the system uses a
unique naming scheme for them to prevent collisions with
other entity names. Access method names must be unique
within a class, but can share the same name as other
entities in your application.

TypeParameters This is supported for methods with generic type arguments.
This something like <T> for a method with one type
parameter named T. Usually one of the parameters in the
parameter list is then also of type T.

<idParam> A parameter variable. A variable specified in this manner is
automatically declared local. These variables, also called
formal parameters, are used to receive arguments that you
pass when you call the entity.

AS | REF|OUT|IN <idType> Specifies the data type of the parameter variable (called
strong typing). AS indicates that the parameter must be
passed by value, and REF indicates that it must be passed
by reference with the @ operator. OUT is a special kind of
REF parameter that does not have to be assigned before
the call and must be assigned inside the body of the entity.
IN parameters are passed as READONLY references.
The last parameter in the list can also be declared as
PARAMS <idType>[] which will tell the compiler that the
function/method may receive zero or more optional
parameters.
Functions or Methods of the CLIPPER calling convention
are compiled to a function with a single parameter that this
declared as Args PARAMS USUAL[]

AS <idType> Specifies the data type. If omitted, then depending on the
compiler options the type will be either USUAL or
determined by the compiler.

TypeParameterConstraints Here you can specify constraints for the Type parameters,
such as WHERE T IS SomeName or WHERE T IS New

<idConvention> Specifies the calling convention for this entity.
<idConvention> must be one of the following:
o CLIPPER
o STRICT
o PASCAL
o CALLBACK
o THISCALL

Most calling conventions are for backward compatibility
only.
There are 2 exceptions:
CLIPPER declares that a method has untyped parameters.
This is usually only needed for methods without any
declared parameters. Otherwise the compiler will assume

551 XSharp

© 2015- 2024 XSharp BV

CLIPPER calling convention when it detects untyped
parameters.
Methods and Functions in external DLL may have STRICT,
PASCAL, CALLBACK

CLASS <idClass> The class to which this method belongs. This clause is
mandatory for entities declared outside of a CLASS .. END
CLASS construct

=> <Expression> Single expression that replaces the multiline body for the
entity. CANNOT be compiled with a body

<Body> Program statements that form the code of this entity.
The <Body> can contain one or more RETURN statements
to return control to the calling routine and to serve as the
function return value. If no return statement is specified,
control passes back to the calling routine when the function
definition ends, and the function will return a default value
depending on the return value data type specified (NIL if the
return value is not strongly typed).
CANNOT be combined with an Expression Body

END ACCESS Optional end clause to indicate the end of the ACCESS
entity

Description

ACCESS declares a special method, called an access method, that is automatically
executed each time you access the named instance variable.

You can define four types of instance variables in a CLASS declaration. All of these,
except EXPORT, are called non-exported instance variables because they are not directly
accessible externally (i.e., outside of the class).

For example, if you want to access a non-exported instance variable of an object from a
function, you must use a method. Indeed, this is the purpose of not exporting the variable:
 encapsulation by being able to control all references to it through a method. However, the
syntax for referencing a method is obviously different from that of referencing a variable.
This violates encapsulation and is just plain cumbersome, since users of the class must
be aware of how a property of the class is implemented in order to know whether to use a
functional style or a variable style of reference.

For example, note the difference in accessing the instance variables x and y in the
function UseClass() when the class uses a regular method for exporting the variable:

CLASS Test
EXPORT x := 100
INSTANCE y := 10000

METHOD GetValueY() CLASS Test
RETURN y

552X# Documentation

© 2015- 2024 XSharp BV

FUNCTION UseClass()
LOCAL oTest AS Test
oTest := Test{}
? oTest:x
? oTest:GetValueY() // Access y using method

If you replace the regular method with an access method, the syntax for accessing both
variables is the same even though one of them is insulated by a method:

ACCESS y CLASS Test
RETURN y

FUNCTION UseClass()
LOCAL oTest AS Test
oTest := Test{}
? oTest:x
? oTest:y // Using ACCESS method

Non-exported variables come in three categories, each with its own properties (see the
CLASS statement entry in this guide for details):
· INSTANCE

· PROTECT

· HIDDEN
INSTANCE variables are specifically designed to work with access and assign methods
which is the main reason for their late binding. By defining an access method with the
same name as an INSTANCE variable, you effectively override the variable by causing all
non-assignment references, both external and internal, to invoke the access method.

The exception is that within an access (or assign) method, instance variables of the same
name refer to the variable — otherwise, you would never get anywhere.
For example:

CLASS Person
 INSTANCE Name, SSN

ACCESS Name CLASS Person
 RETURN Name // Refers to variable Name

METHOD ShowName() CLASS Person
 ? Name // Refers to ACCESS method

You can also use PROTECT and HIDDEN variables in conjunction with access methods.
 By defining an access method with the same name as a PROTECT or HIDDEN variable,

553 XSharp

© 2015- 2024 XSharp BV

you can access the variable externally using the same syntax as you would inside the
class. Internal references, however, always refer directly to the variable because of early
binding.

Of course, you do not have to give the access method and the instance variable the same
name. This is only for your convenience. It is the return value of the method that is used
when you access <idVar>. Thus, for PROTECT/HIDDEN variables, you can provide an
access method with a different name. For example:

CLASS Person
 PROTECT Name_Protected

ACCESS Name CLASS Person
 RETURN Name_Protected

A virtual variable is one that is not defined as part of the class but composed from other
instance variables. In other words, it is a variable that is calculated based on the values of
other instance variables. As with non-exported instance variables, you could use a regular
method to compute virtual variables, but this means using a different syntax for accessing
them. Access methods extend the syntax used for accessing instance variables to virtual
variables.
For example:

CLASS Person
 INSTANCE Name, SSN

ACCESS Name CLASS Person
 RETURN Name

METHOD Init(cName, cSSN) CLASS Person
 Name := cName
 SSN := cSSN

ACCESS FullID CLASS Person
 RETURN Name + SSN

FUNCTION UseClass()
 LOCAL oFriend AS Person
 oFriend := Person{"Bill Brown", "213-88-9546"}
 ? oFriend:Name // Bill Brown
 ? oFriend:FullID // Bill Brown213-88-9546

EXPORT variables are a lot faster and easier to use than non-exported variables and
access methods, but using them defies the encapsulation that you should strive for to
further the integrity of your application. Using access and assign methods, you can use
exported variables early in the prototyping stage of an application, and later protect the
variables with methods without changing the class interface.

554X# Documentation

© 2015- 2024 XSharp BV

ACCESS is a special case of METHOD and, except for the way you invoke it (i.e., without
arguments, like an instance variable), its behavior is the same as any other method. See
the METHOD statement in this guide for more details.

Note: Internal references to access methods that do not have a corresponding regular
INSTANCE variable (e.g., virtual variables or public access to HIDDEN or PROTECT
variables with different names) must use the SELF: prefix. Internal references means
references from inside methods of the class or one of its subclasses. If the system does
not find an instance variable, it assumes a memory variable (which can produce a
compiler error depending on whether Allow Undeclared Variables has been chosen in the
compiler settings), and it does not attempt to identify the reference as an access method,
unless SELF: is used.

Strongly typed Methods

In addition to XSharp untyped method implementation, strong typing of method
parameters and return values is now supported, providing you with a mechanism through
which highly stable code can be obtained. The type information supplied enables the
compiler to perform the necessary type checking and, thus, guarantee a much higher
stable code quality.

A further benefit obtained by utilizing strongly typed methods is that of performance. The
implementation of typed methods presumes that when the programmer employs strongly
typed messages, the compiler can effectively perform an early binding for the respective
methods invocation. As a result of this implementation, typed methods invocations are
somewhat faster than the respective untyped counterparts. These advantages are,
however, attained at the price of losing the flexibility which untyped methods offer.

It is, therefore, important to remember that interchangeably using both the typed and the
untyped versions of a particular methods in an inheritance chain is neither permissible nor
possible.

XSharp allows strong typing of METHODs, ACCESSes and ASSIGNs. The programmer
accomplishes the specification of the strongly typed methods with XSharp in two steps:

1. A mandatory declaration of the typed method is given in its
respective class.
This declaration is reponsible for declaring the order of the
methods in the so-called virtual table which XSharp employs
for the invocation of typed methods. A re-declaration of a
method in a subclass is NOT permissible, since it would
cause abiguity for the compiler.

2. Define the strongly typed method.
Unlike strongly typed functions, method typing requires
strongly typing of the method arguments, the method return
value AND speficying a valid calling convention.
The following calling conventions are valid for typed
methods: STRICT, PASCAL or CALLBACK.

555 XSharp

© 2015- 2024 XSharp BV

Examples

The following example uses ACCESS to perform a calculation based on the value of other
instance variables:

CLASS Rectangle
 INSTANCE Length, Height AS INT

METHOD Init(nX, nY) CLASS Rectangle
 Length := nX
 Height := nY
 RETURN SELF

ACCESS Area CLASS Rectangle
 RETURN Length * Height

FUNCTION FindArea()
 LOCAL oShape AS Rectangle
 oShape := Rectangle{3, 4}
 ? oShape:Area // Displays: 12

See Also

ASSIGN, CLASS, METHOD, PROPERTY

1.8.4.7.2.2 ASSIGN Statement

Purpose

Declare a method to assign a value to a particular instance variable.

Syntax

[Attributes] [Modifiers] ASSIGN <idVar>
[([<idParam> [AS | REF <idType>] [, ...])]
[AS <idType>] [<idConvention>]
[CLASS <idClass>]
[=> <expression>]
CRLF
[<Body>]
[END ACCESS]

Arguments

Attributes An optional list of one or more attributes that describe meta

556X# Documentation

© 2015- 2024 XSharp BV

information for am entity, such as for example the
[TestMethod] attribute on a method/function containing tests
in a MsTest class library. Please note that Attributes must
be on the same line or suffixed with a semi colon when they
are written on the line above that keyword.

Modifiers An optional list of modifiers that specify the visibility or scope
of the entity, such as PUBLIC, PROTECTED, HIDDEN,
INTERNAL, SEALED, ABSTRACT or STATIC.

<idVar> A valid identifier name for the instance variable whose
assign method you are defining. Like other methods, assign
methods are entities; however, the system uses a unique
naming scheme for them to prevent collisions with other
entity names. Assign method names must be unique within
a class, but can share the same name as other entities in
your application.

TypeParameters This is supported for methods with generic type arguments.
This something like <T> for a method with one type
parameter named T. Usually one of the parameters in the
parameter list is then also of type T.

<idParam> A parameter variable. A variable specified in this manner is
automatically declared local. These variables, also called
formal parameters, are used to receive arguments that you
pass when you call the entity.

AS | REF|OUT|IN <idType> Specifies the data type of the parameter variable (called
strong typing). AS indicates that the parameter must be
passed by value, and REF indicates that it must be passed
by reference with the @ operator. OUT is a special kind of
REF parameter that does not have to be assigned before
the call and must be assigned inside the body of the entity.
IN parameters are passed as READONLY references.
The last parameter in the list can also be declared as
PARAMS <idType>[] which will tell the compiler that the
function/method may receive zero or more optional
parameters.
Functions or Methods of the CLIPPER calling convention
are compiled to a function with a single parameter that this
declared as Args PARAMS USUAL[]

AS <idType> Specifies the data type. If omitted, then depending on the
compiler options the type will be either USUAL or
determined by the compiler.

TypeParameterConstraints Here you can specify constraints for the Type parameters,
such as WHERE T IS SomeName or WHERE T IS New

<idConvention> Specifies the calling convention for this entity.
<idConvention> must be one of the following:

557 XSharp

© 2015- 2024 XSharp BV

o CLIPPER
o STRICT
o PASCAL
o CALLBACK
o THISCALL

Most calling conventions are for backward compatibility
only.
There are 2 exceptions:
CLIPPER declares that a method has untyped parameters.
This is usually only needed for methods without any
declared parameters. Otherwise the compiler will assume
CLIPPER calling convention when it detects untyped
parameters.
Methods and Functions in external DLL may have STRICT,
PASCAL, CALLBACK

CLASS <idClass> The class to which this method belongs. This clause is
mandatory for entities declared outside of a CLASS .. END
CLASS construct

=> <Expression> Single expression that replaces the multiline body for the
entity. CANNOT be compiled with a body

<Body> Program statements that form the code of this entity.
The <Body> can contain one or more RETURN statements
to return control to the calling routine and to serve as the
function return value. If no return statement is specified,
control passes back to the calling routine when the function
definition ends, and the function will return a default value
depending on the return value data type specified (NIL if the
return value is not strongly typed).
CANNOT be combined with an Expression Body

END ASSIGN Optional end clause to indicate the end of the ASSIGN entity

Description

ASSIGN declares a special method, called an assign method, that is automatically
executed each time you assign a value to the named instance variable (e.g., <idVar> :=
<uValue>). The value on the right-hand side of the assignment operator is passed to the
ASSIGN method as an argument.

You can define four types of instance variables in a CLASS declaration. All of these,
except EXPORT, are called non-exported instance variables because they are not directly
accessible externally (i.e., outside of the class).
For example, if you want to assign a value to a non-exported variable in a function, you
must use a method. This means that the interface for assigning to instance variables is
dependent on the implementation of the class. Assign methods give you a common
syntax for assigning values to all instance variables. Used in conjunction with access
methods (see the ACCESS statement in this guide), assign methods let you enforce
encapsulation principles in your application while maintaining a stable class interface.

558X# Documentation

© 2015- 2024 XSharp BV

The following example illustrates using a traditional method for assigning a value to a non-
exported instance variable. Note the difference in assigning values to the instance
variables x and y in UseClass():

CLASS Test
EXPORT x
INSTANCE y

METHOD PutValueY(nPut) CLASS Test
y := nPut
RETURN y

FUNCTION UseClass()
LOCAL oTest AS Test
oTest := Test{}
? oTest:x := 100
? oTest:PutValueY(100) // Using regular method

If you replace the method with an assign method, as follows, the syntax for assignment to
both variables is the same:

ASSIGN y(nPut) CLASS Test
y := nPut
RETURN y

FUNCTION UseClass()
LOCAL oTest AS Test
oTest := Test{}
? oTest:x := 100
? oTest:y := 100 // Using ASSIGN method

Note: ASSIGN methods should generally return the actual assigned value to ensure that
the hypothetical variable it represents actually behaves like a variable — technically, that
assignment is associative. This will allow chained assignments the same way as for
regular variables (e.g., Var2 := oTest1:y := oTest1:x := Var1 := 10000).

Non-exported variables come in three categories, each with its own properties (see the
CLASS statement entry in this guide for details):
· INSTANCE

· PROTECT

· HIDDEN

559 XSharp

© 2015- 2024 XSharp BV

INSTANCE variables are specifically designed to work with assign and access methods
which is the main reason for their late binding. By defining an assign method with the
same name as an INSTANCE variable, you effectively override the variable by causing all
assignment references, both external and internal, to invoke the assign method. The
exception is that within an assign (or access) method, instance variables of the same
name refer to the variable — otherwise, you would never get anywhere.

You can also use PROTECT and HIDDEN variables in conjunction with assign methods.
By defining an assign method with the same name as a PROTECT or HIDDEN variable,
you can make assignments to the variable externally using the same syntax as you would
inside the class. Internal references, however, always refer directly to the variable
because of early binding.

Of course, you do not have to give the assign method and the instance variable the same
name. This is only for your convenience. It is the method itself that determines which
instance variable name to use when you access <idVar> via an assignment. Thus, for
PROTECT/HIDDEN variables, you can provide an assign method with a different name.
For example:

CLASS Person
PROTECT Name_Protected

ASSIGN Name(cPutName) CLASS Person
Name_Protected := cPutName
RETURN Name_Protected

EXPORT variables are a lot faster and easier to use than non-exported variables and
assign methods, but using them defies the encapsulation that you should strive for to
further the integrity of your application. Using assign and access methods, you can use
exported variables early in the prototyping stage of an application, and later protect the
variables with methods without changing the class interface.

ASSIGN is a special case of METHOD and, except for the way you invoke it (i.e., without
arguments, like an instance variable), its behavior is the same as any other method. See
the METHOD statement in this guide for more details.

Note: Internal references to access methods that do not have a corresponding regular
INSTANCE variable (e.g., virtual variables or public access to HIDDEN or PROTECT
variables with different names) must use the SELF: prefix. Internal references means
references from inside methods of the class or one of its subclasses. If the system does
not find an instance variable, it assumes a memory variable (which can produce a
compiler error depending on whether Allow Undeclared Variables has been chosen in the
compiler settings), and it does not attempt to identify the reference as an access method,
unless SELF: is used.

Strongly typed Methods

In addition to XSharp untyped method implementation, strong typing of method
parameters and return values is now supported, providing you with a mechanism through

560X# Documentation

© 2015- 2024 XSharp BV

which highly stable code can be obtained. The type information supplied enables the
compiler to perform the necessary type checking and, thus, guarantee a much higher
stable code quality.

A further benefit obtained by utilizing strongly typed methods is that of performance. The
implementation of typed methods presumes that when the programmer employs strongly
typed messages, the compiler can effectively perform an early binding for the respective
methods invocation. As a result of this implementation, typed methods invocations are
somewhat faster than the respective untyped counterparts. These advantages are,
however, attained at the price of losing the flexibility which untyped methods offer.

It is, therefore, important to remember that interchangeably using both the typed and the
untyped versions of a particular methods in an inheritance chain is neither permissible nor
possible.

XSharp allows strong typing of METHODs, ACCESSes and ASSIGNs. The programmer
accomplishes the specification of the strongly typed methods with XSharp in two steps:

1. A mandatory declaration of the typed method is given in its
respective class.
This declaration is reponsible for declaring the order of the
methods in the so-called virtual table which XSharp employs
for the invocation of typed methods. A re-declaration of a
method in a subclass is NOT permissible, since it would
cause abiguity for the compiler.

2. Define the strongly typed method.
Unlike strongly typed functions, method typing requires
strongly typing of the method arguments, the method return
value AND speficying a valid calling convention.
The following calling conventions are valid for typed
methods: STRICT, PASCAL or CALLBACK.

Examples

The following example uses ASSIGN to establish a public protocol for making
assignments to INSTANCE variables:

CLASS Rectangle
INSTANCE Length, Height AS INT

ASSIGN Length(nX) CLASS Rectangle
Length := nX
RETURN Length

ASSIGN Height(nY) CLASS Rectangle
Height := nY
RETURN Height

FUNCTION UseClass()

561 XSharp

© 2015- 2024 XSharp BV

LOCAL oShape AS Rectangle
oShape := Rectangle{}
oShape:Length := 3
oShape:Height := 4a

See Also

ACCESS, CLASS, METHOD, PROPERTY

1.8.4.7.2.3 CONSTRUCTOR Statement

Purpose

Declare a method to access a non-exported or virtual instance variable.

Syntax

[Attributes] [Modifiers] CONSTRUCTOR[([<idParam> [AS | REF|OUT|IN
<idType>] [, ...])]

[=> <expression>]
CRLF
[<Body>]
[END CONSTRUCTOR]

Arguments

Attributes An optional list of one or more attributes that describe meta
information for am entity, such as for example the
[TestMethod] attribute on a method/function containing tests
in a MsTest class library. Please note that Attributes must
be on the same line or suffixed with a semi colon when they
are written on the line above that keyword.

<idParam> A parameter variable. A variable specified in this manner is
automatically declared local. These variables, also called
formal parameters, are used to receive arguments that you
pass when you call the entity.

AS | REF|OUT|IN <idType> Specifies the data type of the parameter variable (called
strong typing). AS indicates that the parameter must be
passed by value, and REF indicates that it must be passed
by reference with the @ operator. OUT is a special kind of
REF parameter that does not have to be assigned before
the call and must be assigned inside the body of the entity.
IN parameters are passed as READONLY references.
The last parameter in the list can also be declared as
PARAMS <idType>[] which will tell the compiler that the
function/method may receive zero or more optional

562X# Documentation

© 2015- 2024 XSharp BV

parameters.
Functions or Methods of the CLIPPER calling convention
are compiled to a function with a single parameter that this
declared as Args PARAMS USUAL[]

=> <Expression> Single expression that replaces the multiline body for the
entity. CANNOT be compiled with a body

<Body> Program statements that form the code of this entity.
The <Body> can contain one or more RETURN statements
to return control to the calling routine and to serve as the
function return value. If no return statement is specified,
control passes back to the calling routine when the function
definition ends, and the function will return a default value
depending on the return value data type specified (NIL if the
return value is not strongly typed).
CANNOT be combined with an Expression Body

END CONSTRUCTOR Optional end clause to indicate the end of the
CONSTRUCTOR entity

See Also

ASSIGN, CLASS, METHOD

1.8.4.7.2.4 DECLARE METHOD Statement

Purpose

Forward declare a method, access or Assign

Description

DECLARE METHOD, DECLARE ASSIGN and DECLARE ACCESS are recognized by
the X# compiler but no longer needed, so they are ignored.

1.8.4.7.2.5 DESTRUCTOR Statement

Purpose

Declare a method to access a non-exported or virtual instance variable.

563 XSharp

© 2015- 2024 XSharp BV

Syntax

[Attributes] [Modifiers] DESTRUCTOR [()]
[=> <expression>]
CRLF
[<Body>]
[END DESTRUCTOR]

Arguments

Attributes An optional list of one or more attributes that describe meta
information for am entity, such as for example the
[TestMethod] attribute on a method/function containing tests
in a MsTest class library. Please note that Attributes must
be on the same line or suffixed with a semi colon when they
are written on the line above that keyword.

=> <Expression> Single expression that replaces the multiline body for the
entity. CANNOT be compiled with a body

<Body> Program statements that form the code of this entity.
The <Body> can contain one or more RETURN statements
to return control to the calling routine and to serve as the
function return value. If no return statement is specified,
control passes back to the calling routine when the function
definition ends, and the function will return a default value
depending on the return value data type specified (NIL if the
return value is not strongly typed).
CANNOT be combined with an Expression Body

END DESTRUCTOR Optional end clause to indicate the end of the
DESTRUCTOR entity

See Also

ASSIGN, CLASS, METHOD

1.8.4.7.2.6 EVENT Statement

Purpose

Declare a method to access a non-exported or virtual instance variable.

564X# Documentation

© 2015- 2024 XSharp BV

Syntax

[Attributes] [Modifiers] EVENT<idName>
[AS <idType>] [<idConvention>]CRLF
[

 [REMOVE <Expression>] [ADD <Expression>]
 | [ADD <Body > END ADD]

 | [ADD => <expression>]
 | [REMOVE <Body > END REMOVE]

 | [REMOVE => <expression>]
 END EVENT

]

Arguments

Attributes An optional list of one or more attributes that describe meta
information for am entity, such as for example the
[TestMethod] attribute on a method/function containing tests
in a MsTest class library. Please note that Attributes must
be on the same line or suffixed with a semi colon when they
are written on the line above that keyword.

<idName> A valid identifier name for the event that you are defining.
Like other methods, events are entities. Event names must
be unique within a class, but can share the same name as
other entities in your application.

AS <idType> Specifies the data type. If omitted, then depending on the
compiler options the type will be either USUAL or
determined by the compiler.

<Expression> Expression that implements the accessor

=> <Expression> Single expression that replaces the multiline body for the
entity. CANNOT be compiled with a body

<Body> Program statements that form the code of this entity.
The <Body> can contain one or more RETURN statements
to return control to the calling routine and to serve as the
function return value. If no return statement is specified,
control passes back to the calling routine when the function
definition ends, and the function will return a default value
depending on the return value data type specified (NIL if the
return value is not strongly typed).
CANNOT be combined with an Expression Body

565 XSharp

© 2015- 2024 XSharp BV

Description

There are 3 types of event declarations:
· Single line declaration without ADD / REMOVE accessors

· Single line declaration with ADD / REMOVE accessors

· Multi line declaration with ADD accessor block and/or REMOVE accessor bock

See Also

ASSIGN, CLASS, METHOD

1.8.4.7.2.7 METHOD Statement

Purpose

Declare a method name and an optional list of local variable names.

Syntax

[Attributes] [Modifiers] METHOD <idMethod>
[Typeparameters]
[([<idParam> [AS | REF|OUT|IN <idType>] [, ...])]
[AS <idType>]
[TypeparameterConstraints]
[<idConvention>]
[CLASS <idClass>]
[=> <expression>]
CRLF
[<Body>]
[END METHOD]

Arguments

Attributes An optional list of one or more attributes that describe meta
information for am entity, such as for example the
[TestMethod] attribute on a method/function containing tests
in a MsTest class library. Please note that Attributes must
be on the same line or suffixed with a semi colon when they
are written on the line above that keyword.

Modifiers An optional list of modifiers that specify the visibility or scope
of the entity, such as PUBLIC, PROTECTED, HIDDEN,
INTERNAL, SEALED, ABSTRACT or STATIC.

566X# Documentation

© 2015- 2024 XSharp BV

<idMethod> A valid identifier name for the method. Method names must
be unique within a class, but can share the same name as
other entities (including access and assign methods) in your
application.

TypeParameters This is supported for methods with generic type arguments.
This something like <T> for a method with one type
parameter named T. Usually one of the parameters in the
parameter list is then also of type T.

<idParam> A parameter variable. A variable specified in this manner is
automatically declared local. These variables, also called
formal parameters, are used to receive arguments that you
pass when you call the entity.

AS | REF|OUT|IN <idType> Specifies the data type of the parameter variable (called
strong typing). AS indicates that the parameter must be
passed by value, and REF indicates that it must be passed
by reference with the @ operator. OUT is a special kind of
REF parameter that does not have to be assigned before
the call and must be assigned inside the body of the entity.
IN parameters are passed as READONLY references.
The last parameter in the list can also be declared as
PARAMS <idType>[] which will tell the compiler that the
function/method may receive zero or more optional
parameters.
Functions or Methods of the CLIPPER calling convention
are compiled to a function with a single parameter that this
declared as Args PARAMS USUAL[]

AS <idType> Specifies the data type. If omitted, then depending on the
compiler options the type will be either USUAL or
determined by the compiler.

TypeParameterConstraints Here you can specify constraints for the Type parameters,
such as WHERE T IS SomeName or WHERE T IS New

<idConvention> Specifies the calling convention for this entity.
<idConvention> must be one of the following:
o CLIPPER
o STRICT
o PASCAL
o CALLBACK
o THISCALL

Most calling conventions are for backward compatibility
only.
There are 2 exceptions:
CLIPPER declares that a method has untyped parameters.
This is usually only needed for methods without any
declared parameters. Otherwise the compiler will assume
CLIPPER calling convention when it detects untyped
parameters.

567 XSharp

© 2015- 2024 XSharp BV

Methods and Functions in external DLL may have STRICT,
PASCAL, CALLBACK

CLASS <idClass> The class to which this method belongs. This clause is
mandatory for entities declared outside of a CLASS .. END
CLASS construct

=> <Expression> Single expression that replaces the multiline body for the
entity. CANNOT be compiled with a body

<Body> Program statements that form the code of this entity.
The <Body> can contain one or more RETURN statements
to return control to the calling routine and to serve as the
function return value. If no return statement is specified,
control passes back to the calling routine when the function
definition ends, and the function will return a default value
depending on the return value data type specified (NIL if the
return value is not strongly typed).
CANNOT be combined with an Expression Body

END METHOD Optional end clause to indicate the end of the inline
METHOD entity

Description

A method is a subprogram comprised of a set of declarations and statements to be
executed whenever you refer to the method using the message send operator, as in:

<idObject>:<idMethod>([<uArgList>])

Or:

SELF:<idMethod>([<uArgList>])

Classes, instance variables (see the CLASS statement in this guide), and methods are
the basic object-oriented programming units. You will use methods in your applications to
organize computational blocks of code for a specific class of objects.

Notes

The Start() method: All applications must either have one function or procedure named
Start().
Start() serves as the startup routine when the application is executed. Start() must be
declared without parameters or with an string array parameter and must either have an Int
return value or of type Void

VO Compatibility:

568X# Documentation

© 2015- 2024 XSharp BV

VO has 2 special method names for constructing and destructing class objects: Init() and
Axit().
In X# These methods should be named CONSTRUCTOR and DESTRUCTOR.
If you compile with compiler option /vo1 then you can still use the 'old' names. The
compiler will then automatically map the Init() method to constructor and the Axit() method
to destructor. This is NOT recommended.

The Init() method: If you define a method named Init(), it is called automatically when you
create an instance of the class to which the method belongs. Arguments listed within the
instantiation operators ({}) are passed as parameters to the Init() method. Common uses
for the Init() method are to initialize instance variables, allocate memory needed by the
object, register the object, create subsidiary objects, and set up relationships between
objects.

The Axit() method: You do not need to deallocate memory used by objects because the
garbage collector takes care of this for you automatically. However, in some cases an
object can manage other resources that do need proper disposition. For example, if an
object opens a database only for its own use, it should close it when it is finished and
make the work area available for other uses.

If you register an object with the RegisterAxit() function, for example in the Init() method,
and provide a method named Axit(), this Axit() method will automatically be called by the
garbage collector just before the object is destroyed. Thus, in the Axit() method you can
close databases, deallocate memory, or close communications links.

NoIVarGet()/NoIVarPut() methods: If you define methods named NoIVarGet() and
NoIVarPut(), they will automatically be invoked if an instance variable that does not exist is
referenced. They are called with the instance variable name as a parameter, in the form
of a symbol and, in the case of NoIVarPut(), with the assigned value. This feature is
useful in detecting and preventing a runtime error and for creating virtual variables
dynamically at runtime. For example, the DBServer class uses this technique to make
the database fields appear to be exported instance variables of a database object:

METHOD NoIVarGet(symFieldName) CLASS DBServer
 BEGIN SEQUENCE
 RETURN FieldGetAlias(symAlias, symFieldName)
 RECOVER
 // Pass it up if it was not a field name
 SUPER:NoIVarGet(symFieldName)
 END SEQUENCE

METHOD NoIVarPut(symFieldName, uValue) ;
 CLASS DBServer
 BEGIN SEQUENCE
 RETURN FieldGetAlias(symAlias, ;
 symFieldName, uValue)
 RECOVER
 // Pass it up if it was not a field name
 SUPER:NoIVarPut(symFieldName, uValue)

569 XSharp

© 2015- 2024 XSharp BV

 END SEQUENCE

FUNCTION DatabaseTest()
 LOCAL oDBServer AS DBServer
 oDBServer := DBServer{"customer"}
 ? oDBCustomer:CustName
 oDBCustomer:ZipCode := "12345"

The NoMethod() method: If you define a method named NoMethod(), it will automatically be
invoked if a method name that you invoke within the same class cannot be found. The
arguments passed will be the same as the original method. This feature is useful in
detecting and preventing a runtime error when a method cannot be found. Use the
NoMethod() function to find out the name of the method that could not be found.

Exporting locals through code blocks: When you create a code block, you can access local
variables defined in the creating entity within the code block definition without having to
pass them as parameters (i.e., local variables are visible to the code block). Using this
fact along with the fact that you can pass a code block as a parameter, you can export
local variables. For example:

METHOD One() CLASS MyClass EXPORT LOCAL
LOCAL nVar := 10 AS INT, cbAdd AS CODEBLOCK
cbAdd := {|nValue| nValue + nVar}

? SELF:Two(cbAdd) // Result: 210

METHOD Two(cbAddEmUp) CLASS MyClass
RETURN EVAL(cbAddEmUp,200)

When the code block is evaluated in Two(), nVar, which is local to method One(),
becomes visible even though it is not passed directly as a parameter.

Invoking methods: The syntax to invoke a method of an object is as follows:

<idObject>:<idMethod>([<uArgList>])

where <uArgList> is an optional comma-separated list of arguments to pass to the named
method. <idObject> identifies the object to whom the method invocation is to be sent; to
refer to the same object within a method you use SELF: or SUPER: (see note below)
instead of <idObject>:.

You can invoke a method within an expression or as a program statement. If called as a
program statement, the return value is ignored.

You can also use a method invocation as an aliased expression by prefacing it with an
alias and enclosing it in parentheses:

570X# Documentation

© 2015- 2024 XSharp BV

<idAlias>->(<idObject>:<idMethod>([<uArgList>]))

When you do this, the work area associated with <idAlias> is selected, the method is
executed, and the original work area is reselected. You can specify an aliased expression
as a program statement, as you would any other expression.
A method can call itself recursively. This means you can refer to a method in its own
<MethodBody>.

The visibility of typed methods can also be influenced by using the HIDDEN and
PROTECT modifiers as in their use with instance variables. SUPER calls of HIDDEN
methods in parent classes cannot be done by methods of the sub-classes.

Calling convention: Methods use the CLIPPER calling convention, unless they are strongly
typed. See the FUNCTION statement in this guide for more information.

SELF and SUPER: SELF is a special variable that contains a reference to the object that is
the receiver of a message (a message is sent to an object each time you use the send
operator to invoke a method or access an instance variable). Whenever a message is
sent to an object, a reference to the object is placed in SELF before the corresponding
method is invoked. Within methods of the class, you must use SELF with the message
send operator (:) to send messages to the current object. Using SELF: to access
instance variables is optional; see the ACCESS and ASSIGN entries in this guide for
details on when it is required (it is always allowed).

SUPER is another special variable that contains a reference to the class that is the
nearest ancestor of the method lookup. It passes a message up the inheritance tree to
the appropriate superclass and is meaningful only if the current object's class inherits
from another class. You can use SUPER with the message send operator (:) to refer
directly to a method defined in a superclass. If you redefine a method in a subclass (by
creating a method with the same name as one in a superclass), SUPER is the only way
you can override the redefined method with the superclass version.
SUPER: is useful when defining a subclass which adds some unique behavior, but
nonetheless inherits standard behavior from its superclass. For example:

CLASS Person
PROTECT cName AS STRING, symName AS SYMBOL

METHOD Init(cFirstName, cLastName) CLASS Person
cName := cFirstName + " " + cLastName
symName := String2Symbol(cName)

CLASS Customer INHERIT Person
PROTECT wCustNo AS DWORD

METHOD Init(cFirstName, cLastName, nCustNo) ;
CLASS Customer

571 XSharp

© 2015- 2024 XSharp BV

SUPER:Init(cFirstName, cLastName)
wCustNo := nCustNo

The SELF and SUPER variables are allowed only in method definitions. SELF is the
default return value for all methods.

Parameters: As an alternative to specifying method parameters in the METHOD
declaration statement, you can use a PARAMETERS statement to specify them. This
practice, however, is not recommended because it is less efficient and provides no
compile-time integrity validation. See the PARAMETERS statement in this guide for more
information.

Strongly typed Methods

In addition to XSharp untyped method implementation, strong typing of method
parameters and return values is now supported, providing you with a mechanism through
which highly stable code can be obtained. The type information supplied enables the
compiler to perform the necessary type checking and, thus, guarantee a much higher
stable code quality.

A further benefit obtained by utilizing strongly typed methods is that of performance. The
implementation of typed methods presumes that when the programmer employs strongly
typed messages, the compiler can effectively perform an early binding for the respective
methods invocation. As a result of this implementation, typed methods invocations are
somewhat faster than the respective untyped counterparts. These advantages are,
however, attained at the price of losing the flexibility which untyped methods offer.

It is, therefore, important to remember that interchangeably using both the typed and the
untyped versions of a particular methods in an inheritance chain is neither permissible nor
possible.

XSharp allows strong typing of METHODs, ACCESSes and ASSIGNs. The programmer
accomplishes the specification of the strongly typed methods with XSharp in two steps:

1. A mandatory declaration of the typed method is given in its
respective class.
This declaration is reponsible for declaring the order of the
methods in the so-called virtual table which XSharp employs
for the invocation of typed methods. A re-declaration of a
method in a subclass is NOT permissible, since it would
cause abiguity for the compiler.

2. Define the strongly typed method.
Unlike strongly typed functions, method typing requires
strongly typing of the method arguments, the method return
value AND speficying a valid calling convention.
The following calling conventions are valid for typed
methods: STRICT, PASCAL or CALLBACK.

572X# Documentation

© 2015- 2024 XSharp BV

Examples

This example creates a class of two-dimensional coordinates with methods to initialize
the coordinates, draw a grid, and plot the point:

FUNCTION Start()
LOCAL oPointSet AS Point2D
oPointSet := Point2D{2, 3}
oPointSet:ShowGrid()
oPointSet:Plot()

CLASS Point2D // Define Point2D class
INSTANCE x, y AS INT

METHOD Init(iRow, iCol) CLASS Point2D
x := iRow
y := iCol
RETURN SELF

METHOD Plot() CLASS Point2D
@ x + 11, y + 36 SAY CHR(249)

METHOD ShowGrid() CLASS Point2D
LOCAL iCounter AS INT
CLS
FOR iCounter := 1 TO 21

IF iCounter = 11
@ iCounter, 1 SAY REPLICATE(CHR(196), 71)
@ iCounter, 36 SAY CHR(197)

ELSE
@ iCounter, 36 SAY CHR(179)

ENDIF
NEXT

See Also

ACCESS, ASSIGN, CLASS, FUNCTION, PROPERTY, OPERATOR, CONSTRUCTOR,
DESTRUCTOR, EVENT

1.8.4.7.2.8 OPERATOR Statement

Purpose

Declare a method to access a non-exported or virtual instance variable.

573 XSharp

© 2015- 2024 XSharp BV

Syntax

[Attributes] [Modifiers] OPERATOR <operatortype>
[([<idParam> [AS | REF <idType>] [, ...])]
[AS <idType>]
[=> <expression>]
CRLF
[<Body>]
[END OPERATOR]

Arguments

Attributes An optional list of one or more attributes that describe meta
information for am entity, such as for example the
[TestMethod] attribute on a method/function containing tests
in a MsTest class library. Please note that Attributes must
be on the same line or suffixed with a semi colon when they
are written on the line above that keyword.

<idParam> A parameter variable. A variable specified in this manner is
automatically declared local. These variables, also called
formal parameters, are used to receive arguments that you
pass when you call the entity.

AS | REF|OUT|IN <idType> Specifies the data type of the parameter variable (called
strong typing). AS indicates that the parameter must be
passed by value, and REF indicates that it must be passed
by reference with the @ operator. OUT is a special kind of
REF parameter that does not have to be assigned before
the call and must be assigned inside the body of the entity.
IN parameters are passed as READONLY references.
The last parameter in the list can also be declared as
PARAMS <idType>[] which will tell the compiler that the
function/method may receive zero or more optional
parameters.
Functions or Methods of the CLIPPER calling convention
are compiled to a function with a single parameter that this
declared as Args PARAMS USUAL[]

=> <Expression> Single expression that replaces the multiline body for the
entity. CANNOT be compiled with a body

<Body> Program statements that form the code of this entity.
The <Body> can contain one or more RETURN statements
to return control to the calling routine and to serve as the
function return value. If no return statement is specified,
control passes back to the calling routine when the function
definition ends, and the function will return a default value
depending on the return value data type specified (NIL if the
return value is not strongly typed).

574X# Documentation

© 2015- 2024 XSharp BV

CANNOT be combined with an Expression Body

END OPERATOR Optional end clause to indicate the end of the OPERATOR
entity

See Also

ASSIGN, CLASS, METHOD

1.8.4.7.2.9 PROPERTY Statement

Purpose

Declare a method to access a non-exported or virtual instance variable.

Syntax

[Attributes] [Modifiers] PROPERTY<idName>
[([<idParam> [AS | REF <idType>] [, ...])]
[AS <idType>] [<idConvention>]
[

 AUTO [Attributes] [Modifiers] GET | SET | INIT
 | [[Attributes] [Modifiers] GET <Expression>] [[Attributes] [Modifiers] SET
<Expression>] [[Attributes] [Modifiers] INIT <Expression>]

CRLF
 | [[Attributes] [Modifiers] GET <Body > END GET]
 | [[Attributes] [Modifiers] GET => <Expression>]
 | [[Attributes] [Modifiers] SET <Body > END SET]
 | [[Attributes] [Modifiers] SET => <Expression>]
 | [[Attributes] [Modifiers] INIT <Body > END INIT]
 | [[Attributes] [Modifiers] INIT => <Expression>]

 END PROPERTY
]

Arguments

Attributes An optional list of one or more attributes that describe meta
information for am entity, such as for example the
[TestMethod] attribute on a method/function containing tests
in a MsTest class library. Please note that Attributes must
be on the same line or suffixed with a semi colon when they
are written on the line above that keyword.

<idName> A valid identifier name for the property that you are defining.
Like other methods, properties are entities. Property names
must be unique within a class, but can share the same
name as other entities in your application.

<idParam> A parameter variable. A variable specified in this manner is

575 XSharp

© 2015- 2024 XSharp BV

automatically declared local. These variables, also called
formal parameters, are used to receive arguments that you
pass when you call the entity.

AS | REF|OUT|IN <idType> Specifies the data type of the parameter variable (called
strong typing). AS indicates that the parameter must be
passed by value, and REF indicates that it must be passed
by reference with the @ operator. OUT is a special kind of
REF parameter that does not have to be assigned before
the call and must be assigned inside the body of the entity.
IN parameters are passed as READONLY references.
The last parameter in the list can also be declared as
PARAMS <idType>[] which will tell the compiler that the
function/method may receive zero or more optional
parameters.
Functions or Methods of the CLIPPER calling convention
are compiled to a function with a single parameter that this
declared as Args PARAMS USUAL[]

AS <idType> Specifies the data type. If omitted, then depending on the
compiler options the type will be either USUAL or
determined by the compiler.

<Expression> Expression that implements the accessor

=> <Expression> Single expression that replaces the multiline body for the
entity. CANNOT be compiled with a body

<Body> Program statements that form the code of this entity.
The <Body> can contain one or more RETURN statements
to return control to the calling routine and to serve as the
function return value. If no return statement is specified,
control passes back to the calling routine when the function
definition ends, and the function will return a default value
depending on the return value data type specified (NIL if the
return value is not strongly typed).
CANNOT be combined with an Expression Body

Description

There are 3 types of property declarations:
· Single line declaration without AUTO clause

· Single line declaration with GET / SET / INIT accessors

· Multi line declaration with GET accessor block and/or SET/INIT accessor bock. For multi
line declarations the END PROPERTY is mandatory

INIT accessor declare that a property can only be changed in the constructor of a class. A
property cannot have both a SET and an INIT accessor.

576X# Documentation

© 2015- 2024 XSharp BV

See Also

ASSIGN, CLASS, METHOD

1.8.4.7.3 CLASS Statement (All dialects)

Purpose

Declare a class name to the compiler.

Syntax

[Attributes] [Modifiers] CLASS <idClass> [INHERIT <idClass>]
[IMPLEMENTS <idInterface>[, <IdInterface2>,..]
[ClassMembers]
END CLASS

Arguments

Attributes An optional list of one or more attributes that describe meta
information for am entity, such as for example the
[TestMethod] attribute on a method/function containing tests
in a MsTest class library. Please note that Attributes must
be on the same line or suffixed with a semi colon when they
are written on the line above that keyword.

Modifiers An optional list of modifiers that specify the visibility or scope
of the entity, such as PUBLIC, PROTECTED, HIDDEN,
INTERNAL, SEALED, ABSTRACT or STATIC.

<idClass> A valid identifier name for the class. A class is an entity and,
as such, shares the same name space as other entities.
This means that it is not possible to have a class and a
global variable, for example, with the same name.

INHERIT <idClass> The name of an existing class (called a superclass) from
which the new class inherits methods and instance
variables (with the exception of HIDDEN).

IMPLEMENTS <idInterface> The name(s) of the interface(s) that this class implements

ClassMembers This can be any of Instance Variables, ACCESS, ASSIGN,
CONSTRUCTOR, DESTRUCTOR, EVENT, METHOD,
OPERATOR, PROPERTY

577 XSharp

© 2015- 2024 XSharp BV

Description

After the class name is declared to the compiler, it is followed by 0 or more instance
variable declaration statements. You use a class name to declare variables (see
GLOBAL and LOCAL statements in this guide) designed to hold instances of a specific
class, to instantiate instances of the class, and to define methods (see the METHOD
statement in this guide) and subclasses for the class.

Notes

Binding of instance variables: Instance variables can be either early or late bound, depending
on how you declare them and how you use them.

Early binding happens if the memory location of a variable is known at compile time. The
compiler knows exactly how to reference the variable and can, therefore, generate code to
do so.

Late binding is necessary if the memory location of a variable is unknown at compile time.
 The compiler cannot determine from the program source code exactly where the variable
is or how to go about referencing it, so it generates code to look the symbol up in a table.
The lookup is performed at runtime.

Since there is no need for a runtime lookup with early bound instance variables, using
them instead of late bound variables will significantly improve the performance of your
application. The following table summarizes the binding and visibility issues for the four
types of instance variables:

Variable Type Binding Visibility

EXPORT Early, if possible Application-wide for CLASS and
module-wide for STATIC CLASS

INSTANCE Always late In class and subclasses
HIDDEN Always early In class only
PROTECT Always early In class and subclasses

Object instantiation: Once you declare a class, you create instances of the class using the
class name followed by the instantiation operators, {}. The syntax is as follows:

<idClass>{[<uArgList>]}

where <uArgList> is an optional comma-separated list of values passed as arguments to
a special method called Init() (see the METHOD statement in this guide for more
information on the Init() method).

Accessing instance variables: The syntax to access an exported instance variable externally
(i.e., from any entity that is not a method of its class) is as follows:

578X# Documentation

© 2015- 2024 XSharp BV

<idObject>:<idVar>

You can access non-exported instance variables only from methods in which they are
visible. Within a method, you use the following syntax for accessing all instance variables:

[SELF:]<idVar>

The SELF: prefix is optional except in the case of an access/assign method (see the
ACCESS and ASSIGN statement entries in this guide for more information and the
METHOD statement for more information on SELF).
Instance variables are just like other program variables. You can access them anywhere
in the language where an expression is allowed.

The prefix [STATIC] is no longer supported by XSharp

Examples

The following example defines two classes, one of which inherits values from the other,
and demonstrates how to create a class instance with initial values for the instance
variables:

FUNCTION Start()
LOCAL oCust AS Customer
oCust := Customer{"Louis", 92.07.22, "GA", 987}
oCust:DisplayAll()
? oCust:Name
...

// Declare Person class

CLASS Person
EXPORT Name AS STRING
INSTANCE Birth AS DATE

// Declare Customer class to inherit from Person

CLASS Customer INHERIT Person
PROTECT CustNum AS SHORTINT
INSTANCE Address AS STRING

// Declare method to initialize instance variables
// Note that cName and dBirth are available to the
// Customer class, even though they are not declared

579 XSharp

© 2015- 2024 XSharp BV

// as part of the class — they are inherited from Person

METHOD Init(cOne, dTwo, cThree, nFour) ;
CLASS Customer

Name := cOne
Birth := dTwo
Address := cThree
CustNum := nFour
RETURN SELF

// Declare method to display all instance variables

METHOD DisplayAll() CLASS Customer
? "Name: ", Name
? "Birth Date: ", Birth
? "Address: ", Address
? "Number: ", CustNum

See Also

ACCESS, ASSIGN, CONSTRUCTOR, DESTRUCTOR, EVENT, METHOD, OPERATOR,
PROPERTY

1.8.4.7.3.1 Instance Variables

Purpose

Declare fields/ instance variables with optional initial values

Syntax

[Attributes] [Modifiers] [INSTANCE] [DIM] <idVar>[[<dimensions>]] [:=
<uValue>] [, ...] [AS <idType>] [, ...]]

Arguments

Attributes An optional list of one or more attributes that describe meta
information for am entity, such as for example the
[TestMethod] attribute on a method/function containing tests
in a MsTest class library. Please note that Attributes must
be on the same line or suffixed with a semi colon when they
are written on the line above that keyword.

Modifiers An optional list of modifiers that specify the visibility or scope
of the entity, such as PUBLIC, PROTECTED, HIDDEN,
INTERNAL, SEALED, ABSTRACT or STATIC.

580X# Documentation

© 2015- 2024 XSharp BV

DIM An optional keyword that specifies that you want to create a
variable of a (.Net) array type

INSTANCE An optional keyword that you have to use when no modifiers
are used. Without modifier the fields will become PUBLIC

<idVar> A valid identifier name for the field to declare.

[<dimensions>] The initial dimensions for a variable of type array. This may
be used with the DIM keyword, in which case it is a .Net
array, or without the DIM keyword in which case it is a VO
compatible dynamic array.

<uValue> The initial value to assign to the variable.

AS <idType> Specifies the data type. If omitted, then depending on the
compiler options the type will be either USUAL or
determined by the compiler.

1.8.4.7.3.2 Other Classmembers

Normal class members (apart from Instance Variables)

ACCESS
ASSIGN
CONSTRUCTOR
DESTRUCTOR
EVENT
METHOD
OPERATOR
PROPERTY

The DECLARE (ACCESS | ASSIGN | METHOD) <idName> [, <idName>] clause is
supported by the compiler but ignored

Nested types

'Regular' classes can also have embedded types:

CLASS
DELEGATE
STRUCTURE
INTERFACE
ENUM

581 XSharp

© 2015- 2024 XSharp BV

1.8.4.7.4 CLASS Statement (FoxPro dialect)

Note This command is only available in the FOXPRO dialect

Purpose

Declare a class name to the compiler.

Syntax

[Attributes] DEFINE [Modifiers] CLASS <idClass> [AS <idParentClass>] [OF
<classLib>] [OLEPUBLIC]

[ClassMembers]
(ENDDEFINE | END DEFINE)

Arguments

Attributes An optional list of one or more attributes that describe meta
information for am entity, such as for example the
[TestMethod] attribute on a method/function containing tests
in a MsTest class library. Please note that Attributes must
be on the same line or suffixed with a semi colon when they
are written on the line above that keyword.

Modifiers An optional list of modifiers that specify the visibility or scope
of the entity, such as PUBLIC, PROTECTED, HIDDEN,
INTERNAL, SEALED, ABSTRACT or STATIC.

<idClass> A valid identifier name for the class. A class is an entity and,
as such, shares the same name space as other entities.
This means that it is not possible to have a class and a
global variable, for example, with the same name.

AS <idParentClass> The name of an existing class (called a superclass) from
which the new class inherits methods and instance
variables.
The AS <idParent> clause is mandatory when compiled
with /fox1+, and option when compiled with /fox1-.
When compiled with /fox1+ the compiler assumes that the
parent class is either the Custom class or a class derived
from the Custom class.

OF <classLib> This clause is parsed but ignored in X#.

OLEPUBLIC This clause is parsed but ignored in X#.

582X# Documentation

© 2015- 2024 XSharp BV

ClassMembers

Fields and Properties
IMPLEMENTS Clause
ADD OBJECT Clause
COMMAttrib Clause
FUNCTIONS and PROCEDURES

Examples

See Also

1.8.4.7.4.1 Properties and Fields

Note This command is only available in the FOXPRO dialect

Purpose

Declare fields and or properties with optional initial values

Syntax

[FIELD] [modifiers] <IdName>, <IdName> ...] [AS <idType>]
[[.]Object.] <IdName> = <Expression> ...]

Both syntaxes to declare and/or initialize properties are supported.
We have added an optional AS DataType clause.
We have also added an optional FIELD clause that allows you to declare fields (opposed
to properties)

Arguments

FIELD When you include the FIELD keyword then the names will
be the names of fields in the class

Modifiers An optional list of modifiers that specify the visibility or scope
of the property, such as PUBLIC,. PROTECTED, HIDDEN.

<IdName> A valid identifier name for the fields or properties to declare.

583 XSharp

© 2015- 2024 XSharp BV

AS <idType> Specifies the data type. If omitted, then depending on the
compiler options the type will be either USUAL or
determined by the compiler.

Expression The initial value to assign to the field/property

Notes

The way in which properties are implemented depends on the value of the /fox1 compiler
switch. When this switch is enabled, then all properties will read/write from a property
collection that is declared in the Custom Object. When this switch is NOT enabled then
'normal' auto properties will be declared with a backing field in this class.

1.8.4.7.4.2 IMPLEMENTS clause

Note This command is only available in the FOXPRO dialect

Purpose

Declare an interface that the clause implements

Syntax

IMPLEMENTS <idInterface> [EXCLUDE] IN TypeLib | TypeLibGUID | ProgID]

Arguments

IMPLEMENTS <idInterface> The name(s) of the interface(s) that this class implements

EXCLUDE This clause is not supported

IN [Typelib etc] This clause is not supported.

1.8.4.7.4.3 ADD OBJECT Clause

Note This command is only available in the FOXPRO dialect

Purpose

Adds objects from other classes to the class definition.

Syntax

ADD OBJECT [Modifiers] <ObjectName> AS <idType> [NOINIT] [WITH
<Propertylist>]]

584X# Documentation

© 2015- 2024 XSharp BV

Arguments

Modifiers An optional list of modifiers that specify the visibility or scope
of the entity, such as PUBLIC, PROTECTED, HIDDEN,
INTERNAL

<ObjectName> A valid identifier name for the fields or properties to declare.

AS <idType> Specifies the data type. If omitted, then depending on the
compiler options the type will be either USUAL or
determined by the compiler.

NOINIT This clause is not supported

WITH <PropertyList> Specifies a list of properties and their values for the object
that you add to the class definition.

The object will be instantiated and added to the list of "child objects" in the class. Also a
property will be created with the name and type specified in
the ADD OBJECT clause.

Notes

The way in which properties are implemented depends on the value of the /fox1 compiler
switch. When this switch is enabled, then all properties will read/write from a property
collection that is declared in the Custom Object. When this switch is NOT enabled then
'normal' auto properties will be declared with a backing field in this class.

1.8.4.7.4.4 COMMAttrib Clause

Note This command is only available in the FOXPRO dialect

Purpose

Declare COM attributes (not supported)

Syntax

PEMName_COMATTRIB = nFlags | DIMENSION
PEMName_COMATTRIB[numElements]

 [PEMName_COMATTRIB[1] = nFlags
 PEMName_COMATTRIB[2] = cHelpString

 PEMName_COMATTRIB[3] = cPropertyCapitalization
 PEMName_COMATTRIB[4] = cPropertyType
 PEMName_COMATTRIB[5] = nOptionalParams]]

This clause is not supported in X#.

585 XSharp

© 2015- 2024 XSharp BV

1.8.4.7.4.5 FUNCTION and PROCEDURE

Note This command is only available in the FOXPRO dialect

Purpose

Defines method and event functions and procedures for the class definition.

Syntax

[Modifiers] FUNCTION | PROCEDURE Name[_ACCESS |_ASSIGN]
 ([cParamName | cArrayName[] [AS Type][@]]) [AS Type]
 [HELPSTRING cHelpString] | THIS_ACCESS(cMemberName) [NODEFAULT]
 cStatements
[ENDFUNC | ENDPROC]]

See the topics for FUNCTION and PROCEDURE for more details.

Arguments

_ACCESS The _ACCESS or _ASSIGN suffixes specify to create an
Access or Assign method for a property with the same
name.

_ASSIGN

HELPSTRING The HELPSTRING clause is not supported in X#

THIS_ACCESS The THIS_ACCESS clause is not supported in X#

NODEFAULT The NODEFAULT clause is not supported in X#

ENDFUNC This may also be written as END FUNCTION

ENDPROC This may also be written as END PROCEDURE

1.8.4.7.5 CLASS Statement (Xbase++ dialect)

Purpose

Declare a class name to the compiler.

Syntax

[Attributes] [Modifiers] CLASS <idClass> [FROM <idParentClass>] [SHARING
<idParentClass,...>]

[IMPLEMENTS <idInterface>[, <IdInterface2>,..]
[ClassMembers]
ENDCLASS

586X# Documentation

© 2015- 2024 XSharp BV

[CLASS] METHOD [<ClassName>:] <MethodName> [([<Parameters,...>])]
[<Body>]

Arguments

Attributes An optional list of one or more attributes that describe meta
information for am entity, such as for example the
[TestMethod] attribute on a method containing tests in a
MsTest class library. Please note that Attributes must be on
the same line or suffixed with a semi colon when they are
written on the line above that keyword.

Modifiers An optional list of modifiers that specify the visibility or scope
of the entity, allowed values are STATIC, FREEZE and
FINAL

<idClass> A valid identifier name for the class. A class is an entity and,
as such, shares the same name space as other entities.
This means that it is not possible to have a class and a
global variable, for example, with the same name.

FROM <idParentClass> The name of an existing class (called a superclass) from
which the new class inherits methods and instance
variables (with the exception of HIDDEN). X# does NOT
allow multiple inheritance.

SHARING <idParentClass> This clause is not supported by X#.

IMPLEMENTS <idInterface> The name(s) of the interface(s) that this class implements

ClassMembers This may be a list of variable declarations, method
declarations and inline method implementations

[CLASS] METHOD This implements one or more methods outside of the class
declaration. The CLASS keyword indicates that it is a
STATIC method, as opposed to an INSTANCE method.

ClassMembers

Fields
Method Declarations
Method Implementation

See Also

587 XSharp

© 2015- 2024 XSharp BV

1.8.4.7.5.1 Fields

Note This command is only available in the Xbase++ dialect

Purpose

Declare fields/ instance variables with optional initial values

Syntax

[Visibility :]
[CLASS|STATIC] VAR <idVar,...> [IS <Name>] [IN <SuperClass>] [AS <idType>]
[SHARED]
[READONLY]
[ASSIGNMENT HIDDEN | PROTECTED | EXPORTED]
[NOSAVE]

Arguments

Visibility This sets the visibility for the variables on the line following
the statement. This can be HIDDEN ,PROTECTED,
EXPORTED or INTERNAL. The default visibility is HIDDEN.

CLASS | STATIC Declares that this is a class level field.

<idVar> A valid identifier name for the field to declare.

IS .. IN .. This clause is not supported in X#

AS <idType> Specifies the data type. If omitted, then depending on the
compiler options the type will be either USUAL or
determined by the compiler.

SHARED This clause is not supported in X#

READONLY Declares this field as Readonly. It must be initialized in the
(class) constructor

ASSIGNMENT .. This clause is not supported in X#

NOSAVE This sets the [NonSerializable] attribute on the field.

Note

Xbase++ has a complicated set of rules on how to control read/write access to fields. In
.Net we simply use the Visibility .

588X# Documentation

© 2015- 2024 XSharp BV

1.8.4.7.5.2 METHOD Declarations

Note This command is only available in the Xbase++ dialect

Purpose

Declare and implement methods for a class, both for instances and the class itself

Syntax

Method forward declaration
[Modifiers] METHOD <MethodName,...> [IS <MethodName>] [IN <SuperClass>]

Access/Assign method forward declaration
[Attributes] ACCESS ASSIGN [CLASS] METHOD <MethodName> [VAR

<VarName>] [AS <idType>]
[Attributes] ACCESS | ASSIGN [CLASS] METHOD <MethodName> [VAR

<VarName>] [AS <idType>]

Method inline declaration
[Attributes] INLINE [CLASS] METHOD <MethodName>[[([<idParam> [AS|REF|

OUT|IN <idType>] [, ...])]) [AS <idType>]
[=> <expression>]
CRLF
[<Body>]
[END METHOD]

Arguments

Modifiers An optional list of modifiers that specify info about the
method. (DEFERRED , FINAL , INTRODUCE , OVERRIDE
, CLASS , SYNC, NEW, STATIC, ASYNC, UNSAFE,
EXTERN).

<MethodName,...> is a comma separated list with the names of the instance
methods being declared. The name for a method follows the
same convention as function and variable names. It must
begin with a underscore or a letter and must contain alpha
numeric characters.

IS <MethodName> The IS methodname clause is not supported by X#

IN <SuperClass> The IN Superclass clause is not supported (and not needed)
by X#

Attributes An optional list of one or more attributes that describe meta
information for am entity, such as for example the
[TestMethod] attribute on a method/function containing tests
in a MsTest class library. Please note that Attributes must
be on the same line or suffixed with a semi colon when they
are written on the line above that keyword.

589 XSharp

© 2015- 2024 XSharp BV

CLASS Optional modifier that specify that the declaration is for a
class level method or class level property

ACCESS ASSIGN Declares a Get/Set method for a property. You can to use
one or both of these keywords.

<VarName> The Get/Set method may have a different name than the
property that they implement.

AS <idType> Specifies the data type. If omitted, then depending on the
compiler options the type will be either USUAL or
determined by the compiler.

INLINE Specifies that the whole method is included between the
CLASS .. ENDCLASS keywords (other methods are so
called forward declarations)

<idParam> A parameter variable. A variable specified in this manner is
automatically declared local. These variables, also called
formal parameters, are used to receive arguments that you
pass when you call the entity.

AS | REF|OUT|IN <idType> Specifies the data type of the parameter variable (called
strong typing). AS indicates that the parameter must be
passed by value, and REF indicates that it must be passed
by reference with the @ operator. OUT is a special kind of
REF parameter that does not have to be assigned before
the call and must be assigned inside the body of the entity.
IN parameters are passed as READONLY references.
The last parameter in the list can also be declared as
PARAMS <idType>[] which will tell the compiler that the
function/method may receive zero or more optional
parameters.
Functions or Methods of the CLIPPER calling convention
are compiled to a function with a single parameter that this
declared as Args PARAMS USUAL[]

=> <Expression> Single expression that replaces the multiline body for the
entity. CANNOT be compiled with a body

<Body> Program statements that form the code of this entity.
The <Body> can contain one or more RETURN statements
to return control to the calling routine and to serve as the
function return value. If no return statement is specified,
control passes back to the calling routine when the function
definition ends, and the function will return a default value
depending on the return value data type specified (NIL if the
return value is not strongly typed).
CANNOT be combined with an Expression Body

END METHOD Optional end clause to indicate the end of the inline
METHOD entity

590X# Documentation

© 2015- 2024 XSharp BV

Note

The visibility of a method is determined by the visibility attribute set with one of the
statements EXPORTED:, PROTECTED:, HIDDEN: or INTERNAL:

Special method Names

In Xbase++ there are some reserved method names:

Init This is the name of the constructor
InitClass This is the name of the class constructor.

The implementation of constructors in .Net is somewhat different from Xbase++.
· Therefore the class constructor cannot have any parameters.

· The parameters of the Init() method become the constructor parameters.

1.8.4.7.5.3 METHOD Implementation

Note This command is only available in the Xbase++ dialect

Purpose

Provide the implementation for methods that are forward defined between CLASS ..
ENDCLASS

Syntax

[Attributes] [ACCESS | ASSIGN] [Modifiers] METHOD [<ClassName>:]
<MethodName>[[([<idParam> [AS|REF|OUT|IN <idType>] [, ...])]) [AS <idType>]

[=> <expression>]
CRLF
[<Body>]
[END METHOD]?

Arguments

Modifiers An optional list of one or more modifiers. CLASS, STATIC,
ABSTRACT, UNSAFE, ASYNC, EXTERN
STATIC is a synonym for CLASS.

Attributes An optional list of one or more attributes that describe meta
information for am entity, such as for example the
[TestMethod] attribute on a method/function containing tests
in a MsTest class library. Please note that Attributes must
be on the same line or suffixed with a semi colon when they
are written on the line above that keyword.

591 XSharp

© 2015- 2024 XSharp BV

ACCESS | ASSIGN Declares that this method implements a Getter or Setter for
a property. This must also be defined as ACCESS or
ASSIGN in the class declaration.

ClassName The name of the class in which the class method is
declared. When only one class is declared in the PRG file,
the class name is optional. Otherwise <ClassName>: is
required.

<idMethod> A valid identifier name for the method. Method names must
be unique within a class, but can share the same name as
other entities (including access and assign methods) in your
application.

<idParam> A parameter variable. A variable specified in this manner is
automatically declared local. These variables, also called
formal parameters, are used to receive arguments that you
pass when you call the entity.

AS | REF|OUT|IN <idType> Specifies the data type of the parameter variable (called
strong typing). AS indicates that the parameter must be
passed by value, and REF indicates that it must be passed
by reference with the @ operator. OUT is a special kind of
REF parameter that does not have to be assigned before
the call and must be assigned inside the body of the entity.
IN parameters are passed as READONLY references.
The last parameter in the list can also be declared as
PARAMS <idType>[] which will tell the compiler that the
function/method may receive zero or more optional
parameters.
Functions or Methods of the CLIPPER calling convention
are compiled to a function with a single parameter that this
declared as Args PARAMS USUAL[]

AS <idType> Specifies the data type. If omitted, then depending on the
compiler options the type will be either USUAL or
determined by the compiler.

=> <Expression> Single expression that replaces the multiline body for the
entity. CANNOT be compiled with a body

<Body> Program statements that form the code of this entity.
The <Body> can contain one or more RETURN statements
to return control to the calling routine and to serve as the
function return value. If no return statement is specified,
control passes back to the calling routine when the function
definition ends, and the function will return a default value
depending on the return value data type specified (NIL if the
return value is not strongly typed).
CANNOT be combined with an Expression Body

END METHOD Optional end clause to indicate the end of the inline

592X# Documentation

© 2015- 2024 XSharp BV

METHOD entity

Special method Names

In Xbase++ there are some reserved method names:

Init This is the name of the constructor
InitClass This is the name of the class constructor.

The implementation of constructors in .Net is somewhat different from Xbase++.
· Therefore the class constructor cannot have any parameters.

· The parameters of the Init() method become the constructor parameters.

1.8.4.7.6 DEFINE Statement

Purpose

Declare a constant name and its value to the compiler.

Syntax

[Modifiers] DEFINE <idConstant> := <uValue> [AS <idType>]

Arguments

Modifiers An optional list of modifiers that specify the visibility or scope
of the entity, such as PUBLIC, STATIC, INTERNAL,
EXPORT and UNSAFE.

<idConstant> A valid identifier name for the constant. A constant is an
entity and, as such, shares the same name space as other
entities. This means that it is not possible to have a
constant and a global variable, for example, with the same
name.

<uValue> A constant value that is assigned to <idConstant>. This
value can be a literal representation of one of the data types
listed below or a simple expression involving only operators,
literals, and other DEFINE constants; however, more
complicated expressions (including class instantiation) are
not allowed.

AS <idType> Specifies the data type. If omitted, then depending on the
compiler options the type will be either USUAL or
determined by the compiler.

593 XSharp

© 2015- 2024 XSharp BV

Description

Once the constant name and value is declared and initialized with the DEFINE statement,
you can not change the value of <idConstant> without provoking a compiler error. The
constant value <uValue> will be used whenever the <idConstant> identifier name is
encountered in your application.

You can hide a constant name from a routine by declaring a variable with the same name
(with LOCAL, MEMVAR, or FIELD). The search order for a variable name is as follows:
1. LOCALs, local parameters, MEMVARs, and FIELDs
2. SELF instance variables (i.e., without <idObject>: prefix in class methods)
3. GLOBALs and DEFINEs

Tip: You can perform a conditional build based on the value of a DEFINE constant. See
the #ifdef and #ifndef statements in this chapter for more information and examples.

Examples

The following example assigns an application name to the constant cAppName. This
value is then displayed at the beginning and end of the application run:

DEFINE cAppName := "Accounts Payable"
...
FUNCTION Start()
 ? "Start of ", cAppName, " application."
 ...
 ? "End of ", cAppName, " application."

See Also

#ifdef, #ifndef, GLOBAL

1.8.4.7.7 DELEGATE Statement

Purpose

Declare a delegate to the compiler.

Syntax

[Attributes] [Modifiers] DELEGATE <idDelegate>
[Typeparameters]
[([<idParam> [AS | REF|OUT|IN <idType>] [, ...])]
[AS <idType>]
[TypeparameterConstraints]

594X# Documentation

© 2015- 2024 XSharp BV

Arguments

Attributes An optional list of one or more attributes that describe meta
information for am entity, such as for example the
[TestMethod] attribute on a method/function containing tests
in a MsTest class library. Please note that Attributes must
be on the same line or suffixed with a semi colon when they
are written on the line above that keyword.

Modifiers An optional list of modifiers that specify the visibility or scope
of the entity, such as PUBLIC, PROTECTED, HIDDEN,
INTERNAL, SEALED, ABSTRACT or STATIC.

<idDelegate> A valid identifier name for the delegate. Delegate names
must be unique within a namespace.

<idParam> A parameter variable. A variable specified in this manner is
automatically declared local. These variables, also called
formal parameters, are used to receive arguments that you
pass when you call the entity.

AS | REF|OUT|IN <idType> Specifies the data type of the parameter variable (called
strong typing). AS indicates that the parameter must be
passed by value, and REF indicates that it must be passed
by reference with the @ operator. OUT is a special kind of
REF parameter that does not have to be assigned before
the call and must be assigned inside the body of the entity.
IN parameters are passed as READONLY references.
The last parameter in the list can also be declared as
PARAMS <idType>[] which will tell the compiler that the
function/method may receive zero or more optional
parameters.
Functions or Methods of the CLIPPER calling convention
are compiled to a function with a single parameter that this
declared as Args PARAMS USUAL[]

AS <idType> Specifies the data type. If omitted, then depending on the
compiler options the type will be either USUAL or
determined by the compiler.

TypeParameterConstraints Here you can specify constraints for the Type parameters,
such as WHERE T IS SomeName or WHERE T IS New

Description

A delegate is a reference type that encapsulates a function or method. Delegates are
similar to function pointers in native code languages such as Visual Objects, C and C++,
but unlike function pointers, delegates are object-oriented, secure and type-safe.

595 XSharp

© 2015- 2024 XSharp BV

The DELEGATE statement declares a special type of class which is partially
implemented by the compiler, and partially implemented by the CLR. All delegates inherit
from System.MulticastDelegate.
Every delegate has a signature, which is a combination of its parameter and return value
types.

Instantiation

You can explicitly call the delegate constructor like:

f := MyDelegate{ NULL, @SomeClass.Test() }

for static methods :

f := MyDelegate{ SELF, @SomeClass.Test() }

for instance methods, it is also possible to write:

f := SomeClass.Test

for static methods:

f := SELF:Test

Example

DELEGATE MyDelegate(x AS STRING) AS STRING

1.8.4.7.8 ENUM Statement

Purpose

Declare an enum to the compiler.

Syntax

[attributes] [Modifiers]
ENUM <idEnumName> [AS type]

memberName [:= value]
 [...]

END [ENUM]

596X# Documentation

© 2015- 2024 XSharp BV

Arguments

Attributes An optional list of one or more attributes that describe meta
information for am entity, such as for example the
[TestMethod] attribute on a method/function containing tests
in a MsTest class library. Please note that Attributes must
be on the same line or suffixed with a semi colon when they
are written on the line above that keyword.

Modifiers An optional list of modifiers that specify the visibility or scope
of the entity, such as PUBLIC, PROTECTED, HIDDEN,
INTERNAL, SEALED, ABSTRACT or STATIC.

idEnum A valid identifier name for the enum. Enum names must be
unique within a namespace.

AS type The data type of the enumeration members (optional).

memberName The name(s) of the enumeration members.

Description

A type declared with the ENUM keyword is an "enumeration" type, a type that consists of
a set of named constants which are called the enumerator list. Enumeration types
implicitly inherit from System.Enum.

An enumeration type has an underlying type, which is the type of the items in the
enumerator list. The default underlying type is INT; if the AS clause is specified then the
type can be any signed or unsigned integral type except System.Char.

By default, the first member in the enumerator list has a value of 0. The value of every
other member is the value of the previous member plus 1. An element's value can be
explicitly set to any value in the range of the underlying type by using the assignment
operator (:=) followed by either a literal integer value, or an expression that resolves to an
integer value at compile time. Two or more members can explicitly set to the same value.

The default value for an ENUM E is the expression (E)0., which may or may not represent
a member of the enum type, depending on whether or not a member having the value of 0
exists.

Enumeration members are referenced by specifying the name of the enumeration type
and the name of the member, separated by a period. If the enumeration type was declared
in the namespace currently being compiled, the name of the enumeration type is
sufficient. Otherwise, either the fully-qualified name of the enumeration must be used (e.g.
System.Windows.Forms.MessageBoxButtons) or the namespace must be imported
using the USING directive.

The System.FlagsAttribute attribute may be placed on an ENUM to indicate that the
elements of the enum may be combined using a bitwise OR operation.

597 XSharp

© 2015- 2024 XSharp BV

The enum name may include one or more namespace names, separated by periods. If no
period is found in the enum name, then the default namespace is assumed. The default
namespace is the base name of the output assembly name, unless explicitly overridden
by the /ns compiler option.

Example

ENUM days
 Sunday // 0
 Monday // 1
 Tuesday // 2
 Wednesday // 3
 Thursday // 4
 Friday // 5
 Saturday // 6
END CLASS

FUNCTION example1() AS VOID
 LOCAL i AS INT
 i := (INT) days.Friday
 ? days.Friday, i // prints: Friday 5

ENUM direction
 north // has default value of 0
 east := 90
 south := 180
 west := 270
END ENUM

FUNCTION example2(x AS direction) AS VOID
 IF x == direction.north
 goNorth()
 ELSEIF x == direction.east
 goEast()
 ELSEIF x == direction.south
 goSouth()
 ELSEIF x == direction.west
 goWest()
 ELSE
 Debug.Assert("Unknown value for direction")
 ENDIF

[System.FlagsAttribute];
ENUM CarOptions
 SunRoof := 0x1
 Spoiler := 0x2

598X# Documentation

© 2015- 2024 XSharp BV

 FogLights := 0x4
 TintedWindows := 0x8
END ENUM

FUNCTION example3() AS VOID
 LOCAL options AS CarOptions
 options := CarOptions.SunRoof | CarOptions.FogLights
 ? options // prints: SunRoof, FogLights
 ? (INT) options // prints: 5

In the first and third examples, note that using the ? statement on an enum type prints out
the textual value of the enum. This is because the names of the enum members are
stored in the assembly's metadata, and the ToString() method in System.Enum (which
every enum type inherits from) uses the metadata to obtain and return the name of the
enum member, rather than its underlying numerical value.

Also note that even though the textual names of the enum members are returned from
Enum.ToString(), the compiler uses the literal numeric values in the compiled code. So
the expression IF x == direction.north for example actually compiles as IF x == 0, because
the mapping between enumeration members and their underlying values occurs at
compile time, not at runtime. This makes using enumeration types as efficient as #define,
while providing much higher level of type safety and compile time error checking.
However, this also means that changing the values of enum members can cause existing
code that uses the enum to break unless it is recompiled.

Notes

1.8.4.7.9 FUNCTION Statement

Purpose

Declare a function name and an optional list of local variable names to the compiler.
When used inside a FoxPro DEFINE CLASS .. ENDDEFINE this declares a method.

Syntax

[Attributes] [Modifiers] FUNCTION <idFunction>
[Typeparameters]
[([<idParam> [AS | REF|OUT|IN <idType>] [, ...])]
[AS <idType>]
[TypeparameterConstraints]
[<idConvention>]
[EXPORT LOCAL]
[DLLEXPORT STRING_CONST]
[=> <expression>]
CRLF

599 XSharp

© 2015- 2024 XSharp BV

[<Body>]
[ENDFUNC | END FUNCTION]

Arguments

Attributes An optional list of one or more attributes that describe meta
information for am entity, such as for example the
[TestMethod] attribute on a method/function containing tests
in a MsTest class library. Please note that Attributes must
be on the same line or suffixed with a semi colon when they
are written on the line above that keyword.

Modifiers An optional list of modifiers that specify the visibility or scope
of the entity, such as PUBLIC, STATIC, INTERNAL,
EXPORT and UNSAFE.
Please note that functions and procedures used as class
members in FoxPro compatible classes can have more
modifiers.

<idFunction> A valid identifier name for the function. A function is an entity
and, as such, shares the same name space as other
entities. This means that it is not possible to have a function
and a class, for example, with the same name.

TypeParameters This is supported for methods with generic type arguments.
This something like <T> for a method with one type
parameter named T. Usually one of the parameters in the
parameter list is then also of type T.

<idParam> A parameter variable. A variable specified in this manner is
automatically declared local. These variables, also called
formal parameters, are used to receive arguments that you
pass when you call the entity.

AS | REF|OUT|IN <idType> Specifies the data type of the parameter variable (called
strong typing). AS indicates that the parameter must be
passed by value, and REF indicates that it must be passed
by reference with the @ operator. OUT is a special kind of
REF parameter that does not have to be assigned before
the call and must be assigned inside the body of the entity.
IN parameters are passed as READONLY references.
The last parameter in the list can also be declared as
PARAMS <idType>[] which will tell the compiler that the
function/method may receive zero or more optional
parameters.
Functions or Methods of the CLIPPER calling convention
are compiled to a function with a single parameter that this
declared as Args PARAMS USUAL[]

AS <idType> Specifies the data type. If omitted, then depending on the
compiler options the type will be either USUAL or
determined by the compiler.

600X# Documentation

© 2015- 2024 XSharp BV

TypeParameterConstraints Here you can specify constraints for the Type parameters,
such as WHERE T IS SomeName or WHERE T IS New

<idConvention> Specifies the calling convention for this entity.
<idConvention> must be one of the following:
o CLIPPER
o STRICT
o PASCAL
o CALLBACK
o THISCALL

Most calling conventions are for backward compatibility
only.
There are 2 exceptions:
CLIPPER declares that a method has untyped parameters.
This is usually only needed for methods without any
declared parameters. Otherwise the compiler will assume
CLIPPER calling convention when it detects untyped
parameters.
Methods and Functions in external DLL may have STRICT,
PASCAL, CALLBACK

EXPORT LOCAL This clause is allowed by X# but ignored.
=> <Expression> Single expression that replaces the multiline body for the

entity. CANNOT be compiled with a body

<Body> Program statements that form the code of this entity.
The <Body> can contain one or more RETURN statements
to return control to the calling routine and to serve as the
function return value. If no return statement is specified,
control passes back to the calling routine when the function
definition ends, and the function will return a default value
depending on the return value data type specified (NIL if the
return value is not strongly typed).
CANNOT be combined with an Expression Body

ENDFUNC | END FUNCTIONThese (optional)keywords indicate the logical end of the
function.

Description

A function is a subprogram comprised of a set of declarations and statements to be
executed whenever you refer to <idFunction> followed by a pair of parentheses (see
Notes section, below).

Functions and procedures (see the PROCEDURE statement in this guide) are the basic
procedural programming units. You will use them in your applications to organize
computational blocks of code.

601 XSharp

© 2015- 2024 XSharp BV

STATIC FUNCTION allows you to limit the visibility of a function name to the current
module, thereby restricting access to the function. This feature is useful when designing
a module that will contain some public routines (i.e., with application-wide visibility) and
others that are strictly support routines (i.e., only needed by other routines in the same
module).

Simply declare all support functions using STATIC FUNCTION. Doing this gives you two
immediate advantages. First, no other module in the application will inadvertently call one
of your support routines. Second, since static references are resolved at compile time
and public references are resolved at link time, there is no possibility of a name conflict.
For example, if you have a static Service() function declared in module X and a public
Service() function declared in module Y, all references to Service() in X execute the static
version and all other references to Service() in the application execute the public version.

Notes

The Start() function: All applications must either have one function or procedure named
Start() or be linked with the GUI Classes library and have a method Start() of CLASS App.
 Start() serves as the startup routine when the application is executed. Start() cannot
declare any parameters and, under normal circumstances, should not return a value. If
you want to use strong typing in the declaration statement, you must specify AS USUAL
PASCAL.

Exporting locals through code blocks: When you create a code block, you can access local
variables defined in the creating entity within the code block definition without having to
pass them as parameters (i.e., local variables are visible to the code block). Using this
fact along with the fact that you can pass a code block as a parameter, you can export
local variables. For example:

FUNCTION One() EXPORT LOCAL
LOCAL nVar := 10 AS INT, cbAdd AS CODEBLOCK
cbAdd := {|nValue| nValue + nVar}
? NextFunc(cbAdd) // Result: 210

FUNCTION NextFunc(cbAddEmUp)
RETURN (EVAL(cbAddEmUp, 200))

When the code block is evaluated in NextFunc(), nVar, which is local to function One(),
becomes visible even though it is not passed directly as a parameter.

Calling a function: The syntax to call a function is as follows:

<idFunction>([<uArgList>])

where <uArgList> is an optional comma-separated list of arguments to pass to the named
function. The function receives the arguments in the order passed using the parameter
variables specified as part of the function declaration.

602X# Documentation

© 2015- 2024 XSharp BV

Note that although the parentheses are not required in the FUNCTION statement if the
function has no parameters, they are always required in the invocation.

You can call a function within an expression or as a program statement. If called as a
program statement, the return value is ignored.

You can also call a function as an aliased expression, as in:

<idAlias>-><idFunction>([<uArgList>])

When you do this, the work area associated with <idAlias> is selected, the function is
executed, and the original work area is reselected. You can specify an aliased expression
as a program statement, as you would any other expression.

A function can call itself recursively. This means you can refer to a function in its own
<FunctionBody>.
The specific manner in which you call a function depends on the calling convention
(<idConvention>) that you specify (either explicitly or implicitly) when you declare the
function.

CLIPPER calling convention: If you declare the function without any data types in the
parameter list, the function uses the CLIPPER calling convention by default. You can also
specify the CLIPPER calling convention in the FUNCTION declaration statement,
providing that you do not use strong typing in the parameter list.
Although it does not allow strongly typed parameters, the CLIPPER calling convention
supports strong typing of the function return value.

With the CLIPPER calling convention, the number of parameters declared for the function
does not have to match the number of arguments passed when you call the function. You
can skip any argument by leaving it out of the list (specifying two consecutive commas) or
by omitting it from the end of the list. For example:

FUNCTION Start()
MyFunc(1,, 3) // Skip second argument
MyFunc(1, 2) // Skip final argument

FUNCTION MyFunc(x, y, z)

...

A parameter not receiving a value is automatically initialized to NIL by the function so that
you can check for skipped arguments. You can use PCount() to help determine the
number of arguments passed — this function returns the position of the last argument
passed.

Any parameter specified in a CLIPPER function can receive arguments passed by value
or reference — the semantics are determined when the function is called rather than
when it is declared. The default method for expressions and variables is by value. All
variables except field variables, when prefaced with the reference operator (@), are

603 XSharp

© 2015- 2024 XSharp BV

passed by reference. Field variables cannot be passed by reference and are always
passed by value.

STRICT calling convention: If you declare the function with any data types in the parameter
list, the function uses the STRICT calling convention by default. You can also specify the
STRICT calling convention in the FUNCTION declaration statement.

Using the STRICT calling convention, you give up many of the features allowed with the
CLIPPER calling convention, but you gain in compilation speed, application integrity, and
execution speed by strongly typing the parameters and return value and declaring the
passing semantics of the function.

STRICT functions do not support a variable number of arguments, PCount(), or the ability
to be used in macro expressions.

Like CLIPPER functions, STRICT functions allow the calling semantics to be determined
when the function is called, but only for polymorphic parameters (i.e., those not strongly
typed). When a parameter is typed, the calling semantics are also declared depending on
whether you use the AS or the REF keyword. AS means that the parameter must be
passed by value and REF means that it must be passed by reference (with the reference
operator (@)).

PASCAL calling convention: To specify this calling convention, use PASCAL as the last
keyword in the FUNCTION declaration statement. Syntactically, the PASCAL calling
convention is identical to STRICT and the usage restrictions are the same, but internally it
is handled differently. It is identical to the Microsoft Pascal calling convention, and its
primary use is for low-level interfacing with Windows.

CALLBACK calling convention: To specify this calling convention, use CALLBACK as the last
keyword in the FUNCTION declaration statement. This is a special PASCAL calling
convention with Windows prologue and epilogue. It is used for low-level interfacing with
Windows.

Parameters: As an alternative to specifying parameters in the FUNCTION declaration
statement, you can use a PARAMETERS statement to specify them. This practice,
however, is not recommended because it is less efficient and provides no compile-time
integrity validation. See the PARAMETERS statement in this guide for more information.

Examples

This example demonstrates a function that formats numeric values as currency:

FUNCTION Start()
? Currency(1000) // Result: $1,000.00

FUNCTION Currency(nNum)
LOCAL cNum
IF nNum < 0

cNum := Transform(-1 * nNum, ;

604X# Documentation

© 2015- 2024 XSharp BV

"999,999,999,999.99")
cNum := PadL("($" + LTRIM(cNum)+ ")", ;

LEN(cNum))
ELSE

cNum := Transform(nNum, ;
"999,999,999,999.99")

cNum := PadL("$" + LTRIM(cNum), ;
LEN(cNum))

ENDIF
RETURN cNum

The next example demonstrates a function that takes a string formatted as a comma-
separated list and returns an array with one element per item:

aList := ListAsArray("One, Two")
// Result: {"One", "Two"}

FUNCTION ListAsArray(cList)
LOCAL nPos
LOCAL aList := {} // Define an empty array

DO WHILE (nPos := AT(",", cList)) != 0
// Add a new element

AADD(aList, SUBSTR(cList, 1, nPos - 1))
cList := SUBSTR(cList, nPos + 1)

ENDDO
AADD(aList, cList)

RETURN aList // Return the array

This example checks for a skipped argument by comparing the parameter to NIL:

FUNCTION MyFunc(param1,param2,param3)
IF param2 = NIL

param2 := "default value"
ENDIF ...

Here the Currency() function (defined above) is used as an aliased expression:

605 XSharp

© 2015- 2024 XSharp BV

USE invoices NEW
USE customer NEW
? Invoices->Currency(Amount)

See Also

FIELD, LOCAL, MEMVAR, METHOD, PROCEDURE, RETURN

1.8.4.7.10 GLOBAL Statement

Purpose

Declare a variable or array that is available to the entire application or module.

Syntax

[Modifiers] GLOBAL <idVar> [:= <uValue>] [AS | IS <idType>]
[Modifiers] GLOBAL DIM <ArraySpec> AS | IS <idType>

Arguments

Modifiers An optional list of modifiers that specify the visibility or scope
of the entity, such as PUBLIC, STATIC, INTERNAL,
EXPORT and UNSAFE.

<idVar> A valid identifier name for the variable. A global variable is
an entity and, as such, shares the same name space as
other entities. This means that it is not possible to have a
global variable and a function, for example, with the same
name.

<uValue> A constant value that is assigned to <idVar>. This value can
be a literal representation of one of the data types listed
below or a simple expression involving only operators,
literals, and DEFINE constants; however, more complicated
expressions (including class instantiation) are not allowed.

Note: Although <uValue> can be a literal array, it must be
one-dimensional. Multi-dimensional literal arrays are not
allowed. For example, {1, 2, 3} is allowed, but { {1, 2, 3}, {4,
5, 6}, {7, 8, 9} } is not.

Note: Although the Chr() function cannot be used in
<uValue>, the _Chr() operator can. _Chr() is otherwise
identical in functionality to Chr().

606X# Documentation

© 2015- 2024 XSharp BV

If <uValue> is not specified, the initial value of the variable
depends on the data type you declare (e.g., NIL if you do not
use strong typing, 0 for AS INT, etc.)

DIM <ArraySpec> The specification for a dimensioned array to declare.

<ArraySpec> The specification for a dynamic array to declare.

In both cases, <ArraySpec> is one of the following:

<idArray>[<nElements>, <nElements>, <nElements>]
<idArray>[<nElements>][<nElements>][<nElements>]
All dimensions except the first are optional.

<idArray> is a valid identifier name for the array to declare.
For dynamic arrays, array elements are initialized to NIL.
For dimensioned arrays, the initial value of the elements
depends on the data type as explained above for <uValue>.

<nElements> defines the number of elements in a particular
dimension of an array. The number of dimensions is
determined by how many <nElements> arguments you
specify.

<nElements> can be a literal numeric representation or a
simple numeric expression involving only operators, literals,
and DEFINE constants; however, more complicated
expressions (such as function calls) are not allowed.

AS <idType> Specifies the data type. If omitted, then depending on the
compiler options the type will be either USUAL or
determined by the compiler.

IS <idType> Specifies a VOSTRUCT or UNION data type in which the
memory needed to hold the structure is allocated on the
stack (<idStructure> is the only <idType> allowed with the
IS keyword.) See the VOSTRUCT entry in this guide for
more information on data structure memory allocation.

Notes

Search order for variables: You can hide a global variable name from a routine by declaring
another variable with the same name (with LOCAL, MEMVAR, or FIELD). The search
order for a variable name is as follows:
1. LOCALs, local parameters, MEMVARs, and FIELDs
2. SELF instance variables (i.e., without <idObject>: prefix in class methods)
3. GLOBALs and DEFINEs

607 XSharp

© 2015- 2024 XSharp BV

Examples

The following example illustrates using the GLOBAL statement to create a global variable,
a global dimensioned array, and a global dynamic array. The dynamic array, since it is
declared with STATIC GLOBAL, is visible only in the current module:

GLOBAL cAppName := "Accounts Payable" AS STRING
GLOBAL DIM aiValues[2][10] AS INT
STATIC GLOBAL aPoly[100]
...
FUNCTION Start()

? "Start of ", cAppName, " application."
AFill(aPoly, 0)
...
? "End of ", cAppName, " application."

See Also

DEFINE, LOCAL

1.8.4.7.11 INTERFACE Statement

Purpose

Declare a interface name to the compiler.

Syntax

[Attributes] [Modifiers] INTERFACE <idInterface> [INHERIT <idInterface>]
[InterfaceMembers]
END INTERFACE

Arguments

Attributes An optional list of one or more attributes that describe meta
information for am entity, such as for example the
[TestMethod] attribute on a method/function containing tests
in a MsTest class library. Please note that Attributes must
be on the same line or suffixed with a semi colon when they
are written on the line above that keyword.

Modifiers An optional list of modifiers that specify the visibility or scope
of the entity, such as PUBLIC, PROTECTED, HIDDEN,
INTERNAL, SEALED, ABSTRACT or STATIC.

608X# Documentation

© 2015- 2024 XSharp BV

<idInterface> A valid identifier name for the class. A class is an entity and,
as such, shares the same name space as other entities.
This means that it is not possible to have a class and a
global variable, for example, with the same name.

INHERIT <idInterface> The name of an existing class (called a superclass) from
which the new class inherits methods and instance
variables (with the exception of HIDDEN).

InterfaceMembers This can be any of ACCESS, ASSIGN, METHOD,
OPERATOR, PROPERTY, EVENT

Description

Notess

See Also

ACCESS, ASSIGN, CLASS, EVENT, METHOD, OPERATOR, PROPERTY,
STRUCTURE

1.8.4.7.12 LOCAL FUNCTION Statement

Purpose

Declare a local function

Syntax

[Modifiers] LOCAL FUNCTION <idFunction>
[Typeparameters]
[([<idParam> [AS | REF|OUT|IN <idType>] [, ...])]
[AS <idType>]
[TypeparameterConstraints]
[=> <expression>]
CRLF
[<Body>]
END FUNCTION

Arguments

[Modifiers] The only valid modifiers for a local function are UNSAFE
and/or ASYNC

609 XSharp

© 2015- 2024 XSharp BV

<idFunction> A valid identifier name for the function. A function is an entity
and, as such, shares the same name space as other
entities. This means that it is not possible to have a function
and a class, for example, with the same name.

TypeParameters This is supported for methods with generic type arguments.
This something like <T> for a method with one type
parameter named T. Usually one of the parameters in the
parameter list is then also of type T.

<idParam> A parameter variable. A variable specified in this manner is
automatically declared local. These variables, also called
formal parameters, are used to receive arguments that you
pass when you call the entity.

AS | REF|OUT|IN <idType> Specifies the data type of the parameter variable (called
strong typing). AS indicates that the parameter must be
passed by value, and REF indicates that it must be passed
by reference with the @ operator. OUT is a special kind of
REF parameter that does not have to be assigned before
the call and must be assigned inside the body of the entity.
IN parameters are passed as READONLY references.
The last parameter in the list can also be declared as
PARAMS <idType>[] which will tell the compiler that the
function/method may receive zero or more optional
parameters.
Functions or Methods of the CLIPPER calling convention
are compiled to a function with a single parameter that this
declared as Args PARAMS USUAL[]

AS <idType> Specifies the data type. If omitted, then depending on the
compiler options the type will be either USUAL or
determined by the compiler.

TypeParameterConstraints Here you can specify constraints for the Type parameters,
such as WHERE T IS SomeName or WHERE T IS New

=> <Expression> Single expression that replaces the multiline body for the
entity. CANNOT be compiled with a body

<Body> Program statements that form the code of this entity.
The <Body> can contain one or more RETURN statements
to return control to the calling routine and to serve as the
function return value. If no return statement is specified,
control passes back to the calling routine when the function
definition ends, and the function will return a default value
depending on the return value data type specified (NIL if the
return value is not strongly typed).
CANNOT be combined with an Expression Body

610X# Documentation

© 2015- 2024 XSharp BV

END FUNCTION These mandatory keywords indicate the logical end of the
function.

Description

A local function is defined as a nested function inside a containing member. The END
FUNCTION is mandatory so the compiler knows where the function ends and its
surrounding container continues.
In the example below the WAIT command is part of the Start() function and will be
executed after result of the call to Fact() is shown.

Example

FUNCTION Start AS VOID
 ? Fact(10)
 LOCAL FUNCTION Fact(nNum AS LONG) AS LONG
 IF nNum == 1
 RETURN 1
 ENDIF
 RETURN nNum * Fact(nNum-1)
 END FUNCTION
 WAIT
 RETURN

See Also

FIELD, LOCAL, MEMVAR, METHOD, PROCEDURE, RETURN, FUNCTION

1.8.4.7.13 LOCAL PROCEDURE Statement

Purpose

Declare a local procedure

Syntax

[Modifiers] LOCAL PROCEDURE <idFunction>
[Typeparameters]
[([<idParam> [AS | REF|OUT|IN <idType>] [, ...])]
[TypeparameterConstraints]
[=> <expression>]
CRLF
[<Body>]
END PROCEDURE

611 XSharp

© 2015- 2024 XSharp BV

Arguments

[Modifiers] The only valid modifiers for a local function are UNSAFE
and/or ASYNC

<idFunction> A valid identifier name for the function. A function is an entity
and, as such, shares the same name space as other
entities. This means that it is not possible to have a function
and a class, for example, with the same name.

TypeParameters This is supported for methods with generic type arguments.
This something like <T> for a method with one type
parameter named T. Usually one of the parameters in the
parameter list is then also of type T.

<idParam> A parameter variable. A variable specified in this manner is
automatically declared local. These variables, also called
formal parameters, are used to receive arguments that you
pass when you call the entity.

AS | REF|OUT|IN <idType> Specifies the data type of the parameter variable (called
strong typing). AS indicates that the parameter must be
passed by value, and REF indicates that it must be passed
by reference with the @ operator. OUT is a special kind of
REF parameter that does not have to be assigned before
the call and must be assigned inside the body of the entity.
IN parameters are passed as READONLY references.
The last parameter in the list can also be declared as
PARAMS <idType>[] which will tell the compiler that the
function/method may receive zero or more optional
parameters.
Functions or Methods of the CLIPPER calling convention
are compiled to a function with a single parameter that this
declared as Args PARAMS USUAL[]

AS <idType> Specifies the data type. If omitted, then depending on the
compiler options the type will be either USUAL or
determined by the compiler.

TypeParameterConstraints Here you can specify constraints for the Type parameters,
such as WHERE T IS SomeName or WHERE T IS New

=> <Expression> Single expression that replaces the multiline body for the
entity. CANNOT be compiled with a body

<Body> Program statements that form the code of this entity.
The <Body> can contain one or more RETURN statements
to return control to the calling routine and to serve as the
function return value. If no return statement is specified,
control passes back to the calling routine when the function

612X# Documentation

© 2015- 2024 XSharp BV

definition ends, and the function will return a default value
depending on the return value data type specified (NIL if the
return value is not strongly typed).
CANNOT be combined with an Expression Body

END PROCEDURE These mandatory keywords indicate the logical end of the
function.

Description

A local function is defined as a nested function inside a containing member. The END
PROCEDURE is mandatory so the compiler knows where the function ends and its
surrounding container continues.
In the example below the WAIT command is part of the Start() function and will be
executed after the call to Log(3)

Example

FUNCTION Start AS VOID
 Log(1)
 Log(2)
 Log(3)

 LOCAL PROCEDURE Log(nNum AS LONG)
 ? nNum
 RETURN
 END PROCEDURE
 WAIT

 RETURN

See Also

FIELD, LOCAL, MEMVAR, METHOD, PROCEDURE, RETURN, PROCEDURE

1.8.4.7.14 PROCEDURE Statement

Purpose

Declare a procedure name and formal parameters. When used inside a FoxPro DEFINE
CLASS .. ENDDEFINE this declares a method.

613 XSharp

© 2015- 2024 XSharp BV

Syntax

[Attributes] [Modifiers] PROCEDURE <idProcedure>
[Typeparameters]
[([<idParam> [AS | REF|OUT|IN <idType>] [, ...])]
[AS <idType>]
[TypeparameterConstraints]
[<idConvention>]
[_INIT1 | _INIT2 | _INIT3 | EXIT]
[EXPORT LOCAL]
[DLLEXPORT STRING_CONST]
[=> <expression>]
CRLF
[<Body>]
[ENDPROC | END PROCEDURE]

Alternative INIT / EXIT Procedures

[Attributes] [INIT | EXIT] PROCEDURE <idProcedure>
[Typeparameters]
[([<idParam> [AS | REF|OUT|IN <idType>] [, ...])]
[AS <idType>]
[TypeparameterConstraints]
[<idConvention>]
[=> <expression>]
CRLF
[<Body>]
[ENDPROC | END PROCEDURE]

Arguments

Attributes An optional list of one or more attributes that describe meta
information for am entity, such as for example the
[TestMethod] attribute on a method/function containing tests
in a MsTest class library. Please note that Attributes must
be on the same line or suffixed with a semi colon when they
are written on the line above that keyword.

Modifiers An optional list of modifiers that specify the visibility or scope
of the entity, such as PUBLIC, STATIC, INTERNAL,
EXPORT and UNSAFE.
Please note that functions and procedures used as class
members in FoxPro compatible classes can have more
modifiers.

<idProcedure> A valid identifier name for the function. A function is an entity
and, as such, shares the same name space as other
entities. This means that it is not possible to have a function
and a class, for example, with the same name.

614X# Documentation

© 2015- 2024 XSharp BV

TypeParameters This is supported for methods with generic type arguments.
This something like <T> for a method with one type
parameter named T. Usually one of the parameters in the
parameter list is then also of type T.

<idParam> A parameter variable. A variable specified in this manner is
automatically declared local. These variables, also called
formal parameters, are used to receive arguments that you
pass when you call the entity.

AS | REF|OUT|IN <idType> Specifies the data type of the parameter variable (called
strong typing). AS indicates that the parameter must be
passed by value, and REF indicates that it must be passed
by reference with the @ operator. OUT is a special kind of
REF parameter that does not have to be assigned before
the call and must be assigned inside the body of the entity.
IN parameters are passed as READONLY references.
The last parameter in the list can also be declared as
PARAMS <idType>[] which will tell the compiler that the
function/method may receive zero or more optional
parameters.
Functions or Methods of the CLIPPER calling convention
are compiled to a function with a single parameter that this
declared as Args PARAMS USUAL[]

AS <idType> Specifies the data type. If omitted, then depending on the
compiler options the type will be either USUAL or
determined by the compiler.

TypeParameterConstraints Here you can specify constraints for the Type parameters,
such as WHERE T IS SomeName or WHERE T IS New

<idConvention> Specifies the calling convention for this entity.
<idConvention> must be one of the following:
o CLIPPER
o STRICT
o PASCAL
o CALLBACK
o THISCALL

Most calling conventions are for backward compatibility
only.
There are 2 exceptions:
CLIPPER declares that a method has untyped parameters.
This is usually only needed for methods without any
declared parameters. Otherwise the compiler will assume
CLIPPER calling convention when it detects untyped
parameters.
Methods and Functions in external DLL may have STRICT,
PASCAL, CALLBACK

EXPORT LOCAL This clause is allowed by X# but ignored.

615 XSharp

© 2015- 2024 XSharp BV

_INITn, EXIT When an application is executed, all INIT procedures in all
modules associated with the application (including libraries)
are called automatically. There are three priority levels for
INIT procedures indicated by the _INIT1, _INIT2, and _INIT3
keywords. _INIT1 procedures are called first, _INIT2
second, and _INIT3 third. All INIT procedures are called
before the application Start() routine.
EXIT procedures are called at application shutdown

=> <Expression> Single expression that replaces the multiline body for the
entity. CANNOT be compiled with a body

<Body> Program statements that form the code of this entity.
The <Body> can contain one or more RETURN statements
to return control to the calling routine and to serve as the
function return value. If no return statement is specified,
control passes back to the calling routine when the function
definition ends, and the function will return a default value
depending on the return value data type specified (NIL if the
return value is not strongly typed).
CANNOT be combined with an Expression Body

ENDPROC | END PROCEDURE These (optional)keywords indicate the logical end of
the function.

You must follow the guidelines below when specifying an INIT procedure:
· No arguments are allowed

Notes

Please not that INIT and EXIT procedures have an INTERNAL scope always. You cannot
access these from outside of the assembly where they are defined, so prevent you from
accidentally calling them. If you need to call them, then you may consider to store the
actual code in a normal function or procedure and call that code from the INIT or EXIT
procedure.

Examples

PROCEDURE First AS VOID PASCAL _INIT1

INIT procedures are necessary for having automatic initialization routines for libraries and
other modules in an application besides the main startup module (i.e., the one containing
the Start() routine). Although Start() routines are limited to one per application, there are
no inherent limits for the total number of INIT procedures within an application.

The following example shows a skeleton of a typical procedure that uses declared
variables:

616X# Documentation

© 2015- 2024 XSharp BV

PROCEDURE Skeleton(cName, cClassRoom, Bones, nJoints)
LOCAL nCrossBones, aOnHand := {"skull", "metacarpals"}
STATIC nCounter := 0

<Executable Statements>...

The next example determines whether an argument was skipped by comparing the
parameter to NIL:

PROCEDURE MyProc(param1, param2, param3)
IF param2 != NIL

param2 := "default value"
ENDIF
<Statements>...

This example invokes the procedure, UpdateAmount(), as an aliased expression:

USE invoices NEW
USE customer NEW
Invoices->UpdateAmount(Amount + Amount * nInterest)

See Also

FIELD, FUNCTION, LOCAL, MEMVAR, METHOD,RETURN

1.8.4.7.15 STRUCTURE Statement

Purpose

Declare a class name to the compiler.

Syntax

[Attributes] [Modifiers] STRUCTURE <idStructure>
[IMPLEMENTS <idInterface>[, <IdInterface2>,..]
[StructureMembers]
END STRUCTURE

617 XSharp

© 2015- 2024 XSharp BV

Arguments

Attributes An optional list of one or more attributes that describe meta
information for am entity, such as for example the
[TestMethod] attribute on a method/function containing tests
in a MsTest class library. Please note that Attributes must
be on the same line or suffixed with a semi colon when they
are written on the line above that keyword.

Modifiers An optional list of modifiers that specify the visibility or scope
of the entity, such as PUBLIC, PROTECTED, HIDDEN,
INTERNAL, SEALED, ABSTRACT or STATIC.

<idStructure> A valid identifier name for the class. A class is an entity and,
as such, shares the same name space as other entities.
This means that it is not possible to have a class and a
global variable, for example, with the same name.

IMPLEMENTS <idInterface> The name(s) of the interface(s) that this class implements

StructrureMembers This can be any of ACCESS, ASSIGN, CONSTRUCTOR,
DESTRUCTOR, EVENT, METHOD, OPERATOR,
PROPERTY, just like in the CLASS declaration

In this case, the variables x and z are typed as INT, while the variables cName and cAddr
are typed as STRING.

Description

After the structure name is declared to the compiler, it is followed by 0 or more instance
variable declaration statements. You use a structure name to declare variables (see
GLOBAL and LOCAL statements in this guide) designed to hold instances of a specific
class, to instantiate instances of the class, and to define methods (see the METHOD
statement in this guide) and subclasses for the class.

Notes

Binding of instance variables: Instance variables can be either early or late bound, depending
on how you declare them and how you use them.

Early binding happens if the memory location of a variable is known at compile time. The
compiler knows exactly how to reference the variable and can, therefore, generate code to
do so.

Late binding is necessary if the memory location of a variable is unknown at compile time.
 The compiler cannot determine from the program source code exactly where the variable
is or how to go about referencing it, so it generates code to look the symbol up in a table.
The lookup is performed at runtime.

Since there is no need for a runtime lookup with early bound instance variables, using
them instead of late bound variables will significantly improve the performance of your

618X# Documentation

© 2015- 2024 XSharp BV

application. The following table summarizes the binding and visibility issues for the four
types of instance variables:

Variable Type Binding Visibility

EXPORT Early, if possible Application-wide for CLASS and
module-wide for STATIC CLASS

INSTANCE Always late In class and subclasses
HIDDEN Always early In class only
PROTECT Always early In class and subclasses

Object instantiation: Once you declare a class, you create instances of the class using the
class name followed by the instantiation operators, {}. The syntax is as follows:

<idClass>{[<uArgList>]}

where <uArgList> is an optional comma-separated list of values passed as arguments to
a special method called Init() (see the METHOD statement in this guide for more
information on the Init() method).

Accessing instance variables: The syntax to access an exported instance variable externally
(i.e., from any entity that is not a method of its class) is as follows:

<idObject>:<idVar>

You can access non-exported instance variables only from methods in which they are
visible. Within a method, you use the following syntax for accessing all instance variables:

[SELF:]<idVar>

The SELF: prefix is optional except in the case of an access/assign method (see the
ACCESS and ASSIGN statement entries in this guide for more information and the
METHOD statement for more information on SELF).
Instance variables are just like other program variables. You can access them anywhere
in the language where an expression is allowed.

The prefix [STATIC] is no longer supported by XSharp

Examples

The following example defines two classes, one of which inherits values from the other,
and demonstrates how to create a class instance with initial values for the instance
variables:

619 XSharp

© 2015- 2024 XSharp BV

See Also

ACCESS, ASSIGN, CONSTRUCTOR, DESTRUCTOR, EVENT, METHOD, OPERATOR,
PROPERTY

1.8.4.7.16 UNION Statement

Note This command is only available in the VO and Vulcan dialects

Purpose

Declare a union entity and its member names.

Syntax

[Modifiers] UNION <idUnion> [ALIGN 1|2|4|8]
MEMBER <idVarList> AS | IS <idType> [,…]
MEMBER DIM <ArraySpec> [,…] AS | IS <idType> [,…]
[END UNION]

Note: The MEMBER statement is shown using two syntax diagrams for convenience.
You can declare variables and dimensioned arrays using a single MEMBER statement if
each definition is separated by a comma.

Arguments

Modifiers An optional list of modifiers that specify the visibility or scope
of the entity, such as PUBLIC, STATIC, INTERNAL,
EXPORT and UNSAFE.

<idUnion> A valid identifier name for the union. A union is an entity and
shares the same name space as other entities. This
means that it is not possible to have a union and a constant,
for example, with the same name.

MEMBER Declares one or more union member variables or
dimensioned arrays. You can specify multiple MEMBER
declarations on separate lines.

<idVarList> A comma-separated list of identifier names for the union
member variables.

DIM <ArraySpec> The specification for a dimensioned array to use as a union
member. <ArraySpec> is one of the following:
<idArray>[<nElements>, <nElements>, <nElements>]
<idArray>[<nElements>],[<nElements>], [<nElements>]

620X# Documentation

© 2015- 2024 XSharp BV

All dimensions except the first are optional.

<nElements> defines the number of elements in a particular
dimension of an array. The number of dimensions is
determined by how many <nElements> arguments you
specify.

<nElements> can be a literal numeric representation or a
simple numeric expression involving only operators, literals,
and DEFINE constants; however, more complicated
expressions (such as function calls) are not allowed.

AS <idType> Specifies the data type of the variable you are declaring
(called strong typing). For DIM arrays, declares the data
type for all array elements. The AS <idType> is required for
all union members.

Refer to the CLASS entry for a list of valid values for
<idType>. Note that the following data types are not
supported in unions because they are dynamic types that
require garbage collection:
o ARRAY
o FLOAT
o OBJECT
o <idClass>
o STRING
o USUAL
o

IS <idType> Specifies a union data type in which the memory needed to
hold the union is allocated on the stack (i.e., <idUnion> is
the only <idType> allowed with the IS keyword).

ALIGN 1|2|4|8 Specifies the memory alignment of the structure. The
default is 4, which means that all members are aligned at
DWORD boundaries, since that gives the best performance
on a 32 bits platform and is also the default alignment for
most C/C++ compilers. You may want to change this when
you need to match a C/C++ structure that has been defined
with a different alignment (the #pragma pack in a C/C++
header file).

Note: The default alignment for C/C++ compilers is 4 as
well, unless the structure contains doubles (REAL8 in
XSharp). In that case the C/C++ compiler uses an
alignment of 8. XSharp does NOT automatically choose an
alignment of 8, so you must add the ALIGN 8 to your
structure in these circumstances.

621 XSharp

© 2015- 2024 XSharp BV

Description

UNIONs are like STRUCTUREs, but all members start at offset zero (0). In other words,
assigning a value to a union member affects all other union members. As the size of the
union is equal to the size of the biggest member, changing one member will change all of
the others because they occupy the same memory.

You use the UNION statement to mark the beginning of the definition of a union entity,
followed by one or more MEMBER statements that define what the union looks like.

Examples

The following is a conversion example:

UNION wb ALIGN 1
MEMBER w AS WORD
BYTE bLo AS BYTE
BYTE bHi AS BYTE

FUNCTION x
 LOCAL u IS wb

 u.w := 0x1234

 ? u.bLo // 52 (=0x34)
 ? u.bHi // 18 (=0x12)

See Also

STRUCTURE

1.8.4.7.17 VOSTRUCT Statement

Note This command is only available in the VO and Vulcan dialects

Purpose

Declare a data structure and its member names.

Syntax

[Modifiers] VOSTRUCT <idStructure> [ALIGN 1|2|4|8]
MEMBER <idVarList> AS | IS <idType> [, ...]
MEMBER DIM <ArraySpec> [, ...] AS | IS <idType> [, ...]

[END VOSTRUCT]

622X# Documentation

© 2015- 2024 XSharp BV

Note: The MEMBER statement is shown using two syntax diagrams for convenience.
You can declare variables and dimensioned arrays using a single MEMBER statement if
each definition is separated by a comma.

Arguments

Modifiers An optional list of modifiers that specify the visibility or scope
of the entity, such as PUBLIC, STATIC, INTERNAL,
EXPORT and UNSAFE.

<idStructure> A valid identifier name for the structure. A structure is an
entity and shares the same name space as other entities.
This means that it is not possible to have a structure and a
constant, for example, with the same name.

MEMBER Declares one or more structure member variables or
dimensioned arrays. You can specify multiple MEMBER
declarations on separate lines.

<idVarList> A comma-separated list of identifier names for the structure
member variables.

DIM <ArraySpec> The specification for a dimensioned array to use as a
structure member. <ArraySpec> is one of the following:
<idArray>[<nElements>, <nElements>, <nElements>]
<idArray>[<nElements>][<nElements>][<nElements>]
All dimensions except the first are optional.

<idArray> is a valid identifier name for the array to declare.

<nElements> defines the number of elements in a particular
dimension of an array. The number of dimensions is
determined by how many <nElements> arguments you
specify.

<nElements> can be a literal numeric representation or a
simple numeric expression involving only operators, literals,
and DEFINE constants; however, more complicated
expressions (such as function calls) are not allowed.

AS <idType> Specifies the data type of the variable you are declaring
(called strong typing). For DIM arrays, declares the data
type for all array elements. The AS <idType> is required for
all structure members.

Refer to the CLASS entry for a list of valid values for
<idType>. Note that the following data types are not
supported in structures because they are dynamic types
that require garbage collection:
ARRAY
FLOAT
OBJECT
<idClass>

623 XSharp

© 2015- 2024 XSharp BV

STRING
USUAL

IS <idType> Specifies a structure data type in which the memory needed
to hold the structure is allocated on the stack (i.e.,
<idStructure> is the only <idType> allowed with the IS
keyword).

ALIGN 1|2|4|8 Specifies the memory alignment of the structure. The
default alignment is based on the size of the structure
members. See the paragraph about alignment below.
You may want to change this when you need to match a
C/C++ structure that has been defined with a different
alignment (the #pragma pack in a C/C++ header file).
.

Notes

AS vs. IS: Once you have defined a structure, you can use its name to declare variables
(see GLOBAL and LOCAL statements in this guide) designed to hold instances of a
specific structure. When you declare a structure variable, you have the choice of using AS
or IS typing. The difference between these two declaration methods is as follows:
· IS automatically allocates the memory needed to hold the structure on the stack

and deallocates the memory when the declaring entity returns.
· AS requires that you allocate memory using MemAlloc() when you initialize

structure variables. You must also deallocate the memory used by the structure
variable using MemFree() before the declaring entity returns.

Important! IS typing is much simpler than AS typing, and in most cases should satisfy
your requirements for using structures. AS typing is recommended for experienced
systems programmers who can, for various reasons, object to using the stack in this
manner.

Allocating substructures: An interesting property of a structure is that it can contain other
structures as members but, if you type these substructures using AS, you must allocate
and deallocate memory for them. This is true regardless of whether the containing
structure is typed with AS or IS:

VOSTRUCT SysOne
 MEMBER iAlpha AS INT
 MEMBER pszName AS PSZ

VOSTRUCT SysTwo
 MEMBER iBeta AS INT
 MEMBER strucOne AS SysOne

FUNCTION UseStruct()
 LOCAL strucVar AS SysTwo
 strucVar := MemAlloc(_SizeOf(SysTwo))

624X# Documentation

© 2015- 2024 XSharp BV

 strucVar.strucOne := MemAlloc(_SizeOf(SysOne))
 ...
 MemFree(strucVar.strucOne)
 MemFree(strucVar)

To simplify your programming, it makes sense to use IS for declaring substructures.
Then, the memory for the substructure will be allocated and deallocated with the memory
for its containing structure:

VOSTRUCT SysTwo
 MEMBER iBeta AS INT
 MEMBER strucOne IS SysOne

FUNCTION UseStruct()
 LOCAL strucVar AS SysTwo
 strucVar := MemAlloc(_SizeOf(SysTwo))
 ...
 MemFree(strucVar)

Accessing structure members: Structure variables are complex, the components being
members that you declare within the structure. To access a structure member, use the
dot operator (.) as follows:

<idStructVar>.<idMember>

Where <idStructVar> is a variable name or dimensioned array element that you have
previously declared using a structure name, and <idMember> is a variable name or
dimensioned array element declared within the VOSTRUCT definition as a MEMBER.

Examples

This example illustrates IS structure typing. No allocation is necessary but you must pass
the structure by reference to calls.

VOSTRUCT SysOne // Define SysOne data structure
 MEMBER iAlpha AS INT
 MEMBER pszName AS PSZ

FUNCTION Tester(strucSysOne AS SysOne) AS INT

625 XSharp

© 2015- 2024 XSharp BV

RETURN strucSysOne.iAlpha

FUNCTION UseStruct()
 LOCAL strucVar IS SysOne
 strucVar.iAlpha := 100
 ? Tester(@strucVar)
 ...

This example illustrates AS structure typing. This requires memory allocation and
deallocation:

VOSTRUCT SysOne // Define SysOne data structure
 MEMBER iAlpha AS INT
 MEMBER pszName AS PSZ

FUNCTION Tester(strucSysOne AS SysOne) AS INT
RETURN strucSysOne.iAlpha

FUNCTION UseStruct()
 LOCAL strucVar AS SysOne
 strucVar := MemAlloc(_SizeOf(SysOne))
 strucVar.iAlpha := 100
 ? Tester(strucVar)
 ...
 MemFree(strucVar)

With MEMBER, you can list several groups of variable and array names separated by
commas and followed by an AS | IS <idType> clause to indicate that all names listed are
to be typed as indicated. In this example, the variable x and the dimensioned array z are
typed as INT, while the variables ptrX and ptrY are typed as PTR.

VOSTRUCT SysOne // Define SysOne data structure
 MEMBER x, DIM z[100] AS INT, ptrX, ptrY AS PTR

Default VoStruct Alignment

You can choose to specify an alignment clause in the structure definition or let XSharp
determine the best alignment for you.
The default alignment uses the following mechanism:
· Each member of a size <= 8 gets a memory address inside the structure that is a

multiple of its size. So WORD and SHORT members get aligned on EVEN boundaries,
DWORD, LONG, PTR, PSZ members get aligned to 4-byte boundaries and REAL8

626X# Documentation

© 2015- 2024 XSharp BV

members get aligned to 8- byte boundaries. Byte members are not aligned, they can
appear everywhere in the structure.

· The total size of the structure is aligned to the size of the largest member. This is done
to make sure that a dim array of structures (multiple structures adjacent in memory)
also align properly

· When a structure contains an sub-structure (an IS declaration) the alignment of the
outer structure uses the information from the inner structure.

With manual (explicit) alignment each element of the structure is aligned to a memory
address that is a multiple of the alignment specified.

Some examples of automatic alignment

VOSTRUCT test1 // Offset
 MEMBER W AS WORD // 0
 MEMBER dw AS DWORD // 4
 MEMBER b AS BYTE // 8
 // Total size of structure = 12 bytes (largest element = 4, so
padded to 12)
 // Memory layout of structure
 // 0123|4567|8901
 // WW..|DWDW|B...
 //
 // WW = Word
 // DWDW = Dword
 // B = Byte
 // . = Padding

VOSTRUCT test1 // Offset
 MEMBER W AS WORD // 0
 MEMBER r8 AS REAL8 // 8
 MEMBER b AS BYTE // 16
 // Total size of structure = 24 bytes (largest element = 8, so
padded to 24)
 // Memory layout of structure
 // 01234567|89012345|67890123
 // WW......|R8R8R8R8|B.......

Explicit (manual) Structure Alignment

In some situations you need to match a structure declaration from a C/C++ header file
that has explicit alignment. Then you need to add the ALIGN clause to your structure
declaration.
This forces the compiler to align the structure elements to a multiple of the specified size.
An alignment of 1 tells the compiler NOT to use padding but to align all elements of a
structure next to eachother. This is the most compact, but may be slower.

627 XSharp

© 2015- 2024 XSharp BV

Some examples of explicit alignment

VOSTRUCT test1 ALIGN 1 // Offset
 MEMBER W AS WORD // 0
 MEMBER r8 AS DWORD // 2
 MEMBER b AS BYTE // 6
 // Total size of structure = 7 bytes (multiple of 1)
 // Memory layout of structure
 // 01|2345|6
 // WW|DWDW|B
 //
 // WW = Word
 // DWDW = Dword
 // B = Byte
 // . = Padding

VOSTRUCT test1 ALIGN 2 // Offset
 MEMBER W AS WORD // 0
 MEMBER dw AS DWORD // 2
 MEMBER b AS BYTE // 6
 // Total size of structure = 8 bytes (multiple of 2)
 // Memory layout of structure
 // 01|23|45|67
 // WW|DW|DW|B.
VOSTRUCT test1 ALIGN 4 // Offset
 MEMBER W AS WORD // 0
 MEMBER r8 AS DWORD // 4
 MEMBER b AS BYTE // 8
 // Total size of structure = 12 bytes (multiple of 4)
 // Memory layout of structure
 // 0123|4567|8901
 // WW..|DWDW|B...

VOSTRUCT test1 ALIGN 8 // Offset
 MEMBER W AS WORD // 0
 MEMBER r8 AS DWORD // 8
 MEMBER b AS BYTE // 16
 // Total size of structure = 24 bytes (multiple of 8)
 // Memory layout of structure
 // 01234567|89012345|67890123
 // WW......|DWDW....|B.......

See Also

GLOBAL, LOCAL, MemAlloc(), MemFree(),, UNION

628X# Documentation

© 2015- 2024 XSharp BV

1.8.4.8 Environment

SET ANSI
SET CENTURY
SET DATE
SET DATE FORMAT
SET DECIMALS
SET DEFAULT
SET DIGITFIXED
SET DIGITS
SET DRIVER
SET EPOCH
SET EXCLUSIVE
SET FIXED
SET PATH

1.8.4.8.1 SET ANSI Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Change the setting that determines whether database files are created using ANSI or
OEM format and whether certain text file operations convert between the two character
sets.

Syntax

SET ANSI ON | OFF | (<lToggle>)

Arguments

ON, OFF, lToggle A logical expression which must appear in parentheses.
True is equivalent to ON, False to OFF

Description

SET ANSI is functionally equivalent to SetAnsi().

Assembly

XSharp.RT.DLL

See Also

SetAnsi()

629 XSharp

© 2015- 2024 XSharp BV

1.8.4.8.2 SET CENTURY Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Change the setting that determines whether to include or omit century digits in the date
format.

Syntax

SET CENTURY ON | OFF | (<lToggle>)

Arguments

ON, OFF, lToggle A logical expression which must appear in parentheses.
True is equivalent to ON, False to OFF

Description

SET CENTURY is functionally equivalent to SetCentury().

Assembly

XSharp.RT.DLL

See Also

CToD(), DToC(), DToS(), SetCentury(), SetDateCountry(), SetDateFormat(), SetEpoch(),
 Today()

1.8.4.8.3 SET DATE Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Change the setting that determines the XSharp date format by selecting from a list of
constants with corresponding date formats.

630X# Documentation

© 2015- 2024 XSharp BV

Syntax

SET DATE [TO] <kCountrySetting>

Description

SET DATE is functionally equivalent to SetDateCountry().

Examples

This example illustrates various system-defined country settings:

SET DATE German
? Today() // Result: 15.10.19
SET DATE Ansi
? Today() // Result: 19.10.15

Assembly

XSharp.RT.DLL

See Also

CToD(), DToC(), DToS(), SetCentury(), SetDateCountry(), SetDateFormat(), SetEpoch(),
 Today()

1.8.4.8.4 SET DATE FORMAT Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Change the setting that determines the XSharp date format.

Syntax

SET DATE FORMAT [TO] <cDateFormat>

631 XSharp

© 2015- 2024 XSharp BV

Description

SET DATE FORMAT is functionally equivalent to SetDateFormat().

Examples

In this example the FORMAT clause directly specifies the date format:

SET DATE FORMAT "yyyy:mm:dd"
SetCentury(TRUE)
? Today() // Result: 2019:10:15

Assembly

XSharp.RT.DLL

See Also

CToD(), DToC(), DToS(), SetCentury(), SetDateCountry(), SetDateFormat(), SetEpoch(),
 Today(),

1.8.4.8.5 SET DECIMALS Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Change the setting that determines the number of decimal places used to display
numbers.

Syntax

SET DECIMALS TO [<nDecimals>]

Arguments

nDecimals Specifies the minimum number of decimal places to display.
The default is two decimal places. The maximum number of
decimal places is 18; the minimum is zero

Description

SET DECIMALS TO with no argument is equivalent to SET DECIMALS TO 0. SET
DECIMALS is functionally equivalent to SetDecimal().

632X# Documentation

© 2015- 2024 XSharp BV

Assembly

XSharp.RT.DLL

See Also

SetDecimal(), SetDecimalSep(), SetFixed(),

1.8.4.8.6 SET DEFAULT Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Change the setting that determines the XSharp default drive and directory.

Syntax

SET DEFAULT TO [<xcPathspec>]

Description

SET DEFAULT is functionally equivalent to SetDefault().

Assembly

XSharp.Core.DLL

See Also

CurDir(), GetDefault(), GetCurPath, SetDefault(), SetPath()

1.8.4.8.7 SET DIGITFIXED Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Change the setting that fixes the number of digits used to display numeric output.

633 XSharp

© 2015- 2024 XSharp BV

Syntax

SET DIGITFIXED ON | OFF | (<lToggle>)

Arguments

ON
OFF
lToggle A logical expression which must appear in parentheses.

True is equivalent to ON, False to OFF

Description

SET DIGITFIXED is functionally equivalent to SetDigitFixed().

Assembly

XSharp.RT.DLL

See Also

SetDigitFixed()

1.8.4.8.8 SET DIGITS Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Change the setting that determines the number of digits that will be shown to the left of the
decimal point when a number is displayed.

Syntax

SET DIGITS TO [<nDigits>]

Description

SET DIGITS is functionally equivalent to SetDigit().

Assembly

XSharp.RT.DLL

634X# Documentation

© 2015- 2024 XSharp BV

See Also

SetDigit()

1.8.4.8.9 SET DRIVER Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Change the default RDD for the application.

Syntax

SET DRIVER TO <idDriverName>

Description

SET DRIVER is functionally equivalent to DBSetDriver().

Assembly

XSharp.RT.DLL

See Also

DbSetDriver()

1.8.4.8.10 SET EPOCH Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Change the setting that determines how dates without century digits are interpreted.

635 XSharp

© 2015- 2024 XSharp BV

Syntax

SET EPOCH TO <nYear>

Description

SET EPOCH is functionally equivalent to SetEpoch().

Assembly

XSharp.RT.DLL

See Also

CToD(), DToC(), DToS(), SetCentury(), SetDateCountry(), SetDateFormat(), SetEpoch(),
 Today()

1.8.4.8.11 SET EXACT Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Toggles and exact match for character string comparisons.

Syntax

SET EXACT ON | OFF | (<lToggle>)

Arguments

ON, OFF, lToggle A logical expression which must appear in parentheses.
True is equivalent to ON, False to OFF

Description

SET EXACT is functionally equivalent to SetExact().

Assembly

XSharp.RT.DLL

636X# Documentation

© 2015- 2024 XSharp BV

See Also

SetExact()

1.8.4.8.12 SET FIXED Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Change the setting that fixes the number of decimal digits used to display numbers.

Syntax

SET FIXED ON | OFF | (<lToggle>)

Arguments

ON, OFF, lToggle A logical expression which must appear in parentheses.
True is equivalent to ON, False to OFF

Description

SET FIXED is functionally equivalent to SetFixed().

Assembly

XSharp.RT.DLL

See Also

Exp(), Log(), SetDecimal), SetFixed(), SQrt(), Val()

1.8.4.8.13 SET PATH Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Change the setting that determines the XSharp search path for opening files.

637 XSharp

© 2015- 2024 XSharp BV

Syntax

SET PATH TO [<xcPathSpecList>]

Description

SET PATH is functionally equivalent to SetPath() except that semicolons are not allowed
as separators in SET PATH's <xcPathSpecList>.

Assembly

XSharp.Core.DLL

See Also

CurDir(), GetCurPath, SetDefault(), SetPath()

1.8.4.9 File

COPY FILE
DELETE FILE
DIR
ERASE
RENAME
SET DEFAULT
SET PATH

1.8.4.9.1 COPY FILE Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Copy a file to a new file or to a device.

Syntax

COPY FILE <xcSourceFile> TO <xcTargetFile> | <xcDevice>

638X# Documentation

© 2015- 2024 XSharp BV

Arguments

<xcSourceFile> The name of the source file to copy, including an optional
drive, directory, and extension.
If <xcSourceFile> does not exist, a runtime error is raised. If
it exists, this command attempts to open the file in shared
mode and, if successful, it proceeds. If access is denied
because, for example, another process has exclusive use of
the file, NetErr() is set to TRUE.

TO <xcTargetFile> The name of the target file, including an optional drive,
directory, and extension.
If <xcTargetFile> does not exist, it is created. If it exists, this
command attempts to open the file in exclusive mode and, if
successful, the file is overwritten without warning or error. If
access is denied because, for example, another process is
using the file, NetErr() is set to TRUE.
See SetDefault() and SetPath() for file searching and
creation rules. This command does not supply a default
extension for either file name.

TO <xcDevice> The name of the target device specified without a trailing
colon. When you specify one of the following device names:
 PRN, LPT1, LPT2, LPT3, COM1, or COM2, COPY FILE
searches the Windows section of WIN.INI for a Device entry
to use for the printing device. If there is no Device entry, it
looks for a Devices entry and presents the user with a list
box of devices from which to choose.

Examples

This example copies a file to a new file, then tests for the existence of the new file:

COPY FILE test.prg TO real.prg
? File("real.prg") // Result: TRUE

The next example prints the contents of a file by copying it to the default device:

COPY FILE real.prg TO PRN

Assembly

XSharp.Core.DLL

639 XSharp

© 2015- 2024 XSharp BV

See Also

COPY TO, FCopy(),DELETE FILE, RENAME, SetDefault(), SetPath()

1.8.4.9.2 DELETE FILE Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Remove a file from disk.

Syntax

DELETE FILE | ERASE <xcSourceFile>

Arguments

<xcSourceFile> The name of the file to delete, including an optional drive,
directory, and extension. SetDefault() and SetPath() do not
affect this command. It assumes the current Windows
drive and directory if none is specified. No default extension
is supplied.

Warning! Files must be closed before deleting them.

Examples

This example removes a specified file from disk then tests to see if the file was removed:

? File("temp.dbf") // Result: TRUE
DELETE FILE temp.dbf
? File("temp.dbf") // Result: FALSE

Assembly

XSharp.Core.DLL

640X# Documentation

© 2015- 2024 XSharp BV

See Also

CurDir(), FErase(), File(), USE, SetDefault(), SetPath()

1.8.4.9.3 DIR Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Display a listing of files.

Syntax

DIR [<xcFileSpec>]

Arguments

<xcFileSpec> The file specification for the directory search. Besides a file
name, this specification may also include an optional drive,
directory, and extension. The file name and extension may
include the standard wildcard characters (* and ?). If you do
not specify a drive and directory, this function respects
SetDefault().

If the argument is omitted, the default file specification is
*.DBF.

If <xcFileSpec> is not specified, the listing includes the file
name, date of last update, and number of records.
Otherwise, it includes the file name, extension, number of
bytes, and date of last update.

Notes

To save the directory listing in an array, use Directory() instead of Dir().

Examples

This example displays all files, all database files, and all text files in the current directory:

641 XSharp

© 2015- 2024 XSharp BV

cFilespec := "*.*"
DIR (cFilespec) // Display all files
DIR // Display all .dbf files
DIR *.txt // Display all text files

Assembly

XSharp.RT.DLL

See Also

ADir(), Directory(), SetDefault()

1.8.4.9.4 ERASE Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Remove a file from disk.

Syntax

ERASE | DELETE FILE <xcSourceFile>

Description

ERASE is the same as DELETE FILE. See DELETE FILE for a complete explanation of
this command.

Assembly

XSharp.Core.DLL

See Also

DELETE FILE, FErase()

642X# Documentation

© 2015- 2024 XSharp BV

1.8.4.9.5 RENAME Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Change the name of a file to a new name.

Syntax

RENAME <xcSourceFile> TO <xcTargetFile>

Arguments

<xcSourceFile> The name of the source file to rename, including an optional
drive, directory, and extension. If <xcSourceFile> does not
exist, a runtime error is raised.

TO <xcTargetFile> The name of the new file, including an optional drive,
directory, and extension. If <xcTargetFile> exists or is open,
RENAME does nothing.

SetDefault() and SetPath() do not affect this command. It
assumes the current Windows drive and directory if none is
specified. No default extensions are supplied.

Description

If the target directory is different from the source directory, the file moves to the new
directory.

Warning! Files must be closed before renaming. Attempting to rename an open file will
produce unpredictable results. When a database file is renamed, remember that any
associated memo file must also be renamed. Failure to do so can compromise the
integrity of your application.

Examples

This example renames a file, checking for the existence of the target file before beginning
the RENAME operation:

xcOldFile := "oldfile.txt"
xcNewFile := "newfile.txt"

643 XSharp

© 2015- 2024 XSharp BV

IF !File(xcNewFile)
RENAME (xcOldFile) TO (xcNewFile)

ELSE
? "File already exists"

ENDIF

Assembly

XSharp.RT.DLL

See Also

COPY FILE, CurDir(), DELETE FILE, File(), FErase(), FRename(), RUN, SetDefault(),
SetPath()

1.8.4.9.6 SET DEFAULT Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Change the setting that determines the XSharp default drive and directory.

Syntax

SET DEFAULT TO [<xcPathspec>]

Description

SET DEFAULT is functionally equivalent to SetDefault().

Assembly

XSharp.Core.DLL

See Also

CurDir(), GetDefault(), GetCurPath, SetDefault(), SetPath()

644X# Documentation

© 2015- 2024 XSharp BV

1.8.4.9.7 SET PATH Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Change the setting that determines the XSharp search path for opening files.

Syntax

SET PATH TO [<xcPathSpecList>]

Description

SET PATH is functionally equivalent to SetPath() except that semicolons are not allowed
as separators in SET PATH's <xcPathSpecList>.

Assembly

XSharp.Core.DLL

See Also

CurDir(), GetCurPath, SetDefault(), SetPath()

1.8.4.10 Index/Order

CLOSE
DELETE TAG
FIND
INDEX
REINDEX
SEEK
SET DESCENDING
SET INDEX
SET OPTIMIZE
SET ORDER
SET SCOPE
SET SCOPEBOTTOM
SET SCOPETOP
SET SOFTSEEK
SET UNIQUE

645 XSharp

© 2015- 2024 XSharp BV

1.8.4.10.1 DELETE TAG Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Delete one or more orders from open index files.

Syntax

DELETE TAG <xcOrder> [IN <xcIndexFile>] [, <xcOrder> [IN
<xcIndexFile>]...]

Arguments

<xcOrder> The name of the order to be removed. If <xcOrder> is a
NULL_STRING or spaces, it is ignored. If <xcOrder>
cannot be found, a runtime error is raised.

IN <xcIndexFile> The name of an open index file, including an optional drive
and directory (no extension should be specified). Use this
argument to remove ambiguity when there are two or more
orders with the same name in different index files.
If <xcIndexFile> is not open by the current process in the
current work area, a runtime error is raised.

Description

DELETE TAG requires that the current database be open in exclusive mode. If this
condition is not met when DELETE TAG is invoked, a runtime error is raised.

If you specify an index file name, DELETE TAG deletes the indicated order from that file.
Otherwise, the command searches all index files open in the current work area and
deletes the first occurrence of <xcOrder> that it finds.
If the controlling order is deleted, the database reverts to its natural order and DbSetFilter()
scoping.

Note: The RDD determines the order capacity of an index file, and DELETE TAG is
supported only by RDDs with multiple-order capabilities. For single-order index files, you
must delete the entire file.

Examples

This example illustrates how to delete selected orders from an index file:

646X# Documentation

© 2015- 2024 XSharp BV

USE customer VIA "DBFMDX" NEW
Customer->DBSetIndex("customer")

// Delete the Cust01 and Cust02 orders from the
// Customer index file
DELETE TAG Cust01 IN customer, Cust02 IN customer
// or
// Customer->DBDeleteOrder("Cust01", "customer")
// Customer->DBDeleteOrder("Cust02", "customer")

Assembly

XSharp.RT.DLL

See Also

DBCreateIndex(), DbCreateOrder(), DbDeleteOrder(), INDEX, SetDefault(), SetPath()

1.8.4.10.2 FIND Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Search an order for the first key matching the specified string, position the record pointer
to the corresponding record, and set the Found() flag.

Note: FIND is a compatibility command and is no longer recommended. It is superseded
by SEEK. See SEEK for more information.

Syntax

FIND <xcKeyValue>

Arguments

<xcKeyValue> Part or all of the order key of a record to search for. When
an expression is specified instead of a literal string, FIND is
equivalent to SEEK.

647 XSharp

© 2015- 2024 XSharp BV

Description

If SetSoftSeek() is FALSE and FIND does not find a record, the record pointer is
positioned to LastRec() + 1, EOF() returns TRUE, and Found() returns FALSE.

If SetSoftSeek() is TRUE and FIND does not find a record, the record pointer is positioned
to the record with the next greater key value, and Found() returns FALSE. In this case,
EOF() returns TRUE only if there are no keys in the index greater than the search
argument.

If the record is found, Found() is set to TRUE and the record pointer is positioned on the
found record.

Examples

These examples show simple FIND results:

USE sales INDEX branch NEW
FIND ("500")
? Found(), EOF(), RECNO() // Result: FALSE TRUE 85
FIND 200
? Found(), EOF(), RECNO() // Result: TRUE FALSE 5
FIND "100"
? Found(), EOF(), RECNO() // Result: TRUE FALSE 1

Assembly

XSharp.RT.DLL

See Also

EoF(), Found(), RecNo(), SEEK, SET INDEX, SET ORDER, SetSoftSeek()

1.8.4.10.3 INDEX Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Create an index file and add an order to it.

648X# Documentation

© 2015- 2024 XSharp BV

Syntax

INDEX ON <uKeyValue> [TAG <xcOrder>] [TO <xcIndexFile>]
[<Scope>] [WHILE <lCondition>] [FOR <lCondition>]
[EVAL <cbEval> [EVERY <nInterval>]
[UNIQUE] [ASCENDING | DESCENDING]
[USECURRENT] [ADDITIVE] [CUSTOM] [NOOPTIMIZE]

Note: Although both the TAG and the TO clauses are optional, you must specify at least
one of them.

Arguments

<uKeyValue> The order key expression. The data type of the key
expression and all other limitations, including the length of
the key and the key expression, are determined by the RDD.

TAG <xcOrder> The name of the order to be created. For single-order index
files, the file name without an extension or path, is the
default order name. For multiple-order index files, the order
name is required.

TO <xcIndexFile> The name of the target index file, including an optional drive,
directory, and extension. See SetDefault() and SetPath() for
file searching and creation rules. The default extension is
determined by the RDD and can be obtained using
DBOrderInfo(DBOI_INDEXEXT).

In RDDs that support production indexes , the production
index file is assumed if <xcIndexFile> is not specified.

If <xcIndexFile> does not exist, it is created.

If <xcIndexFile> exists, the INDEX command must first
obtain exclusive use of the file. If the attempt is
unsuccessful because, for example, the file is open by
another process, NetErr() is set to TRUE.

If the attempt is successful and the RDD specifies that
index files can only contain a single order, the current
contents of the file is erased before the new order is added
to it. If the RDD specifies that index files can contain
multiple orders, <xcOrder> is added to <xcIndexFile> if it
does not already exist; otherwise it is replaced.

<Scope> The portion of the current database file to process. The
default scope is all records. INDEX ignores the

649 XSharp

© 2015- 2024 XSharp BV

DbSetFilter() and SetDeleted() settings, as well as any filter
imposed by the current controlling order.

The scope is not stored in the index file and is not used for
reindexing or update purposes.

WHILE <lCondition> A condition that each record within the scope must meet,
starting with the current record. As soon as the while
condition fails, the process terminates. If no <Scope> is
specified, having a while condition changes the default
scope to the rest of the records in the file.

The while condition is not stored in the index file and is not
used for reindexing or update purposes.

FOR <lCondition> A condition that each record within the scope must meet in
order to be processed. If a record does not meet the
specified condition, it is ignored and the next record is
processed. Duplicate key values are not added to the index
file when a for condition is used.

Unlike the while condition and the scope, the for condition is
stored as part of the index file and is used when updating or
rebuilding the order with DbReindex() or REINDEX. Any
limitations on the for condition are determined by the RDD.

Note: If no <Scope>, while condition, or for condition is
specified, the index uses the condition specified by
DBSetOrderCondition(), if any.

EVAL <cbEval> A code block that is evaluated at intervals specified by
EVERY <nInterval>. The default interval is 1. This is useful
in producing a status bar or odometer that monitors the
ordering progress. The return value of <cbEval> must be a
logical value. If <cbEval> returns FALSE, indexing halts.

EVERY <nInterval> A numeric expression that determines the number of times
<cbEval> is evaluated. This option offers a performance
enhancement by evaluating the condition at intervals instead
of for every record processed. The EVERY keyword is
ignored if you specify no EVAL clause.

UNIQUE Creates the order with uniqueness as an attribute, which
means that only those records with unique key values will be
included in the order. If UNIQUE is not specified,
SetUnique() is used to determine the order's uniqueness
attribute (refer to SetUnique() for more information on how
unique orders are maintained).
Note that keys from deleted records are also included in the
index, and may hide keys from non-deleted records.

650X# Documentation

© 2015- 2024 XSharp BV

ASCENDING Specifies that the keys be sorted in increasing order. If
neither ASCENDING nor DESCENDING is specified,
ASCENDING is assumed.

DESCENDING Specifies that the keys be sorted in decreasing order. Using
this keyword is the same as specifying the Descend()
function within <uKeyValue>, but without the performance
penalty during order updates. If you create a DESCENDING
index, you will not need to use the Descend() function during
a SEEK.

Whether an order is ascending or descending is an attribute
that is stored in the index file and used for reindexing and
update purposes.

USECURRENT Specifies that only records in the controlling order — and
within the current range as specified by
OrdSetScope() — will be included in this order. This is
useful when you have already created a conditional order
and want to reorder the records which meet that condition,
and/or to further restrict the records meeting a condition. If
not specified, all records in the database file are included in
the order.

ADDITIVE Specifies that any open orders should remain open. If not
specified, all open orders are closed before creating the new
one. Note, however, that the production index file is never
closed.

CUSTOM For RDDs that support them, CUSTOM specifies that a
custom built order will be created. A custom built order is
initially empty, giving you complete control over order
maintenance. The system does not automatically add and
delete keys from a custom built order. Instead, you explicitly
add and delete keys using OrdKeyAdd() and OrdKeyDel().
This capability is excellent for generating pick lists of
specific records and other custom applications.

NOOPTIMIZE Specifies that the FOR condition will be optimized. If
NOOPTIMIZE is not specified, the FOR condition will be
optimized if the RDD supports optimization.

Description

After it is created (or replaced), the new order is added to the order list for the work area.
Other orders already associated with the work area, including the controlling order, are
unaffected.
If no order list exists for the work area, the type of RDD determines how the controlling
order is set. For RDDs that support only single-order index files (such as DBFNTX), the
controlling order is set to the order in the specified index file. For RDDs that support multi-
order index files (such as DBFMDX), the controlling order is normally set to the first order
in the index file.

651 XSharp

© 2015- 2024 XSharp BV

Notes

RDD support: Not all RDDs support all aspects of the INDEX command.

Examples

The following example creates a single-order index based on the Acct field:

USE customer NEW
INDEX ON Customer->Acct TO CuAcct

This example creates a conditional order based on a for condition. This index will contain
only records whose TransDate is greater than or equal to January 1, 1999:

USE invoice NEW
INDEX ON Invoice->TransDate TO InDate ;
 FOR Invoice->TransDate >= CTOD("01/01/2020")

The next example creates an order in a multiple-order index file:

USE customer NEW VIA "DBFMDX"
INDEX ON Customer->Acct TAG CuAcct TO customer

This example creates an order that calls a routine MyMeter() during its creation:

DEFINE Mtr_Increment := 10

FUNCTION Start()
 USE customer NEW
 INDEX ON Customer->Acct TO CuAcct EVAL ;
 {|| MyMeter() } EVERY Mtr_Increment

FUNCTION MyMeter()
 STATIC nRecsDone := 0

 nRecsDone += Mtr_Increment
 ? (nRecsDone/LastRec()) * 100

 RETURN TRUE

652X# Documentation

© 2015- 2024 XSharp BV

Assembly

XSharp.RT.DLL

See Also

CLOSE, DToS(), DBCreateIndex(), DbCreateOrder() DbOrderInfo(), DbSeek(),
DbSetIndex(), DbSetOrder(), DbSetOrderCondition(), DbReindex(), OrdCondSet(),
OrdKeyAdd() OrdKeyDel(), OrdScope(), REINDEX, SEEK, SET INDEX, SET
ORDER,SetDefault(), SetPath() SORT, Soundex() USE

1.8.4.10.4 REINDEX Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Rebuild all orders in the order list of the current work area.

Syntax

REINDEX [EVAL <lCondition> [EVERY <nRecords>]

Arguments

EVAL <cbEval> A code block that is evaluated at intervals specified by
EVERY <nInterval>. The default interval is 1. This is useful
in producing a status bar or odometer that monitors the
ordering progress. The return value of <cbEval> must be a
logical value. If <cbEval> returns FALSE, indexing halts.

EVERY <nInterval> A numeric expression that determines the number of times
<cbEval> is evaluated. This option offers a performance
enhancement by evaluating the condition at intervals instead
of for every record processed. The EVERY keyword is
ignored if you specify no EVAL clause.

Description

REINDEX is functionally equivalent to DbReindex().

Caution! REINDEX does not recreate the header of the index file when it recreates the
index. Because of this, REINDEX does not help if there is corruption of the file header.

653 XSharp

© 2015- 2024 XSharp BV

To guarantee a valid index, always use INDEX ON in place of REINDEX to rebuild
damaged index files

Examples

The following example reindexes the orders in the current work area:

USE sales INDEX salesman, territory NEW
REINDEX

This example reindexes using a progress indicator:

USE sales INDEX salesman, territory NEW
REINDEX EVAL NtxProgress() EVERY 10

FUNCTION NtxProgress()
LOCAL cComplete := LTRIM(STR((RECNO() / ;

LastRec()) * 100))
@ 23, 00 SAY "Indexing..." + cComplete + "%"

RETURN TRUE

Assembly

XSharp.RT.DLL
a

See Also

DBCreateIndex(), DbCreateOrder(), DbReindex(), INDEX, PACK, SET INDEX, USE

1.8.4.10.5 SEEK Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Search an order for the first key matching the specified expression, position the record
pointer to the corresponding record, and set the Found() flag.

654X# Documentation

© 2015- 2024 XSharp BV

Syntax

SEEK <uKeyValue> [SOFTSEEK] [LAST] [[IN|ALIAS] <workarea>]

Arguments

<uKeyValue> An expression to match with an order key value.

SOFTSEEK If SOFTSEEK is specified (or if SetSoftSeek() is TRUE), the
record pointer is positioned to the record with the next higher
key value, and Found() returns FALSE after an
unsuccessful SEEK. EoF() returns TRUE only if there are
no keys in the order greater than <uKeyValue>.

If SOFTSEEK is not specified and SetSoftSeek() is FALSE,
the record pointer is positioned to LastRec() + 1, EOF()
returns TRUE, and Found() returns FALSE after an
unsuccessful SEEK.

LAST If LAST is specified, SEEK finds the last occurrence of the
specified key value. If LAST is not specified, SEEK finds the
first occurrence.

IN|ALIAS <workarea> Specifies the work area for which the operation must be
performed

Description

If the SEEK is successful, Found() is set to TRUE and the record pointer is positioned to
the matching record.

Examples

The following example searches for "Doe" using the SEEK command:

USE customer NEW
SET INDEX TO customer
SEEK "Doe"

IF Found()
.
. <Statements>
.

ENDIF

655 XSharp

© 2015- 2024 XSharp BV

The following example performs a soft seek for "Doe" using SOFTSEEK clause of the
SEEK command. Note that the SOFTSEEK clause does not have any effect of the
SetSoftSeek() flag:

USE customer NEW
SET INDEX TO customer

? SetSoftSeek() // FALSE
SEEK "Doe" SOFTSEEK
? SetSoftSeek() // Still FALSE

IF !Found()
? Customer->Name // Returns next logical

// name after "Doe"
ENDIF

Assembly

XSharp.RT.DLL

See Also

DbSeek(), DbSetIndex(), DbSetOrder(), SET INDEX, SET ORDER

1.8.4.10.6 SET DESCENDING Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Change the descending flag of the controlling order.

Syntax

SET DESCENDING ON | OFF | (<lToggle>)

Note: The initial default of this setting depends on whether the controlling order was
created with descending as an attribute.

656X# Documentation

© 2015- 2024 XSharp BV

Arguments

ON
OFF
lToggle A logical expression which must appear in parentheses.

True is equivalent to ON, False to OFF

Description

SET DESCENDING is functionally equivalent to OrdDescend().

Assembly

XSharp.RT.DLL

See Also

OrdDescend()

1.8.4.10.7 SET INDEX Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Open one or more index files and add their orders to the order list in the current work area.

Syntax

SET INDEX TO [<xcIndexFileList> [ADDITIVE]]

Arguments

TO <xcIndexFileList> The names of the index files to open, including an optional
drive, directory, and extension for each. See SetDefault()
and SetPath() for file searching and creation rules. The
default extension is determined by the RDD and can be
obtained using DBOrderInfo(DBOI_INDEXEXT).

If a file in the list does not exist, a runtime error is raised. If it
exists, this command attempts to open the file in the same
mode as the corresponding database file. If access is
denied because, for example, another process is using the

657 XSharp

© 2015- 2024 XSharp BV

file and this one is asking for exclusive use, NetErr() is set to
TRUE. Otherwise, the file open is successful, the
command proceeds to the next file in the list.

Concurrency conflicts with index files are rare since they
should be used with only one database file. If a concurrency
problem arises, it will normally be when you attempt to open
the database file.

SET INDEX TO with no file name clears the current order
list.

ADDITIVE Adds the orders from the indicated index files to the current
order list, leaving the controlling order intact. If not specified,
a new order list is constructed from the indicated index files,
replacing the current order list.

Description

If no order list exists for the work area or if SET INDEX is replacing the current order list,
the type of RDD determines whether or not the controlling order is set. For RDDs that
support only single-order index files (such as DBFNTX), the controlling order is set to the
order in the specified index file. For RDDs that support multi-order index files (such as
DBFMDX), you usually need to set the controlling order explicitly (using, for example, SET
ORDER or DbSetOrder() otherwise, the data file may be processed in natural order even
though there is an order list in effect.

After the new index files are opened, the work area is positioned to the first logical record
in the controlling order and all subsequent database operations process the records using
the controlling order.

During database processing, all orders in the order list are updated whenever a key value
is added or changed, respecting any for condition or unique flag in the order. To change
the controlling order without affecting the current order list, use SET ORDER or
DBSetOrder(). To find out information about a particular order or index file, use
DBOrderInfo().

SET INDEX TO when specified with an index file list is functionally equivalent to using
several DBSetIndex() function calls. If no ADDITIVE clause is specified, the command
calls DBClearFilter() first.

Examples

This example opens a database and several associated index files:

USE sales NEW
SET INDEX TO sales, sales1, sales2

The next example opens an index file without closing any that are already open:

658X# Documentation

© 2015- 2024 XSharp BV

SET INDEX TO sales3 ADDITIVE

Assembly

XSharp.RT.DLL

See Also

CLOSE, DBClearIndex(),DbOrderInfo(), DBSetIndex(), DBSetOrder(),INDEX, REINDEX,
SET ORDER, SetDefault(), SetPath() USE

1.8.4.10.8 SET ORDER Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Set the controlling order for the current work area.

Syntax

SET ORDER TO [<nPosition> | TAG <xcOrder> [IN <xcIndexFile>]]

Arguments

<nPosition> | TAG <xcOrder>
The name of the new controlling order or a number
representing its position in the order list. Using the order
name is the preferred method since the position may be
difficult to determine using multiple-order indexes.
Specifying a value of 0 has the special effect of returning the
database file to its natural order. Specifying an invalid value
will raise a runtime error.

Note: The syntax of this command differs from other Xbase
dialects where the TAG keyword is optional.

IN <xcIndexFile> The name of an index file, including an optional drive and
directory (no extension should be specified). Use this
argument to remove ambiguity when there are two or more
orders with the same name in different index files.

659 XSharp

© 2015- 2024 XSharp BV

If <xcIndexFile> is not open by the current process in the
current work area, a runtime error is raised.

SET ORDER TO with no arguments is the same as SET
ORDER TO 0.

Description

The controlling order determines the order in which the database file is processed. No
matter which order is currently controlling the logical order of the database file, all orders
in the order list are properly updated when records are added or updated. This is true
even if you SET ORDER TO 0. Changing the controlling order does not move the record
pointer.

Before using this command, use SET INDEX or DBSetIndex() to add orders from an index
file to the order list.
SET ORDER is functionally equivalent to DBSetOrder().

Examples

The following example illustrates a typical use of SET ORDER to select between several
orders:

USE customer NEW
INDEX ON Lastname TO names
INDEX ON City + State TO region
SET INDEX TO names, region
//
SET ORDER TO TAG "Region"
? DBOrderInfo(DBOI_EXPRESSION)
// Result: City + State

SET ORDER TO 0
? DBOrderInfo(DBOI_EXPRESSION)
// Result: NULL_STRING

SET ORDER TO TAG "Names"
? DBOrderInfo(DBOI_EXPRESSION)
// Result: Lastname

Assembly

XSharp.RT.DLL

See Also

DbOrderInfo(), DbSeek(),DbSetIndex(), DbSetOrder(), INDEX, SEEK, SET INDEX, USE

660X# Documentation

© 2015- 2024 XSharp BV

1.8.4.10.9 SET SCOPE Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Change the top boundary for scoping key values in the controlling order.

Syntax

SET SCOPE TO [<uNewTop> [, <uNewBottom>]]

Arguments

<uNewTop> The top range of key values that will be included in the
controlling order's current scope. <uNewTop> can be an
expression that matches the data type of the key expression
in the controlling order or a code block that returns the
correct data type.

<uNewBottom> The bottom range of key values that will be included in the
controlling order's current scope. <uNewBottom> can be
an expression that matches the data type of the key
expression in the controlling order or a code block that
returns the correct data type.

Note: If <uNewBottom> is not specified, <uNewTop> is
taken for both the top and bottom range values.

Description

SET SCOPE, when used with no arguments, clears the top and bottom scopes; this is
equivalent to OrdScope(0, NIL) followed by OrdScope(1, NIL). If <uNewTop> is specified
alone, SET SCOPE sets the top and bottom scope to the indicated value (that is,
OrdScope(0, <uNewTop>) followed by OrdScope(1, <uNewTop>). If both <uNewTop>
and <uNewBottom> are specified, SET SCOPE sets the top and bottom scope as
indicated (that is, OrdScope(0, <uNewTop>) followed by OrdScope(1, <uNewBottom>)..

Assembly

XSharp.RT.DLL

661 XSharp

© 2015- 2024 XSharp BV

See Also

OrdScope()

1.8.4.10.10 SET SCOPEBOTTOM Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Change the bottom boundary for scoping key values in the controlling order.

Syntax

SET SCOPEBOTTOM TO [<uNewBottom>]

Description

SET SCOPEBOTTOM, when used with the <uNewBottom> argument, is functionally
equivalent to OrdScope(1, <uNewBottom>). SET SCOPEBOTTOM, when used with no
argument, is functionally equivalent to OrdScope(1, NIL).

Assembly

XSharp.RT.DLL

See Also

OrdScope()

1.8.4.10.11 SET SCOPETOP Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Change the top boundary for scoping key values in the controlling order.

662X# Documentation

© 2015- 2024 XSharp BV

Syntax

SET SCOPETOP TO [<uNewTop>]

Description

SET SCOPETOP, when used with the <uNewTop> argument, is functionally equivalent to
OrdScope(0, <uNewTop>). SET SCOPETOP, when used with no argument, is
functionally equivalent to OrdScope(0, NIL).

Assembly

XSharp.RT.DLL

See Also

OrdScope()

1.8.4.10.12 SET SOFTSEEK Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Change the setting that determines whether a seek action will find a close match when no
exact match is found.

Syntax

SET SOFTSEEK ON | OFF | (<lToggle>)

Arguments

ON
OFF
lToggle A logical expression which must appear in parentheses.

True is equivalent to ON, False to OFF

663 XSharp

© 2015- 2024 XSharp BV

Description

SET SOFTSEEK is functionally equivalent to SetSoftSeek().

Assembly

XSharp.RT.DLL

See Also

DbSeek(),, Found(), SEEK, SET INDEX, SET ORDER, SET RELATION, SetSoftSeek()

1.8.4.10.13 SET UNIQUE Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Change the setting that determines whether to include unique record keys in an order.

Syntax

SET UNIQUE ON | OFF | (<lToggle>)

Arguments

ON
OFF
lToggle A logical expression which must appear in parentheses.

True is equivalent to ON, False to OFF

Description

SET UNIQUE is functionally equivalent to SetUnique().

Assembly

XSharp.RT.DLL

664X# Documentation

© 2015- 2024 XSharp BV

See Also

DBCreateIndex(), INDEX, PACK, REINDEX, SEEK, SetUnique()

1.8.4.11 International

SET COLLATION
SET INTERNATIONAL

1.8.4.11.1 SET COLLATION Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Change the setting that determines the internal collation routine used for string
comparisons.

Syntax

SET COLLATION TO WINDOWS | clipper

Description

SET COLLATION is functionally equivalent to SetCollation(), which you can refer to for
more information and examples.

Assembly

XSharp.RT.DLL

See Also

SET INTERNATIONAL, SetCollation()

1.8.4.11.2 SET INTERNATIONAL Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

665 XSharp

© 2015- 2024 XSharp BV

Purpose

Change the setting that determines the international mode for the application.

Syntax

SET INTERNATIONAL TO WINDOWS | CLIPPER

Description

SET INTERNATIONAL is functionally equivalent to SetInternational(), which you can refer
to for more information and examples.

Assembly

XSharp.RT.DLL

See Also

SET COLLATION, SetInternational()

1.8.4.12 Macros

& Command

1.8.4.12.1 & Command

Enter topic text here.

1.8.4.13 Memory Variable

CLEAR MEMORY
DECLARE
MEMVAR
PARAMETERS
PRIVATE
PUBLIC
RELEASE
RESTORE
SAVE
STORE

666X# Documentation

© 2015- 2024 XSharp BV

1.8.4.13.1 CLEAR MEMORY Command

Note This command is not available in the Core and Vulcan dialects
Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a

function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Delete both public and private memory variables from the memory variable table.

Syntax

CLEAR MEMORY

Description

It operates in contrast to RELEASE ALL which does not actually delete public and private
memory variables, but assigns NIL to those whose scope is the current procedure.
CLEAR MEMORY is the only way to delete all public memory variables from current
memory. Declared variables and constants, however, are unaffected by CLEAR
MEMORY.

Assembly

XSharp.RT.DLL

See Also

MemClear(), RELEASE

1.8.4.13.2 DECLARE / DIMENSION Statement

Note This command is only available in the FOXPRO dialect

Purpose

Create and initialize private variables of the FoxPro array type
Note: and Declare are synonyms

DIMENSION <arrayName> (<nRows> [, <nColumns>]) [, <arrayName>
(<nRows> [, <nColumns>])] // FoxPro dialect only
DIMENSION <arrayName> [<nRows> [, <nColumns>]] [, <arrayName>
[<nRows> [, <nColumns>]]] // FoxPro dialect only
DECLARE <arrayName> (<nRows> [, <nColumns>]) [, <arrayName>
(<nRows> [, <nColumns>])] // FoxPro dialect only

667 XSharp

© 2015- 2024 XSharp BV

DECLARE <arrayName> [<nRows> [, <nColumns>]] [, <arrayName>
[<nRows> [, <nColumns>]]] // FoxPro dialect only

Arguments

arrayName> Variable name of array . The array will have the dimensions
as declared with <nRows> and <nColumns>. The array
may be declared with parentheses as delimiters but also
with square brackets.
<nColumns> is optional
We recommend the use of square brackets.

See Also

PUBLIC, LOCAL

1.8.4.13.3 MEMVAR Statement

Note This command is not available in the Core and Vulcan dialects

Purpose
Declare one or more memory variable names to be used by the current routine.

Syntax

MEMVAR <idMemvarList>

Arguments

<idMemvarList> A list of public and private variable names to declare to the
compiler.

Description

When you use the MEMVAR statement to declare variables, unaliased references to
variables in <idMemvarList> are treated as if they were preceded by the special memory
variable alias
(_MEMVAR->).

Like other variable declaration statements (such as LOCAL and FIELD), you must place
MEMVAR statements before any executable statements (including PRIVATE, PUBLIC,
and PARAMETERS) in the routine you are defining. The MEMVAR statement has no
effect on the macro operator, which always assumes memory variables.

668X# Documentation

© 2015- 2024 XSharp BV

The MEMVAR statement neither creates the variables nor verifies their existence. Its
primary purpose is to ensure correct references to variables that are known to exist at
runtime. Attempting to access variables before they are created will raise a runtime error.

Examples

This example demonstrates the relationship between a private and field variable with the
same name. The private variable is declared with the MEMVAR statement:

FUNCTION Example()
 MEMVAR Amount, Address
 PRIVATE Amount := 100
 USE customer NEW

 ? Amount // Refers to Amount private variable
 ? Customer->Amount // Refers to Amount field variable

See Also

FIELD, LOCAL, PARAMETERS, PRIVATE, PUBLIC, STATIC

1.8.4.13.4 PARAMETERS Statement

Note This command is not available in the Core and Vulcan dialects

Purpose

Create private variables to receive passed values or references.

Syntax

PARAMETERS <idParameterList>
PARAMETERS <Parameter1> [AS <Type> [OF <ClassLibrary>]] [,
<Parameter2> [AS <Type> [OF <ClassLibrary>]]] // FoxPro only

Arguments

<idParameterList> One or more parameter variables separated by commas.
These variables are used to receive arguments that you
pass when you call the routine. The variables will be
dynamic memory variables

<Type> & <ClassLibrary> The compiler recognizes the AS <Type> and the AS

669 XSharp

© 2015- 2024 XSharp BV

<Type> of <Classlibrary> clauses in the FoxPro dialect.

Description

When a PARAMETERS statement executes, all variables in the parameter list are created
as private variables and all public or private variables with the same names are hidden
until the current procedure or function terminates. A PARAMETERS statement is an
executable statement and can, therefore, occur anywhere in a procedure or function.
Parameters can also be declared as local variables if specified as a part of the
PROCEDURE or FUNCTION declaration statement (see the example). Parameters
specified in this way are referred to as formal parameters. Note that you cannot specify
both formal parameters and a PARAMETERS statement within a procedure or function
definition.
Attempting to do this results in a compiler error.
The number of receiving variables does not have to match the number of arguments
passed by the calling routine. If you specify more arguments than parameters, the extra
arguments are ignored. If you specify fewer arguments than parameters, the extra
parameters are created with a NIL value. If you skip an argument, the corresponding
parameter is initialized to NIL.
The PCount() function returns the position of the last argument passed in the list of
arguments. This is different than the number of parameters passed, since it includes
skipped parameters.

Examples

This function receives values passed into private parameters with a PARAMETERS
statement:

FUNCTION MyFunc()
PARAMETERS cOne, cTwo, cThree
? cOne, cTwo, cThree

The next example is similar, but receives values passed into local variables, by declaring
the parameter variables within the FUNCTION declaration:

FUNCTION MyFunc(cOne, cTwo, cThree)
? cOne, cTwo, cThree

See Also

LPARAMETERS, PRIVATE

1.8.4.13.5 PRIVATE statement

Note This command is not available in the Core and Vulcan dialects

Purpose
Create variables and arrays visible within current and invoked routines.

670X# Documentation

© 2015- 2024 XSharp BV

Syntax

PRIVATE <idVar> [:= <uValue>] | <ArraySpec> [, ...]
PRIVATE <idVar> [:= <uValue>] [AS <Type> [OF <ClassLibrary>]] //
FoxPro dialect

Arguments

<idVar> A valid identifier name for the private variable to create.

<uValue> The initial value to assign to the variable. If not specified, the
variable is initialized to NIL.

<ArraySpec> The specification for a dynamic array to create.
<ArraySpec> is one of the following:
<idArray>[<nElements>, <nElements>, <nElements>]
<idArray>[<nElements>][<nElements>][<nElements>]
All dimensions except the first are optional.
<idArray> is a valid identifier name for the array to create.
Array elements are initialized to NIL.
<nElements> defines the number of elements in a particular
dimension of an array. The number of dimensions is
determined by how many <nElements> arguments you
specify.

<Type> & <ClassLibrary> The compiler recognizes the AS <Type> and the AS
<Type> of <Classlibrary> clauses in the FoxPro dialect.

Description

PRIVATE is an executable statement which means you must specify it after any variable
declaration statements (such as FIELD, LOCAL, and MEMVAR) in the routine that you are
defining.

Warning! Any reference to a variable created with this statement will produce a compiler
error unless the Undeclared Variables compiler option is checked.

When you create a private variable or array, existing and visible private and public
variables of the same name are hidden until the current routine terminates or the private
variable is explicitly released.

Attempting to specify a private variable that conflicts with a visible declared variable (for
example, LOCAL, GLOBAL, or DEFINE) of the same name is not recognized by the
compiler as an error because PRIVATE is not a compiler declaration statement. Instead,
the declared variable will hide the public variable at runtime. This means that you will not
be able to access the public variable at all until the declared variable is released.

671 XSharp

© 2015- 2024 XSharp BV

In class methods, instance variables (with the exception of access/assign variables) are
always more visible than private variables of the same name. Use the _MEMVAR-> alias
to access a private variable within a method if there is a name conflict. For access/assign
variables, use the SELF: prefix to override a name conflict with a private variable.

In addition to the PRIVATE statement, you can create private variables by:
· Assigning to a variable that does not exist or is not visible will create a private variable

· Receiving parameters using the PARAMETERS statement

Private variables are dynamically scoped. They exist until the creating routine returns to
its caller or until explicitly released with CLEAR ALL, or CLEAR MEMORY.

Notes

Compatibility: The ALL, LIKE, and EXCEPT clauses of the PRIVATE statement supported
by other Xbase dialects are not supported.

Examples

The following example creates two PRIVATE arrays and three other PRIVATE variables:

PRIVATE aArray1[10], aArray2[20], var1, var2, var3

The next example creates a multi-dimensional private array using each element
addressing convention:

PRIVATE aArray[10][10][10], aArray2[10, 10, 10]

This example uses PRIVATE statements to create and initialize arrays and variables:

PRIVATE aArray := { 1, 2, 3, 4 }, ;
 aArray2 := ArrayNew(12, 24)
PRIVATE cChar := Space(10), cColor := SetColor()

See Also

LOCAL, MEMVAR, PARAMETERS, PUBLIC, DIMENSION, DECLARE

672X# Documentation

© 2015- 2024 XSharp BV

1.8.4.13.6 PUBLIC Statement

Note This command is not available in the Core and Vulcan dialects

Purpose
Creates variables and arrays visible to all routines in an application.

Syntax

PUBLIC <memVarList>
PUBLIC <idVar> [:= <uValue>] | <ArraySpec> [, ...]
PUBLIC <idVar> [:= <uValue>] [AS <Type> [OF <ClassLibrary>]]

 // FoxPro dialect only
PUBLIC ARRAY <arrayName> (<nRows> [, <nColumns>]) [, <arrayName>
(<nRows> [, <nColumns>])] // FoxPro dialect only
PUBLIC ARRAY <arrayName> [<nRows> [, <nColumns>]] [, <arrayName>
[<nRows> [, <nColumns>]]] // FoxPro dialect only

Arguments

<memVarList> One or more variable names separated by commas.
<idVar> A valid identifier name for the public variable to create.

The idVar may be prefixed with an ampersand (such as
PUBLIC &name). In that case the compiler the idVar should
contain a string with the name of the variable that is
declared and initialized.

<uValue> The initial value to assign to the variable. This can be any
valid expression. If <uValue> is not specified, the variable is
initialized to FALSE. There are exceptions:
In the FoxPro dialect the PUBLIC FOX and FOXPRO are
initialized with TRUE.
In the other dialects the PUBLIC CLIPPER is initialized with
TRUE.

<ArraySpec> The specification for a dynamic array to create.
<ArraySpec> is one of the following:
<idArray>[<nElements>, <nElements>, <nElements>]
<idArray>[<nElements>][<nElements>][<nElements>]
All dimensions except the first are optional.
<idArray> is a valid identifier name for the array to create.
Array elements are initialized to NIL.
<nElements> defines the number of elements in a particular
dimension of an array. The number of dimensions is
determined by how many <nElements> arguments you
specify.

<Type> & <ClassLibrary> The compiler recognizes the AS <Type> and the AS
<Type> of <Classlibrary> clauses in the FoxPro dialect.

673 XSharp

© 2015- 2024 XSharp BV

The <Type> and <ClassLibrary> clauses are ignored
because dynamic memory variables are always of type
USUAL

<arrayName> Variable name of array . The array will have the dimensions
as declared with <nRows> and <nColumns>. The array
may be declared with parentheses as delimiters but also
with square brackets.
<nColumns> is optional
We recommend the use of square brackets.

Description

PUBLIC is an executable statement which means you must specify it after any variable
declaration statements (i.e., FIELD, LOCAL, and MEMVAR) in the routine that you are
defining.

Warning! Any reference to a variable created with this statement will produce a compiler
error unless the Undeclared Variables compiler option is checked.

Any declared variables, such as LOCALs, with the same names as existing public or
private variables temporarily hide the public or private variables until the overriding
variables are released or are no longer visible.

An attempt to create a public variable with the same name as an existing and visible
private variable is simply ignored; however the assignment portion of the PUBLIC
statement is not ignored. For example, the following lines of code change the value of the
variable x but do not change its scope from private to public:

PRIVATE x := 1000
...
PUBLIC x := "New value for x"
? x // Result: "New value for x"

The explanation for this behavior is that, internally, the PUBLIC statement and the
assignment are treated as separate statements. Thus, this code would be treated as
follows:

PRIVATE x := 1000
...
PUBLIC x
x := "New value for x"
? x // Result: "New value for x"

The PUBLIC statement is ignored, but the assignment statement is executed, changing
the value of the private variable x.

674X# Documentation

© 2015- 2024 XSharp BV

This behavior has an interesting repercussion when you declare a public array using a
variable name that already exists as private. For example:

PRIVATE x := 1000
...
PUBLIC x[10]
? x[1] // Result: NIL

In this case, the PUBLIC statement is also treated as two separate statements:

PRIVATE x := 1000
...
PUBLIC x
x := ArrayNew(10)
? x[1] // Result: NIL

Again, the PUBLIC statement is ignored, and the assignment changes x from a private
numeric variable to a private reference to a ten element array.

Attempting to specify a public variable that conflicts with a visible declared variable (for
example, LOCAL, GLOBAL, or DEFINE) of the same name is not recognized by the
compiler as an error because PUBLIC is not a compiler declaration statement. Instead,
the declared variable will hide the public variable at runtime. This means that you will not
be able to access the public variable at all until the declared variable is released.

In class methods, instance variables (with the exception of access/assign variables) are
always more visible than public variables of the same name. Use the _MEMVAR-> alias
to access a public variable within a method if there is a name conflict. For access/assign
variables, use the SELF: prefix to override a name conflict with a public variable.
Public variables are dynamically scoped. They exist for the duration of the application or
until explicitly released with CLEAR ALL or CLEAR MEMORY.

Notes

PUBLIC Clipper: To include XSharp extensions in an application and still allow the
application to run under dBASE III PLUS, the special public variable, Clipper, is initialized
to TRUE when created with PUBLIC.

Examples

This example creates two PUBLIC arrays and one PUBLIC variable:

PUBLIC aArray1[10, 10], var2
PUBLIC aArray2[20][10]

675 XSharp

© 2015- 2024 XSharp BV

The following PUBLIC statements create variables and initialize them with values:

PUBLIC cString := Space(10), cColor := SetColor()
PUBLIC aArray := {1, 2, 3}, ;

aArray2 := ArrayNew(12, 24)

See Also

GLOBAL, MEMVAR, PARAMETERS, PRIVATE, DIMENSION, DECLARE

1.8.4.13.7 RELEASE Command

Note This command is not available in the Core and Vulcan dialects
Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a

function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Releases public and private memory variables visible to the current routine by assigning a
NIL value to them.

Syntax

RELEASE <idMemvarList>
RELEASE ALL [LIKE | EXCEPT <Skeleton>]

Arguments

<idMemvarList> A list of private or public variables to release. Specifying a
variable name that does not exist or is not visible raises a
runtime error.

ALL Releases all private variables and leaves public variables
intact.

LIKE | EXCEPT <Skeleton>
Specifies a set of visible private variables to release (LIKE)
or keep (EXCEPT) and leaves public variables intact.
<Skeleton> can include literal characters as well as the
standard wildcard characters, * and ?. If no variables match
the <Skeleton>, nothing happens.

676X# Documentation

© 2015- 2024 XSharp BV

Description

This command does not actually delete the specified variables from memory like CLEAR
ALL or CLEAR MEMORY. Instead, it releases the value of the variables by assigning NIL
to them. For this reason, variables that are hidden do not become visible until termination
of the routine initiating the RELEASE operation.

Note: Declared variables and constants are not affected by the RELEASE command.

Assembly

XSharp.RT.DLL

See Also

CLEAR MEMORY, LOCAL, PRIVATE, PUBLIC, QUIT

1.8.4.13.8 RESTORE Command

Note This command is not available in the Core and Vulcan dialects
Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a

function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Recreate public and private variables previously saved to a file and initialize them with
their former values.

Syntax

RESTORE FROM <xcSourceFile> [ADDITIVE]

Arguments

<xcSourceFile> The name of the memory file (created, for example, with
SAVE), including an optional drive, directory, and extension.
 See SetDefault() and SetPath() for file searching and
creation rules. The default extension is .MEM.

This command attempts to open <xcSourceFile> in shared
mode. If the file does not exist, a runtime error is raised. If
the file is successfully opened, the operation proceeds. If
access is denied because, for example, another process
has exclusive use of the file, NetErr() is set to TRUE.

677 XSharp

© 2015- 2024 XSharp BV

ADDITIVE Causes memory variables loaded from the memory file to
be added to the existing pool of memory variables.

Description

The scope of the variable is not saved with the variable but is instead established when
the variable is restored. Arrays and declared variables cannot be saved or restored.

When memory variables are restored, they are recreated as private variables with the
scope of the current procedure or function unless they exist as public variables and you
specify the ADDITIVE clause . If ADDITIVE is specified, public and private variables with
the same names are overwritten unless hidden with PRIVATE. If ADDITIVE is not
specified, all public and private variables are released before the memory file is loaded.

When restoring variables that were saved in a CLIPPER program, the variable names are
truncated to 10 characters. This is because CLIPPER honors only the first 10 characters
and generates the .MEM file using only these characters. XSharp, however, honors all

characters. For example, in CLIPPER, the two variable names ThisIsALongVariable and
ThisIsALon refer to the same variable; this is not the case in XSharp.

Note: Declared variables are not affected by the RESTORE command. If a variable has
been declared in the current routine, and a variable with the same name is restored, only
the declared variable is visible unless references to the restored variable are prefaced with
the _MEMVAR-> alias.

Examples

This example demonstrates a typical application of SAVE and RESTORE. Here memory
variables containing screens are created using SAVE TO and RESTORE FROM:

// Create and use a pseudo array of screens
SAVE SCREEN TO cScreen1
SAVE ALL LIKE cScreen* TO Screens

<Statements>...

RESTORE FROM Screens ADDITIVE
nNumber = "1"
RESTORE SCREEN FROM ("cScreen" + nNumber)

Assembly

XSharp.RT.DLL

See Also

LOCAL, PRIVATE, PUBLIC, SAVE, SetDefault(), SetPath()

678X# Documentation

© 2015- 2024 XSharp BV

1.8.4.13.9 SAVE Command

Note This command is not available in the Core and Vulcan dialects
Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a

function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Copy public and private memory variables visible within the current routine to a disk file.

Syntax

SAVE TO <xcTargetFile> [ALL [LIKE | EXCEPT <Skeleton>]

Arguments

<xcTargetFile> The name of the file, including an optional drive, directory,
and extension. See SetDefault() and SetPath() for file
searching and creation rules. The default extension is
.MEM.

If <xcTargetFile> does not exist, it is created. If it exists, this
command attempts to open the file in exclusive mode and, if
successful, the file is overwritten without warning or error. If
access is denied because, for example, another process is
using the file, NetErr() is set to TRUE.

ALL Saves all private and public variables.

LIKE | EXCEPT <Skeleton>
Specifies a set of visible public and private variables to save
(LIKE) or exclude (EXCEPT). <Skeleton> can include literal
characters as well as the standard wildcard characters, *
and ?. If no variables match the <Skeleton>, nothing
happens.

Description

The scope of the variable is not saved but is instead established when the variable is
restored. Arrays and declared variables cannot be saved or restored.

Examples

This example saves all visible private and public variables to TEMP.MEM:

679 XSharp

© 2015- 2024 XSharp BV

PRIVATE cOne := "1"
SAVE ALL TO temp

This example saves all visible private and public variables with names beginning with c to
MYVARS.MEM:

SAVE ALL LIKE c* TO myvars

This example saves all visible private and public variables with names that do not begin
with c to MYVARS2.MEM:

SAVE ALL EXCEPT c* TO myvars2

Assembly

XSharp.RT.DLL

See Also

PRIVATE, PUBLIC, RESTORE, SetDefault(), SetPath()

1.8.4.13.10 STORE Command

Note This command is not available in the Core and Vulcan dialects
Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a

function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Assign a value to one or more variables.

Syntax

STORE <uValue> TO <idVarList>

680X# Documentation

© 2015- 2024 XSharp BV

Arguments

<uValue> A value to assign to the specified variables.
TO <idVarList> Defines a list of one or more variables that are assigned the

value <uValue>. If any variable reference in the list is
ambiguous (that is, not declared at compile time or not
explicitly qualified with an alias), it is assumed to be
MEMVAR. If any variable in the list is not visible or does not
exist, a private variable is created using <uValue>.

Description

The STORE command is defined using the assignment operator (:=).

Notes

Assigning a value to an entire array: In XSharp, neither the STORE command nor the
assignment operators can assign a single value to an entire array. Use the AFill() function
for this purpose.

Examples

These statements create and assign values to undeclared private variables:

STORE "string" TO cVar1, cVar2, cVar3
cVar1 := "string2"
cVar2 := _MEMVAR->cVar1

These statements assign multiple variables using both STORE and the inline assignment
operator (:=). The methods produce identical code:

STORE "value" TO cVar1, cVar2, cVar3
cVar1 := cVar2 := cVar3 := "value"

These statements assign values to the same field referenced explicitly with an alias. The
first assignment uses the field alias (_FIELD->), where the second uses the actual alias
name:

USE sales NEW
STORE 1200.98 TO _FIELD->CustBal
STORE 1200.98 TO Sales->CustBal

681 XSharp

© 2015- 2024 XSharp BV

See Also

AFill(), , LOCAL, PRIVATE, PUBLIC, RELEASE, REPLACE, RESTORE, SAVE, STATIC

1.8.4.14 Numeric

SET DECIMALS
SET DIGITFIXED
SET DIGITS
SET FIXED

1.8.4.14.1 SET DECIMALS Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Change the setting that determines the number of decimal places used to display
numbers.

Syntax

SET DECIMALS TO [<nDecimals>]

Arguments

nDecimals Specifies the minimum number of decimal places to display.
The default is two decimal places. The maximum number of
decimal places is 18; the minimum is zero

Description

SET DECIMALS TO with no argument is equivalent to SET DECIMALS TO 0. SET
DECIMALS is functionally equivalent to SetDecimal().

Assembly

XSharp.RT.DLL

See Also

SetDecimal(), SetDecimalSep(), SetFixed(),

682X# Documentation

© 2015- 2024 XSharp BV

1.8.4.14.2 SET DIGITFIXED Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Change the setting that fixes the number of digits used to display numeric output.

Syntax

SET DIGITFIXED ON | OFF | (<lToggle>)

Arguments

ON
OFF
lToggle A logical expression which must appear in parentheses.

True is equivalent to ON, False to OFF

Description

SET DIGITFIXED is functionally equivalent to SetDigitFixed().

Assembly

XSharp.RT.DLL

See Also

SetDigitFixed()

1.8.4.14.3 SET DIGITS Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Change the setting that determines the number of digits that will be shown to the left of the
decimal point when a number is displayed.

Syntax

SET DIGITS TO [<nDigits>]

683 XSharp

© 2015- 2024 XSharp BV

Description

SET DIGITS is functionally equivalent to SetDigit().

Assembly

XSharp.RT.DLL

See Also

SetDigit()

1.8.4.14.4 SET FIXED Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Change the setting that fixes the number of decimal digits used to display numbers.

Syntax

SET FIXED ON | OFF | (<lToggle>)

Arguments

ON, OFF, lToggle A logical expression which must appear in parentheses.
True is equivalent to ON, False to OFF

Description

SET FIXED is functionally equivalent to SetFixed().

Assembly

XSharp.RT.DLL

See Also

Exp(), Log(), SetDecimal), SetFixed(), SQrt(), Val()

684X# Documentation

© 2015- 2024 XSharp BV

1.8.4.15 Program Control

#ifdef
#else
#endif
#ifndef
ASYNC .. AWAIT
BEGIN SEQUENCE
BREAK
CANCEL
DEFAULT
DO
DO CASE
DO WHILE
EXTERNAL
FOR
FOREACH
IF
LOOP
NOP
QUIT
REPEAT UNTIL
RETURN
RUN
SWITCH
TEXT
THROW
TRY CATCH
WITH
YIELD

1.8.4.15.1 #ifdef Statement

Purpose

Build a section of code if a constant exists and is not equal to FALSE or 0.

Syntax

#ifdef <idConstant>
<Statements>...

[#else]
<Statements>...

#endif

Arguments
<idConstant> The name of a constant whose existence is being verified.

685 XSharp

© 2015- 2024 XSharp BV

Description
#ifdef...#endif lets you perform a conditional build by identifying a section of source
code to include if a specified constant exists and is not equal to FALSE or 0. The
#else statement specifies the code to include if the #ifdef condition fails, and the
#endif terminates the conditional build block.
Note: You can use #ifdef with compiler entities other than constants, such as
functions and globals. In these cases, the statement tests for existence only, and
does not look at the value of the entity.

Examples
This code fragment is a general skeleton for a conditional build with #ifdef. Because
the lDemo constant is defined as TRUE, the code between the #ifdef and #endif
statements will be built:

DEFINE lDemo := TRUE
FUNCTION Start()

#IFDEF lDemo
<Demo-specific statements>...

#ENDIF
...

To build the real (non-demo) version of this application, you would change the DEFINE
statement to:

DEFINE lDemo := FALSE

See Also
#ifndef, DEFINE

1.8.4.15.2 #ifndef Statement

Purpose

Build a section of code if a constant is FALSE, 0, or not defined.

Syntax

#ifndef <idConstant>
<Statements>...

686X# Documentation

© 2015- 2024 XSharp BV

[#else]
<Statements>...

#endif

Arguments

<idConstant> The name of a constant whose absence is being verified.

Description

#ifndef...#endif lets you perform a conditional build by identifying a section of source code
to include if a specified constant is defined as FALSE or 0 or is not defined. The #else
statement specifies the code to include if the #ifndef condition fails, and the #endif
terminates the conditional build block.
Note: You can use #ifndef with compiler entities other than constants, such as functions
and globals. In these cases, the statement tests for existence only, and does not look at
the value of the entity.

Examples
This code fragment is a general skeleton for a conditional build with #ifndef. Since the
constant lDebug is set to FALSE, the code between the #ifndef and #else statements will
be built, and the code between the #else and #endif statements will be ignored:

DEFINE lDebug := FALSE

FUNCTION Start()
#IFNDEF lDebug

<Optimized version OF code>...
#ELSE

<Debugging version OF code>...
#ENDIF

Changing the DEFINE statement as follows will build the code between the #else and
#endif statements instead.

DEFINE lDebug := TRUE

See Also

#ifdef, DEFINE

687 XSharp

© 2015- 2024 XSharp BV

1.8.4.15.3 ASYNC .. AWAIT

Purpose

ASYNC await are strictly speaking not statements, but modifiers.

ASYNC is a method modifier used to indicate that a method / function contains
asynchronous code

AWAIT is used before an expression to indicate that an operation may take a while to
process.

The compiler will (behind the scenes) construct a complicated mechanism in which the
body of the method is split into a part before and after the await. When the expression
returns then the code jumps to the point where it has to continue. As such this belongs to
the JUMP statements.

Example

//
// This example shows that you can call an async task and wait for
it to finish
// The result of the async task (in this case the size of the file
that has been downloaded)
// will be come available when the task has finished
// The calling code (The Start()) function will not have to wait
until the async task has
// finished. That is why the line "2....." will be printed before
the results from TestClass.DoTest()
// The sample also shows an event and displays the thread id's.
You can see that the DownloadFileTaskAsync() method
// starts multiple threads to download the web document in
multiple pieces.

USING System
USING System.Threading.Tasks

FUNCTION Start() AS VOID
 ? "1. calling long process"
 TestClass.DoTest()
 ? "2. this should be printed while processing"
 Console.ReadKey()

CLASS TestClass
 STATIC PROTECT oLock AS OBJECT // To make sure we
synchronize the writing to the screen
 STATIC CONSTRUCTOR

688X# Documentation

© 2015- 2024 XSharp BV

 oLock := OBJECT{}

 ASYNC STATIC METHOD DoTest() AS VOID
 LOCAL Size AS INT64
 Size := AWAIT LoooongProcess()
 ? "3. returned from long process"
 ? Size, " Bytes downloaded"

 ASYNC STATIC METHOD LoooongProcess() AS Task<INT64>
 VAR WebClient := System.Net.WebClient{}
 VAR FileName := System.IO.Path.GetTempPath()+"temp.txt"
 webClient:DownloadProgressChanged += OnDownloadProgress
 webClient:Credentials :=
System.Net.CredentialCache.DefaultNetworkCredentials
 AWAIT
webClient:DownloadFileTaskAsync("http://www.xsharp.info/index.php"
, FileName)
 VAR dirInfo :=
System.IO.DirectoryInfo{System.IO.Path.GetTempPath()}
 VAR Files := dirInfo:GetFiles("temp.txt")
 IF Files:Length > 0
 System.IO.File.Delete(FileName)
 RETURN Files[1]:Length
 ENDIF
 RETURN 0

 STATIC METHOD OnDownloadProgress (sender AS OBJECT, e AS
System.Net.DownloadProgressChangedEventArgs) AS VOID
 BEGIN LOCK oLock
 ? String.Format("{0,3} % Size: {1,8:N0} Thread {2}",
100*e:BytesReceived / e:TotalBytesToReceive , e:BytesReceived, ;
 System.Threading.Thread.CurrentThread:ManagedThreadId)
 END LOCK
 RETURN

END CLASS

1.8.4.15.4 BEGIN SEQUENCE Statement

Purpose

Define a sequence of statements for a BREAK.

689 XSharp

© 2015- 2024 XSharp BV

Syntax

BEGIN SEQUENCE
<Statements>...

[BREAK [<uValue>]]
<Statements>...

[RECOVER [USING <idVar>]]
<Statements>...

END [SEQUENCE]

Arguments

BREAK <uValue> Branches execution to the statement immediately following
the nearest RECOVER statement if one is specified, or the
nearest END SEQUENCE statement. <uValue> is the
value returned into the <idVar> specified in the USING
clause of the RECOVER statement.

RECOVER USING <idVar>
A recover point in the SEQUENCE construct where control
branches after a BREAK statement. If this clause is
specified, <idVar> receives the value returned by the
BREAK statement. In general, this is an error object.
<idVar> must be a declared variable and cannot be strongly
typed.

END The end point of the SEQUENCE control structure. If no
RECOVER statement is specified, control branches to the
first statement following the END statement after a BREAK.

Description

BEGIN SEQUENCE...END is a control structure used for exception and runtime error
handling. It delimits a block of statements defining a discrete operation, including invoked
procedures and functions. With the exception of the BREAK statement, the entire
construct must fall within the same entity definition.

When a BREAK is encountered anywhere in a block of statements following the BEGIN
SEQUENCE statement up to the corresponding RECOVER statement, control branches
to the program statement immediately following the RECOVER statement. If a
RECOVER statement is not specified, control branches to the statement following the
END statement, terminating the SEQUENCE. If control reaches a RECOVER statement
without encountering a BREAK, it branches to the statement following the corresponding
END.

The RECOVER statement optionally receives a parameter passed by a BREAK
statement that is specified with a return value. This is usually an error object, generated

690X# Documentation

© 2015- 2024 XSharp BV

and returned by the current error handling block defined by ErrorBlock(). If an error object
is returned, it can be sent messages to query information about the error. With this
information, a runtime error can be handled within the context of the operation rather than
in the current runtime error handler.

You cannot RETURN, LOOP, or EXIT between a BEGIN SEQUENCE and RECOVER
statement

Control structures can be nested to any depth. The only requirement is that each control
structure be properly nested.

Examples

This code fragment demonstrates a SEQUENCE construct in which the BREAK occurs
within the current procedure:

BEGIN SEQUENCE
 <Statements>...
 IF lBreakCond
 BREAK
 ENDIF
RECOVER
 <Recovery Statements>...
END

<Recovery Statements>...

This example demonstrates an error handler returning an error object to the variable
specified in the USING clause of the RECOVER statement:

LOCAL oLocal, bLastHandler
// Save current and set new error handler
bLastHandler := ErrorBlock({|oErr| ;
 MyHandler(oErr, TRUE)})

BEGIN SEQUENCE
 .
 . <Operation that might fail>...
 .
RECOVER USING oLocal

 // Send messages to oLocal & handle the error
 ? "Error: "
 IF oLocal:GenCode != 0
 ?? oLocal:Description

691 XSharp

© 2015- 2024 XSharp BV

 ENDIF
 .
 .
 .
END

// Restore previous error handler
ErrorBlock(bLastHandler)

FUNCTION MyHandler(oError, lLocalHandler)
 // Handle locally returning the error object
 IF lLocalHandler
 BREAK oError
 ENDIF

 <Other statements to handle the error>...

This example re-executes a SEQUENCE statement block by issuing a LOOP from within
the RECOVER statement block:

DO WHILE TRUE
 BEGIN SEQUENCE

 <Operation that may fail>...

 RECOVER
 IF PrintRecover()
 // Repeat the SEQUENCE statement block
 LOOP
 ENDIF
 END
 EXIT // Escape from the operation

ENDDO

See Also

_Break(), CanBreak(), Error Class, ErrorBlock(), RETURN

692X# Documentation

© 2015- 2024 XSharp BV

1.8.4.15.5 BREAK statement

Purpose

The BREAK statement raises a runtime exception.

Syntax

BREAK [expression]

Arguments

expression An optional expression to throw.

Remarks

BREAK throws a runtime exception, causing execution to branch to the nearest
RECOVER, CATCH or FINALLY block in a BEGIN SEQUENCE-RECOVER USING or
TRY construct. If execution is not within a BEGIN SEQUENCE or TRY construct, the
application will terminate.
The specified expression will be evaluated and received by the nearest RECOVER USING
statement, if any, as a value of type USUAL. If the nearest RECOVER statement does not
have a USING clause, the result of expression is discarded.
If expression is not specified, it defaults to NIL.

Example

FUNCTION foo
LOCAL e AS USUAL
BEGIN SEQUENCE
 bar(1)
RECOVER USING e
 ? "An exception has occurred, exception value is:", e
END SEQUENCE

FUNCTION bar(x)
 IF Valtype(x) != STRING
 BREAK "Argument not a string!"
 ENDIF
 ...
RETURN

693 XSharp

© 2015- 2024 XSharp BV

1.8.4.15.6 CANCEL Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Terminate the application, close all open files, and return control to the operating system.

Syntax

CANCEL | QUIT

Description

You can use either command from anywhere in an application. A RETURN executed
from the Start() routine performs the same action.

Notes

Usage: Both commands can be used from anywhere in an application. A RETURN
executed at the highest level procedure or a BREAK, with no pending SEQUENCE, can
also be used to QUIT an application.

Examples

This example uses QUIT in a dialog box:

IF DialogYesNo(10, 10, "Quit application", ;
BG+/B,B/W", 2)

QUIT
ENDIF

Assembly

XSharp.RT.DLL

See Also

BEGIN SEQUENCE, ErrorLevel(), RETURN

694X# Documentation

© 2015- 2024 XSharp BV

1.8.4.15.7 DEFAULT Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Assign a default value to a NIL argument.

Syntax

DEFAULT <idVar> TO <uDefault> [, <idVar> TO <uDefault>...]

Description

DEFAULT is functionally equivalent to Default(), except that DEFAULT lets you assign
multiple default values.

Assembly

XSharp.RT.DLL

1.8.4.15.8 DO CASE Statement

Purpose

Conditionally execute a block of statements.

Syntax

DO CASE
CASE <lCondition>
 <Statements>...
[CASE <lCondition>]
 <Statements>...
[OTHERWISE]
 <Statements>...
END[CASE]

695 XSharp

© 2015- 2024 XSharp BV

Arguments

<lCondition> If this expression evaluates to TRUE, the statements
following it up until the next CASE, OTHERWISE, or
ENDCASE are executed. Afterwards, control branches to
the statement following the next ENDCASE statement.

OTHERWISE If all preceding CASE conditions evaluate to FALSE, the
statements following the OTHERWISE up until the next
ENDCASE are executed. Afterwards, control branches to
the statement following the next ENDCASE statement.

Description

DO CASE works by branching to the statement following the first CASE <lCondition> that
evaluates to TRUE. If all CASE conditions evaluate to FALSE, it branches to the statement
following the OTHERWISE statement (if specified).
Execution proceeds until the next CASE, OTHERWISE, or ENDCASE is encountered,
and control then branches to the first statement following the next ENDCASE statement.
Control structures can be nested to any depth. The only requirement is that each control
structure be properly nested.
Note: DO CASE...ENDCASE is identical to IF...ELSEIF...ENDIF, with neither syntax
having a performance advantage over the other.

Examples

This example uses DO CASE in a menu structure to branch control based on user
selection:

FUNCTION ActonChoice(nChoice as LONG) AS VOID
DO CASE
CASE nChoice = 0
 RETURN
CASE nChoice = 1
 ChoiceOne()
CASE nChoice = 2
 ChoiceTwo()
ENDCASE

See Also

BEGIN SEQUENCE, DO WHILE, FOR, FOREACH IF SWITCH

1.8.4.15.9 DO Statement

Purpose

Call a procedure or function, and optionally pass arguments to the called routine.

696X# Documentation

© 2015- 2024 XSharp BV

Syntax

DO <idProcedure> [WITH <uValueArgList>]

Arguments

<idProcedure> The name of the procedure or function to execute.

WITH <uValueArgList> A comma-separated list of arguments to pass to
<idProcedure>.

Description

DO performs the same action as a function or procedure specified on a line by itself with
the exception that variables other than field variables are passed by reference as the
default.
In order to pass a field variable as an argument, enclose it in parentheses, unless you
declare it with the FIELD statement or specify it with an alias.

Examples

This example executes a procedure with no parameters:

DO AcctsRpt
AcctsRpt() // Preferred method

The next example executes a procedure passing two constants:

DO QtrRpt WITH "2nd", "Sales Division"
// Preferred method
QtrRpt("2nd", "Sales Division")

In this example, a procedure is executed with the first argument passed by value and the
second passed by reference:

nNumber := 12
DO YearRpt WITH nNumber + 12, nNumber
// Preferred method
YearRpt(nNumber + 12, @nNumber)

Here, a procedure is invoked with skipped arguments embedded in the list of arguments:

697 XSharp

© 2015- 2024 XSharp BV

DO DisplayWindow WITH ,,,,"My Window"
// Preferred method
DisplayWindow(,,,,"My Window")

See Also

FIELD, FUNCTION, LOCAL, PARAMETERS, PRIVATE, PROCEDURE, PUBLIC,

RETURN

1.8.4.15.10 DO WHILE Statement

Purpose

Execute a loop while a condition is TRUE.

Syntax

[DO] WHILE <lCondition>
<Statements>...

[EXIT]
<Statements>...

[LOOP]
<Statements>...

END[DO]

Arguments

<lCondition> The logical control expression for the DO WHILE loop.

EXIT Unconditionally branches control from within a FOR,
FOREACH , REPEAT or DO WHILE statement to the
statement immediately following the corresponding ENDDO
or NEXT statement.

LOOP Branches control to the most recently executed FOR,
FOREACH , REPEAT or DO WHILE statement.

Description

When the condition evaluates to TRUE, control passes into the structure and proceeds
until an EXIT, LOOP, or ENDDO is encountered. ENDDO returns control to the DO
WHILE statement and the process repeats itself. If the condition evaluates to FALSE, the
DO WHILE construct terminates and control passes to the statement immediately
following the ENDDO.

Use EXIT to terminate a DO WHILE structure based on a condition other than the DO
WHILE condition. LOOP, by contrast, prevents execution of statements within a DO

698X# Documentation

© 2015- 2024 XSharp BV

WHILE based on an intermediate condition, and returns to the most recent DO WHILE
statement.

Control structures can be nested to any depth. The only requirement is that each control
structure be properly nested.

Examples

This example demonstrates a typical control structure for a simple grouped report:

LOCAL cOldSalesman, nTotalAmount
USE sales INDEX salesman NEW
DO WHILE .NOT. EOF()

cOldSalesman := Sales->Salesman
nTotalAmount := 0
DO WHILE cOldSalesman = Sales->Salesman ;

.AND. (.NOT. EOF())
? Sales->Salesman, Sales->Amount
nTotalAmount := nTotalAmount + Sales->Amount
SKIP

ENDDO
? "Total: ", nTotalAmount, "for", cOldSalesman

ENDDO
CLOSE sales

This code fragment demonstrates how LOOP can be used to provide an intermediate
processing condition:

DO WHILE <lCondition>
<Initial Processing>...
IF <Intermediate Condition>

LOOP
ENDIF
<Continued Processing>...

ENDDO

The next example demonstrates the use of DO WHILE to emulate a "repeat until looping"
construct:

LOCAL lMore := TRUE
DO WHILE lMore

<Statements>...
lMore := <lCondition>

ENDDO

699 XSharp

© 2015- 2024 XSharp BV

Here, a DO WHILE loop moves sequentially through a database file:

DO WHILE .NOT. EOF()
<Statements>...
SKIP

ENDDO

See Also

BEGIN SEQUENCE, DBEval(), DO CASE, FOR, IF, RETURN, EXIT, LOOP

1.8.4.15.11 EXIT Statement

Purpose

Unconditionally branches control from within a FOR, FOREACH , REPEAT or DO WHILE
statement to the statement immediately following the corresponding ENDDO or NEXT
statement.

Syntax

EXIT

Remarks

The EXIT statement is only valid within a DO WHILE, FOR ... NEXT, FOREACH .. NEXT
or REPEAT .. UNTIL construct. An EXIT statement outside of either construct will raise a
compile time error.

See Also
FOR
FOREACH
DO WHILE
REPEAT UNTIL

1.8.4.15.12 EXTERNAL Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

700X# Documentation

© 2015- 2024 XSharp BV

Purpose
Declare a list of routines (procedures or functions) to be linked into the application.

Syntax

EXTERNAL <idRoutineList>

Arguments

<idRoutineList> A comma-separated list of routine names to link. The
names should not include parentheses.

Description

EXTERNAL is a declaration statement that specifies one or more routines to be linked into
the application. It should be placed after the variable declaration statements (such as
LOCAL)

During the compilation of X# source code, all explicit references to routines are
automatically linked. In some instances however, there can be no references made to a
routine until runtime. EXTERNAL resolves this by forcing the named routines to be linked
even if they are not explicitly referenced in the source code. This is important in several
instances:
· Routines referenced in macro expressions or variables

· Functions used in index keys and not otherwise referenced in the source code

Examples

This example forces the code for HardCR(), Tone(), MemoTran(), and StrTran() to be
linked into the application, regardless of whether these functions are referenced explicitly
in the source code:

EXTERNAL HardCR, Tone, MemoTran, StrTran

1.8.4.15.13 FOR Statement

Purpose

Execute a block of statements a specified number of times.

701 XSharp

© 2015- 2024 XSharp BV

Syntax

FOR [<idCounter> := <nStart> | VAR <idCounter> := <nStart> | LOCAL
<idCounter> := <nStart> AS <idType>] [TO | UPTO | DOWNTO] <nEnd>
[STEP <nDelta>]
 <Statements>...
 [EXIT]
 <Statements>...
 [LOOP]
NEXT

Note

In the FoxPro and Xbase++ dialect ENDFOR is allowed as alternative for NEXT

Arguments

<idCounter> The name of the loop control or counter variable. IF a
LOCAL or VAR clause is included then the local is created
for the duration of the loop. With the VAR clause the
datatype is inferred from the usage.

AS <idType> Specifies the data type. If omitted, then depending on the
compiler options the type will be either USUAL or
determined by the compiler.

<nStart> The initial value assigned to <idCounter>. If the loop is
counting up, <nStart> must be less than <nEnd>. If the loop
is counting down, <nStart> must be greater than <nEnd>.

TO <nEnd> The final value of <idCounter>. The TO clause can be used
for counting up or down, depending on whether the STEP
clause gives a positive or negative value for <nDelta>. Note,
however, that your code will be more efficient if you avoid
the TO clause and specify UPTO or DOWNTO instead.

UPTO <nEnd> The final value of <idCounter>. The UPTO clause is used
for counting up.

DOWNTO <nEnd> The final value of <idCounter>. The DOWNTO clause is
used for counting down.

STEP <nDelta> The amount <idCounter> is changed for each iteration of the
loop. If used with the TO clause, <nDelta> can be either
positive or negative. With UPTO and DOWNTO, <nDelta>
should be positive. If the STEP clause is not specified,
<idCounter> is incremented (or decremented in the case of
DOWNTO) by one for each iteration of the loop.

702X# Documentation

© 2015- 2024 XSharp BV

EXIT Unconditionally branches control from within a FOR,
FOREACH , REPEAT or DO WHILE statement to the
statement immediately following the corresponding ENDDO
or NEXT statement.

LOOP Branches control to the most recently executed FOR,
FOREACH , REPEAT or DO WHILE statement.

Description

The control structure loops from the initial value of <idCounter> to the boundary specified
by <nEnd>, moving through the range of values of the control variable for an increment
specified by <nDelta>. All expressions in the FOR statement are reevaluated for each
iteration of the loop. The <nStart> and <nEnd> values, therefore, can be changed as the
control structure operates.

A FOR loop operates until <idCounter> is greater than or less than <nEnd> (depending on
whether you are counting up or down) or an EXIT statement is encountered. Control then
branches to the statement following the corresponding NEXT statement. If a LOOP
statement is encountered, control branches back to the current FOR statement.
Control structures can be nested to any depth. The only requirement is that each control
structure be properly nested.

Tip: Although FOR loops are useful for traversing arrays (as demonstrated in the
examples below), your code will be more efficient if there is a corresponding array function
designed to do what you want.

Examples

This example traverses an array in ascending order:

nLenArray := ALen(aArray)
FOR i := 1 UPTO nLenArray

<Statements>...
NEXT

To traverse an array in descending order:

nLenArray := ALen(aArray)
FOR i := nLenArray DOWNTO 1

<Statements>...
NEXT

703 XSharp

© 2015- 2024 XSharp BV

See Also

AEval(), BEGIN SEQUENCE, DO CASE, DO WHILE, IF, EXIT, LOOP

1.8.4.15.14 FOREACH Statement

Purpose

Execute a block of statements for all elements in a collection

Syntax

FOREACH [IMPLIED <idElement> | VAR <idElement> | <idElement> AS
<idType>] IN <container>
 <Statements>...
 [EXIT]
 <Statements>...
 [LOOP]
NEXT

Note

In the FoxPro dialect FOR EACH as 2 separate words is also allowed.
In the FoxPro and Xbase++ dialect ENDFOR is allowed as alternative for NEXT

Arguments

<idElement> The name of the variable that will receive the values of the
elements in <container> When the IMPLIED or VAR clause
is used then the datatype of the variable is inferred from the
container. When the AS <idType> clause is used then this
will be the datatype of the variable

AS <idType> Specifies the data type. If omitted, then depending on the
compiler options the type will be either USUAL or
determined by the compiler.

<container> A DotNet object that supports IEnumerable(), such as a
XBase array, .Net array or a collection like List<>

EXIT Unconditionally branches control from within a FOR,
FOREACH , REPEAT or DO WHILE statement to the
statement immediately following the corresponding ENDDO
or NEXT statement.

704X# Documentation

© 2015- 2024 XSharp BV

LOOP Branches control to the most recently executed FOR,
FOREACH , REPEAT or DO WHILE statement.

Description

The FOREACH statement is a convenient way to enumerate variable in an array or
collection.
Preferrably the iteration variable should not be changed inside the loop. A compiler
warning will be shown when you do this.
It is also not recommended to change the container in the loop as this may often result in
a runtime error.

See Also

AEval(), BEGIN SEQUENCE, DO CASE, DO WHILE, IF, EXIT, LOOP

1.8.4.15.15 IF Statement

Purpose

Conditionally execute a block of statements.

Syntax

IF <lCondition> [THEN]
<Statements>...

[ELSEIF <lCondition>]
<Statements>...

[ELSE]
<Statements>...

END[IF]

Arguments

[THEN] The THEN keyword is optional and has been added
because Visual FoxPro allows this keyword.

<lCondition> If this expression evaluates to TRUE, the statements
following it up until the next ELSEIF, ELSE, or ENDIF are
executed. Afterwards, control branches to the statement
following the next ENDIF statement.

ELSE If all preceding IF and ELSEIF conditions evaluate to FALSE,
the statements following the ELSE up until the next ENDIF
are executed. Afterwards, control branches to the
statement following the next ENDIF statement.

705 XSharp

© 2015- 2024 XSharp BV

Description

IF works by branching to the statement following the first <lCondition> that evaluates to
TRUE. If all conditions evaluate to FALSE, it branches to the statement following the
ELSE statement (if specified). Execution proceeds until the next ELSEIF, ELSE, or
ENDIF is encountered, and control then branches to the first statement following the next
ENDIF statement.

Control structures can be nested to any depth. The only requirement is that each control
structure be properly nested.

Note: IF...ELSEIF...ENDIF is identical to DO CASE...ENDCASE, with neither syntax
having a performance advantage over the other. The IF construct is also similar to the IIf()
operator which can be used within expressions.

Examples

This example evaluates a number of conditions using an IF...ELSEIF...ENDIF construct:

LOCAL nNumber := 0

IF nNumber < 50
? "Less than 50"

ELSEIF nNumber = 50
? "Is equal to 50"

ELSE
? "Greater than 50"

ENDIF

See Also

BEGIN SEQUENCE, DO CASE, DO WHILE, FOR, IIf()

1.8.4.15.16 LOOP Statement

Purpose

The LOOP statement causes control to jump back to the beginning of the innermost FOR,
FOREACH , REPEAT or DO WHILE statement.

706X# Documentation

© 2015- 2024 XSharp BV

Syntax

LOOP

Remarks

The LOOP statement is only valid within a DO WHILE, FOR ... NEXT, FOREACH ..
NEXT or REPEAT .. UNTIL construct. A LOOP statement outside of either construct will
raise a compile time error.

See Also
DO WHILE
FOR

FOREACH
REPEAT UNTIL

1.8.4.15.17 NOP Statement

Purpose

The NOP statement inserts an empty statement in the code

Syntax

NOP

Remarks

The NOP statement is an empty statement. It can be used to indicate that a certain code
section is left intentionally empty

Examples

FUNCTION Start(aArgs as string[]) AS VOID
 IF aArgs != NULL .AND. aArgs:Length > 0
 ? "You passed ", aArgs:Length, "command line parameters"
 ELSE
 NOP // This indicates that the else branch is not

707 XSharp

© 2015- 2024 XSharp BV

forgotten but intentionally empty
 ENDIF

 RETURN

1.8.4.15.18 QUIT Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Terminate application processing, close all open files, and return control to the operating
system.

Syntax

QUIT | CANCEL

Description

QUIT is the same as CANCEL. See CANCEL for a complete explanation of this
command.

Assembly

XSharp.RT.DLL

See Also

BEGIN SEQUENCE, CanBreak(), CANCEL, ErrorLevel(), RETURN

1.8.4.15.19 REPEAT UNTIL Statement

Purpose

Execute a loop until a condition is TRUE.

Syntax

REPEAT
<Statements>...

708X# Documentation

© 2015- 2024 XSharp BV

[EXIT]
<Statements>...

[LOOP]
<Statements>...

UNTIL <lCondition>

Arguments

<lCondition> The logical control expression for the REPEAT UNTIL loop.

EXIT Unconditionally branches control from within a FOR,
FOREACH , REPEAT or DO WHILE statement to the
statement immediately following the corresponding ENDDO
or NEXT statement.

LOOP Branches control to the most recently executed FOR,
FOREACH , REPEAT or DO WHILE statement.

Description

As long as the condition evaluates to FALSE then the loop will continuet. When the
condition evaluates to false, the REPEAT construct terminates and control passes to the
statement immediately following the UNTIL.

Use EXIT to terminate a REPEAT UNTIL structure based on a condition other than the
REPEAT UNTIL condition. LOOP, by contrast, prevents execution of statements within a
REPEAT UNTIL based on an intermediate condition, and returns to the most recent
REPEAT UNTIL statement.

Control structures can be nested to any depth. The only requirement is that each control
structure be properly nested.

Examples

This example demonstrates a typical control structure for a simple grouped report:

LOCAL cOldSalesman, nTotalAmount
USE sales INDEX salesman NEW
DO WHILE .NOT. EOF()

cOldSalesman := Sales->Salesman
nTotalAmount := 0
DO WHILE cOldSalesman = Sales->Salesman ;

.AND. (.NOT. EOF())
? Sales->Salesman, Sales->Amount
nTotalAmount := nTotalAmount + Sales->Amount

709 XSharp

© 2015- 2024 XSharp BV

SKIP
ENDDO
? "Total: ", nTotalAmount, "for", cOldSalesman

ENDDO
CLOSE sales

This code fragment demonstrates how LOOP can be used to provide an intermediate
processing condition:

DO WHILE <lCondition>
<Initial Processing>...
IF <Intermediate Condition>

LOOP
ENDIF
<Continued Processing>...

ENDDO

The next example demonstrates the use of DO WHILE to emulate a "repeat until looping"
construct:

LOCAL lMore := TRUE
DO WHILE lMore

<Statements>...
lMore := <lCondition>

ENDDO

Here, a DO WHILE loop moves sequentially through a database file:

DO WHILE .NOT. EOF()
<Statements>...
SKIP

ENDDO

See Also

BEGIN SEQUENCE, DBEval(), DO CASE, FOR, IF, RETURN, DO WHILE, EXIT, LOOP

710X# Documentation

© 2015- 2024 XSharp BV

1.8.4.15.20 RETURN Statement

Purpose

Terminate a routine by returning control to the calling routine or operating system if
executed from the Start() routine.

Syntax

RETURN [<uValue>]

Arguments

<uValue> May be specified in a function or method definition to
designate its return value. Procedure definitions do not
allow <uValue> as part of the RETURN statement. See the
FUNCTION and METHOD entries in this guide for
information about default return values if <uValue> is not
specified.

Description

All private variables created and local variables declared in the current routine are
released from memory when control returns.

Examples

These examples illustrate the general form of the RETURN statement in a procedure and
in a function:

PROCEDURE <idProcedure>()
<Statements>...
RETURN

FUNCTION <idFunction>()
<Statements>...
RETURN <uValue>

The next example returns an array, created in a function, to a calling routine:

FUNCTION PassArrayBack()
PRIVATE aArray[10][10]
aArray[1][1] = "myString"
RETURN aArray

711 XSharp

© 2015- 2024 XSharp BV

See Also

BEGIN SEQUENCE, FUNCTION, LOCAL, PRIVATE, PROCEDURE, PUBLIC, QUIT

1.8.4.15.21 RUN Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Execute a Windows or DOS application, a batch file, or a DOS command.

Syntax

RUN <xcCommandLine>

Arguments

<xcCommandLine> The command line is made up of two parts. The first part is
one of the following:

· An executable Windows or DOS program

· A .PIF file

· A .BAT file

· Any resident DOS command

· COMMAND.COM

The second part is the command line parameters that will
be passed to the specified application.

NOTE: When running DOS programs, it is best to specify
the file extension (for example, .EXE) rather than allow DOS
to determine the default; otherwise, the RUN command will
generate a temporary file named VODOSRUN.BAT to run
the specified program.

Description

RUN executes a Windows or DOS program or a DOS command from within an
application.
The application name in <xcCommandLine> may optionally contain a path. If it does not,
Windows will search for the application in the following order:
· The current directory

· The Windows directory

· The Windows SYSTEM subdirectory

· The directory that contains the currently executing module (.EXE or .DLL)

· The directories in the PATH environment variable

712X# Documentation

© 2015- 2024 XSharp BV

· All network drives

If you use RUN to start a Windows application, the two applications will be run
asynchronously. In other words, your XSharpapplication will not wait for the called
application to finish but will continue to execute the instructions following the RUN
command.

If you specify a DOS application, a .BAT file, or a DOS command, Windows will create a
DOS task and switch to it, thereby stopping your application. During the execution of the
DOS task, however, the user may switch back to the calling application.. The calling
application will automatically resume execution after the DOS task terminates.
If you run a DOS program, you might consider setting up a .PIF file (using the PIF Editor
provided by Windows) to fine tune the execution environment. For example you might
specify that the DOS application is to be executed in a window rather than in full-screen
mode. If you are using a .PIF file, pass the name of the .PIF file to the RUN command
instead of the name of your application or give it the same base name as your application
and put it into the same directory. In the latter case, Windows will pick it up automatically
if you pass the application name to the RUN command.

Examples

This example starts the Windows Notepad editor on a file called DATA.TXT:

RUN notepad data.txt

One of the options you can give your users is direct access to DOS. Do this with:

RUN command.com

Assembly

XSharp.RT.DLL

1.8.4.15.22 SWITCH Statement

Purpose

Conditionally execute a block of statements.

713 XSharp

© 2015- 2024 XSharp BV

Syntax

SWITCH <expression>
CASE <constantvalue> [WHEN <whenexpression>]
 <Statements>...
[CASE <constantvalue>]
[CASE <constantvalue>]
 <Statements>...
[CASE <constantvalue>]
 <Statements>...
[CASE <variablename> AS <datatype>] [WHEN <whenexpression>]
 <Statements>...
[OTHERWISE]
 <Statements>...
END [SWITCH]

Arguments

<constantvalue> A constant value that can be evaluated at compile time. You
can also have 2 consecutive CASE lines without statements
between them. In that case both CASE lines share the
same statementblock. If you want a case block without
statements, then insert a NOP statement as its statement.

<whenexpression> A logical expression that determines if the particular CASE
block should be active This is sometimes called an
expression filter.

<variablename> A variablename that gets declared by the pattern matching
expression

<datatype> The datatype of the variable in the pattern matching
expression

OTHERWISE If none of the preceding CASE conditions match, the
statements following the OTHERWISE up until the next
END SWITCH are executed. Afterwards, control branches
to the statement following the next END SWITCH statement.

Description

SWITCH works by branching to the statement following the first CASE <constantvalue>
that evaluates to TRUE. If all CASE conditions evaluate to FALSE, it branches to the
statement following the OTHERWISE statement (if specified).
In general there are 2 types of SWITCH statements:
1. Switch statements with constant values (CASE <constantvalue>)
2. Switch statements with pattern matching expressions (CASE <varName> AS

<datatype>)
Both types of SWITCH statements can be enhanced with WHEN filters.

714X# Documentation

© 2015- 2024 XSharp BV

If you do not have a WHEN filter then each CASE line must be "unique", so no two CASEs
can have the same constantvalue or same datatype. If you add a WHEN filter then this is
allowed.
The compiler may (and will) rearrange the order of the CASE labels when generating code
for example to combine two CASEs with the same constant value and a WHEN filter.
These may be combined into one CASE label with an embedded IF statement.

Execution proceeds until the next CASE, OTHERWISE, or END SWITCH is encountered,
and control then branches to the first statement following the next ENDCASE statement.
Control structures can be nested to any depth. The only requirement is that each control
structure be properly nested.

Examples

This example uses SWITCH in a menu structure to branch control based on user
selection:

FUNCTION ActonChoice(nChoice as LONG) AS VOID
SWITCH nChoice
CASE 0
 RETURN
CASE 1
 ChoiceOne()
CASE 2
 ChoiceTwo()
END SWITCH

See Also

BEGIN SEQUENCE, DO WHILE, FOR, FOREACH IF DO CASE

1.8.4.15.23 THROW Statement

The THROW statement raises a runtime exception.

Syntax

THROW [expression]

Arguments

expression An optional expression to throw.

715 XSharp

© 2015- 2024 XSharp BV

Remarks

THROW throws a runtime exception, causing execution to branch to the nearest CATCH
or FINALLY block in a TRY construct. If execution is not within a TRY construct the
application will terminate.
The specified expression is passed to the CATCH statement, if any, and must be of type
System.Exception or a class derived from it . See TRY-CATCH-FINALLY fro more
information.
Using THROW within a CATCH block without any arguments re-throws the exception,
passing it unchanged to the next highest TRY-CATCH block.

Example

USING System.IO
FUNCTION ReadFile(filename AS STRING) AS STRING
 LOCAL s AS STRING
 TRY
 s := File.ReadAllText(filename)
 CATCH e AS DirectoryNotFoundException
 ? "Directory not found", e
 CATCH e AS IOException
 ? "IO exception occurred", e
 CATCH e AS UnauthorizedAccessException
 ? "Access denied", e
 CATCH
 ? "Some other exception"
 // Escalate error to next TRY-CATCH
 THROW
 FINALLY
 ? "All done!"
 END TRY
 RETURN s

See Also

TRY-CATCH-FINALLY

1.8.4.15.24 TRY CATCH Statement

Purpose

TRY, CATCH and FINALLY are used to declare an exception handling block.

716X# Documentation

© 2015- 2024 XSharp BV

TRY
guardedStatements

[CATCH [[variableName] AS exceptionType] [WHEN whenexpression]
exceptionHandlingStatements

]
[FINALLY

cleanupStatements
]
END TRY

Arguments

variableName The name of a variable that will receive the
exception. The variable name is optional. If you only
specify the type then the exception will still be caught
but not stored in a local variable.

exceptionType The exception type that will be caught by the CATCH
block.

whenexpression A logical expression that determines if the particular
CATCH block should be active

exceptionHandlingStatements Zero or more statements that handle the exception
condition.

cleanupStatements Zero or more statements that perform any
necessary cleanup before the TRY block is exited..

Remarks

A TRY-CATCH-FINALLY block is used to trap and handle exceptions that may be thrown
within a block of code. Exceptions may be generated by the CLR, the Vulcan.NET runtime
library, third-party libraries or by application code using the THROW statement.

TRY Block

The statements within the TRY block are sometimes referred to as "guarded" statements.
These are the statements that potentially can cause exceptions that you want to handle.

CATCH Blocks

A exception handling block may contain any number of CATCH blocks (including zero).
Each CATCH block that declares a variable name and a type will receive exceptions of
that type. CATCH blocks that receive exceptions implicitly declare a local variable that will
contain the caught exception. This implicitly declared local variable is only valid within the
scope of the CATCH block. The name given to the variable must not be the same as any
explicitly declared LOCAL or parameter, or a compile-time error will occur. However, it is
legal to use the same variable name in multiple CATCH blocks. Since each CATCH
block's variable is only visible within its enclosing block, there is no conflict.

717 XSharp

© 2015- 2024 XSharp BV

A CATCH block may also be declared without a variable name but WITH an exception
type. In that case the exception will still be caught but not stored in a local variable.

A CATCH block may also be declared without any variable name and exception type. This
type of CATCH block will catch any exception, and is equivalent to declaring a CATCH
block with an exception type of System.Exception.

If multiple CATCH blocks are declared, the order in which they appear is important. The
CLR will examine the CATCH clauses in order, and invoke the first one that matches the
exception being thrown. This includes not only the specific exception class that was
specified, but any derived classes. For this reason, you should catch the more specific
exception types before less specific ones.

The exception type declared in a CATCH block must always be System.Exception, or a
class derived from it.

If no suitable CATCH block was declared for the exception that has been thrown, control
will be passed to the next highest exception handling block. If there is no higher exception
handling block, or none that can handle the exception, the application will terminate.

Exceptions may be explicitly passed on to the next highest exception handling block by
using the THROW keyword.

Finally Block

If a FINALLY block is declared, any statements within it are executed regardless of how
the TRY block exits. This provides a mechanism to perform any cleanup such as
releasing resources. The code within a finally block will be executed even if there is no
suitable CATCH block to handle the exception.

Compatibility Note:

TRY-CATCH-FINALLY blocks are similar to, but much more flexible than BEGIN
SEQUENCE-RECOVER blocks. However, BEGIN SEQUENCE and RECOVER are still
supported for backwards compatibility.

Note that exceptions thrown with BREAK will not be caught with a TRY-CATCH-FINALLY
block because the data thrown by BREAK is encapsulated in a USUAL, which does not
inherit from System.Exception.

However, exceptions thrown with THROW will be caught by the next highest BEGIN
SEQUENCE block (if any) and the exception will be encapsulated in a USUAL if a
RECOVER USING variable has been declared.

Also note that the CanBreak() runtime function does not detect whether execution is
currently within a TRY block. CanBreak() is provided only for compatibility with existing
Visual Objects code and BEGIN SEQUENCE blocks, and should not be relied upon to
determine whether execution is within an exception handling block. There is no way to
determine whether execution is within an exception handling block because this
functionality is not present in the CLR, and execution may currently be within code that is
compiled in an language other than Vulcan.NET.

718X# Documentation

© 2015- 2024 XSharp BV

Example

The following example tests for division by zero and catches the exception that will be
thrown by the CLR if the divisor is zero. Any other exceptions would propagate to the next
highest exception handling block (if any). Without the exception handling block, the
application would terminate with an unhandled DivideByZeroException.

FUNCTION DivisionTest(x AS INT, y AS INT) AS INT
 TRY
 RETURN x / y
 CATCH e AS System.DivideByZeroException
 ? "Divide by zero!", e
 RETURN 0
 END TRY

The following example demonstrates multiple CATCH blocks and a FINALLY block:

USING System.IO

FUNCTION ReadFile(filename AS STRING) AS STRING
 LOCAL s AS STRING

 TRY
 s := File.ReadAllText(filename)
 CATCH e AS DirectoryNotFoundException
 ? "Directory not found", e
 CATCH e AS IOException
 ? "IO exception occurred", e
 CATCH e AS UnauthorizedAccessException
 ? "Access denied", e
 CATCH
 ? "Some other exception"
 FINALLY
 ? "All done!"
 END TRY

 RETURN s

See Also

BEGIN SEQUENCE
THROW

719 XSharp

© 2015- 2024 XSharp BV

1.8.4.15.25 WITH command

Purpose

Specifies multiple properties for an object.

Syntax

WITH ObjectName
 [cStatements] or

[:Statements]
END WITH

Arguments

ObjectName Specifies the name of the object. ObjectName can be the
name of the object or a reference to the object.

1.8.4.15.26 YIELD Statement

Purpose

When you use the yield keyword in a statement, you indicate that the method, operator, or
get accessor in which it appears is an iterator.

Syntax

YIELD RETURN <expression>
YIELD (EXIT|BREAK)

Arguments

YIELD RETURN You use YIELD RETURN <expression> to return each
element one at a time.

YIELD [BREAK|EXIT] You use YIELD BREAK or YIELD EXIT to end the iteration.

720X# Documentation

© 2015- 2024 XSharp BV

Examples

using System.Collections.Generic

// The Yield return statement allows you to create code that
returns a
// collection of values without having to create the collection in
memory first.
// The compiler will create code that "remembers" where you were
inside the
// loop and returns to that spot.
FUNCTION Start AS VOID
 FOREACH nYear AS INT IN GetAllLeapYears(1896, 2040)
 ? "Year", nYear, "is a leap year."
 NEXT
 Console.ReadLine()
RETURN

FUNCTION GetAllLeapYears(nMin AS INT, nMax AS INT) AS
IEnumerable<INT>
 FOR LOCAL nYear := nMin AS INT UPTO nMax
 IF nYear % 4 == 0 .and. (nYear % 100 != 0 .or. nYear % 400
== 0)
 YIELD RETURN nYear
 END IF
 IF nYear == 2012
 YIELD EXIT // Exit the loop
 ENDIF
 NEXT

1.8.4.16 Terminal Window

?|??
ACCEPT
SET COLOR
WAIT

Note: XSharp does not support the following commands:

@...BOX
@...CLEAR
@...SAY
@...TO
@..GET
DISPLAY
INPUT
LIST
READ

721 XSharp

© 2015- 2024 XSharp BV

SET CONSOLE
SET DEVICE
SET PRINTER
TEXT ... ENDTEXT
TYPE

1.8.4.16.1 ?|?? Statement

Purpose

Display the results of one or more expressions, separated by a space, in the terminal
window.

Syntax

? | ?? [<uValueList>]

Arguments

<uValueList> A list of values to display. If no argument is specified with
the ? statement, a carriage return/linefeed is sent to the
terminal window. If you use the ?? statement without
arguments, nothing happens.

Description

? and ?? are synonyms for the QOut() and QQOut() functions, respectively.
Although functionally similar to one another, ? and ?? differ slightly. ? sends a carriage
return/linefeed before displaying the results of the expression list. ?? displays output at
the current position. This lets you use ?? statements to display successive output on the
same line.

A ? or ?? statement locates the cursor or print head one position to the right of the last
character displayed. Row() and Col() are updated to reflect the new cursor position.

If output from a ? or ?? statement reaches the edge of the terminal window it wraps to the
next line. If the output reaches the bottom of the window the window scrolls up one line.
To format any expression specified, use Transform(). If you need to pad a variable length
value for column alignment, use any of the Pad() functions to left-justify, right-justify, or
center the value as illustrated in the examples below.

Examples

This example displays a record from a database file using ? and ?? statements with
PadR() to assure column alignment:

LOCAL nPage := 0, nLine := 99
USE salesman INDEX salesman NEW

722X# Documentation

© 2015- 2024 XSharp BV

DO WHILE !EOF()
IF nLine > 55

IF nPage != 0
EJECT

ENDIF
? PadR("Page", LTRIM(STR(++nPage)), 72)
?? DTOC(TODAY())
?
?
? PadC("Sales Listing", 79)
?
nLine := 5

ENDIF
? Name, Address, PadR(RTrim(City) + "," + State, 20), ZipCode
++nLine
SKIP

ENDDO
CLOSE salesman

Assembly

XSharp.RT.DLL

See Also

QOut(), QQOut()

1.8.4.16.2 \|\\ Statement

Purpose

Prints or displays lines of text

Syntax

\ TextLine
\\ TextLine

Arguments

\ TextLine When you use \, the text line is preceded by a carriage
return and a line feed.

\\ TextLine When you use \\, the text line is not preceded by a carriage
return and a line feed.
Any spaces preceding \ and \\ are not included in the output
line, but spaces following \ and \\ are included.

723 XSharp

© 2015- 2024 XSharp BV

You can embed an expression in the text line. If the
expression is enclosed in the text merge delimiters (<< >>
by default) and SET TEXTMERGE is ON, the expression is
evaluated and its value is output as text.

Description

The \ and \\ commands facilitate text merge in X#.
Text merge makes it possible for you to output text to a file to create form letters or
programs.
Use \ and \\ to output a text line to the current text-merge output file and the screen.
SET TEXTMERGE is used to specify the text merge output file. If text merge is not
directed to a file, the text line is output only to the main Visual FoxPro window or the active
user-defined output window. SET TEXTMERGE NOSHOW suppresses output to the
main Visual FoxPro window or the active user-defined window.

Examples

This example displays a record from a database file using ? and ?? statements with
PadR() to assure column alignment:

CLOSE DATABASES
OPEN DATABASE (C:\Test\Data\testdata')
USE Customer // Open customer table
SET TEXTMERGE ON
SET TEXTMERGE TO letter.txt
\<<CDOW(DATE())>>, <<CMONTH(DATE())>>
\\ <<DAY(DATE())>>, <<YEAR(DATE())>>
\
\
\Dear <<contact>>
\Additional text
\
\Thank you,
\
\XYZ Corporation
CLOSE ALL

Assembly

XSharp.VFP.DLL

724X# Documentation

© 2015- 2024 XSharp BV

See Also

SET TEXTMERGE

1.8.4.16.3 ACCEPT Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Take input from the keyboard and assign it to a memory variable.

Syntax

ACCEPT [<uValuePrompt>] TO <idVar>

Arguments

<uValuePrompt> An optional prompt displayed before the input area.
TO <idVar> The variable that will hold input from the keyboard. If there is

no variable named <idVar> that is visible to the current
routine, a private variable is created.

Description

When ACCEPT is executed, it first performs a carriage return/linefeed, displays the
prompt in the terminal window, and begins taking characters from the keyboard at the
position immediately following the prompt.

Up to 255 characters can be entered. When input reaches the edge of the window, as
defined by MaxCol(), the cursor moves to the next line.

ACCEPT supports only two editing keys: Backspace and Enter (Esc is not supported).
Backspace deletes the last character typed. Enter confirms entry and is the only key that
can terminate an ACCEPT. If Enter is the only key pressed, ACCEPT assigns a
NULL_STRING to <idVar>.

Examples

This example uses ACCEPT to get keyboard input from the user:

LOCAL cVar
ACCEPT "Enter a value: " TO cVar
IF cVar = NULL_STRING

725 XSharp

© 2015- 2024 XSharp BV

? "User pressed Enter"
ELSE

? "User input:", cVar
ENDIF

Assembly

XSharp.RT.DLL

1.8.4.16.4 CLEAR SCREEN Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Take input from the keyboard and assign it to a memory variable.

Syntax

CLEAR SCREEN

Description

The command CLEAR erases the screen.
After execution of the CLEAR command, the cursor is positioned at 0, 0 and the functions
Row() and Col() are updated.

Examples

This example uses ACCEPT to get keyboard input from the user:

FUNCTION Start AS VOID
SET COLOR TO gr+/B // Yellow on Blue
CLEAR SCREEN
? "Hello world"

Assembly

XSharp.RT.DLL

726X# Documentation

© 2015- 2024 XSharp BV

1.8.4.16.5 SET ALTERNATE Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Write screen output to a text file.

Syntax

SET ALTERNATE TO [<cFileName> [ADDITIVE]]
SET ALTERNATE ON | OFF | <lToggle>

Arguments

<cFileName> Specifies the name of the ASCII file where screen output is
recorded. The name must contain the drive and path. The
file name can be specified either as a literal file name or as
a character expression in parentheses. When the file name
is specified without a file extension, the extension ".TXT" is
used by default.

ADDITIVE The option ADDITIVE adds the screen output to the current
contents of the file <cFileName> . Without this option, the
contents of the file are deleted if the file already exists. If a
file with the name <cFileName> does not exist, it is created.

<lToggle> <lToggle> is a logical expression which must appear in
parentheses. Instead of the logical expression, the option
ON can be specified for the value .T. (true) or OFF for the
value .F. (false). When .T. or ON is specified, screen output
is recorded in the file <cFileName> .

Description

The command SET ALTERNATE opens an ASCII file to record screen output. Only
screen output performed using commands like ? or LIST and functions like QOut() and
QQOut() is written into the file. Commands containing the option TO FILE work like SET
ALTERNATE. .

The alternate file (the ASCII file <cFileName>) is not tied to a single work area, but can be
used from all work areas. Output to the file is turned on or off by the options ON | OFF or
the logical value of <lToggle> . An alternate file is defined by including a file name in the
command SET ALTERNATE. When SET ALTERNATE TO is called without a specified
file name, the currently open alternate file is closed and recording screen output to a file is
no longer possible. The alternate file is also closed by the commands CLOSE
ALTERNATE and CLOSE ALL.

727 XSharp

© 2015- 2024 XSharp BV

Examples

FUNCTION Start
 USE Customers NEW
 SET ALTERNATE TO CustomerList.TXT
 SET CONSOLE OFF
 DO WHILE .NOT. Eof()
 ? Customers->LastName, Customers->FirstName
 ? Customers->Street
 ? Customers->City + ",", Customers->State, Customers-
>Zip
 ?
 SKIP
 ENDDO
 SET ALTERNATE TO
 SET CONSOLE ON
 USE

 RETURN

Assembly

XSharp.RT.DLL

See Also

SetAlternate(),SetAltFile(), SET CONSOLE

1.8.4.16.6 SET COLOR Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Change the setting that determines the current color for the terminal window.

Syntax

SET COLOR | COLOUR TO [<xcColorString>]

728X# Documentation

© 2015- 2024 XSharp BV

Description

SET COLOR is functionally equivalent to SetColor(). SET COLOR TO with no arguments
is the same as SetColor(NULL_STRING), returning to the default color settings.

Examples

This example uses the unselected setting to make the current GET red on white while the
rest are black on white:

FUNCTION Start AS VOID
SET COLOR TO gr+/B // Yellow on Blue
CLEAR SCREEN
? "Hello world"

Assembly

XSharp.RT.DLL

See Also

SetColor()

1.8.4.16.7 SET CONSOLE Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Turn the screen display on/of

Syntax

SET CONSOLE ON | off | <lToggle>

Arguments

<lToggle> A logical expression which must appear in parentheses.
Instead of the logical expression, the option ON can be
specified for the value .T. (true) or OFF for the value .F.
(false). When .T. or ON is specified (the default value), all
output is displayed on the screen. If the setting is set to

729 XSharp

© 2015- 2024 XSharp BV

OFF, output on the screen using commands like ? or ?? is
suppressed.

Description

The command SET CONSOLE deactivates or activates output of characters on the
screen. This includes commands like ? and functions like QOut() or QQOut(), which
always begin output at the current cursor position.

When SET CONSOLE is set to ON, output is displayed on the screen. There can also be
parallel output to a file (command SET ALTERNATE).

Examples

FUNCTION Start
 USE Customers NEW
 SET ALTERNATE TO CustomerList.TXT
 SET CONSOLE OFF
 DO WHILE .NOT. Eof()
 ? Customers->LastName, Customers->FirstName
 ? Customers->Street
 ? Customers->City + ",", Customers->State, Customers-
>Zip
 ?
 SKIP
 ENDDO
 SET ALTERNATE TO
 SET CONSOLE ON
 USE

 RETURN

Assembly

XSharp.RT.DLL

See Also

SetConsole(), SET ALTERNATE

1.8.4.16.8 SET TEXTMERGE Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

730X# Documentation

© 2015- 2024 XSharp BV

Purpose

Enables or disables the evaluation of fields, variables, array elements, functions, or
expressions that are surrounded by text-merge delimiters, and lets you specify text-merge
output.

Syntax

SET TEXTMERGE [ON | OFF] [TO [FileName] MEMVAR VarName [ADDITIVE]]
 [WINDOW WindowName] [SHOW | NOSHOW]

Arguments

ON Specifies that any fields, variables, array elements,
functions, or expressions surrounded by the text-merge
delimiters be evaluated and output when placed after \ or \\,
or between TEXT and ENDTEXT.

OFF (Default) Specifies that any fields, variables, array elements,
functions, or expressions be literally output along with the
text-merge delimiters surrounding them.

TO [FileName] Specifies that output from \, \\, and TEXT ... ENDTEXT be
directed to a text file in addition to the main Visual FoxPro
window, which is the default. You can also direct the output
to a text file by including FileName. If a file with that name
doesn't exist, a new file is created. If a file with the same
name already exists and SET SAFETY is set to ON, you are
given the option of overwriting the existing file.
The text file is opened as a low-level file, and its file handle is
stored to the _TEXT system variable. You can close the file
by issuing SET TEXTMERGE TO without additional
arguments. If the file handle of another file was previously
stored in _TEXT, that file is closed.

MEMVAR VarName Specifies a variable to contain data from TEXTMERGE
output.
Because SET TEXTMERGE is a global setting and can
span several procedures or methods, it is possible for
MEMVAR VarName to lose scope. The command will
function even when the variable is out of scope, but will
return no content. You can control scoping of MEMVAR
VarName by declaring the variable.

ADDITIVE Specifies that output from \, \\, and TEXT ... ENDTEXT be
appended to an existing file or memory variable.

SHOW | NOSHOW (Default) SHOW displays text-merge output. NOSHOW
suppresses display of text-merge output. By default, output
generated by \, \\, and TEXT ... ENDTEXT is sent to the
Console window.

731 XSharp

© 2015- 2024 XSharp BV

Description

Specifies that any fields, variables, array elements, functions, or expressions surrounded
by the text-merge delimiters be evaluated and output when placed after \ or \\, or between
TEXT and ENDTEXT.
The following short program example demonstrates how the contents of the variable
gcTodayDate and the DATE() and TIME() functions are evaluated when SET
TEXTMERGE is set to ON.

Examples

CLEAR
CLOSE DATABASES
SET TEXTMERGE ON
SET TEXTMERGE TO ContactList.TXT
CLOSE DATABASES
OPEN DATABASE ('C:\test\Data\testdata')
USE customer
TEXT
 CONTACT NAMES
 <<DATE()>> <<TIME()>>
ENDTEXT
WAIT "Press a key to generate the first ten names."
SCAN NEXT 10
 TEXT
 <<contact>>
 ENDTEXT
ENDSCAN
CLOSE ALL

Assembly

XSharp.VFP.DLL

1.8.4.16.9 TEXT Command

Purpose

Declare a block of text that can be assigned to a variable or send to an output device.
There are several different variations of the TEXT Statement:
· Core TEXT Command

· Non-Code TEXT Command

732X# Documentation

© 2015- 2024 XSharp BV

· FoxPro TEXT Command

The different variations of the TEXT commands are implemented as User Defined
commands in XSharpDefs.xh or one of the other header files.
All of these commands map to the preprocessor directives #text and #endtext where the
actual work is done.

1.8.4.16.9.1 TEXT Command (Core)

Syntax

TEXT TO <VariableName> [ADDITIVE]
 TextLines
ENDTEXT

Arguments

TextLines Specifies text to assign to the variable VarName

TO <VariableName> Specifies the variable name to use for passing the contents
of the TEXT...ENDTEXT. This variable should be of type
string, or should allow that a string can be added to it. It
does not have to be a local variable, it can also be a field in
the current class or an expression (someVar:SomeField)

ADDITIVE Determines whether the contents of the TO variable are
overwritten or added to existing contents.

Example

FUNCTION Start() AS VOID
LOCAL cValue AS STRING
TEXT TO cValue
Line 1
Line 2
Line 3
ENDTEXT
? cValue
TEXT TO cValue ADDITIVE

733 XSharp

© 2015- 2024 XSharp BV

Line 4
Line 5
ENDTEXT
? cValue
RETURN

The first time the variable will contain 3 lines of text delimited with CR/LF. The second
time there will be 5 lines.

The code produced by the compiler will somewhat look like this:

FUNCTION Start() AS VOID
LOCAL cValue AS STRING
cValue := ""
cValue += "Line 1" + chr(13)+chr(10)
cValue += "Line 2" + chr(13)+chr(10)
cValue += "Line 3" + chr(13)+chr(10)

? cValue

cValue += "Line 4" + chr(13)+chr(10)
cValue += "Line 5" + chr(13)+chr(10)

? cValue
RETURN

See also

#text directive
#endtext directive

1.8.4.16.9.2 TEXT Command (Non-Core)

Syntax

TEXT [INTO <VariableName> [TRIMMED]] |
[INTO <VariableName> WRAP] |
[INTO <VariableName> WRAP <cLineBreak> [TRIMMED]]

734X# Documentation

© 2015- 2024 XSharp BV

 TextLines
ENDTEXT

or

TEXT [TO PRINTER] | [TO FILE <cFilename>]
 TextLines
ENDTEXT

Arguments

TextLines Specifies text to assign to the variable VarName

INTO <VariableName> Specifies the variable name to use for passing the contents
of the TEXT...ENDTEXT. This variable should be of type
string, or should allow that a string can be added to it. It
does not have to be a local variable, it can also be a field in
the current class or an expression (someVar:SomeField)

WRAP <cLineBreak> The optional parameter <cLineBreak> specifies a character
string that is used to wrap lines.
The default value is CHR(13)+CHR(10) (carriage return and
line feed). If WRAP is not specified, no line breaks will be
inserted.

TRIMMED This optional parameter tells the preprocessor to remove all
spaces from the beginning of the line if TEXT INTO .. is
used.

TO FILE <cFilename> <cFilename> indicates the name of a file where the text
<Text> is optionally written. The name must contain the
drive and path, if necessary. The file name can be specified
either as a literal file name or as a character expression in
parentheses. When the file name is specified without file
extension, ".TXT" is used by default.

TO PRINTER Indicates that the text should be sent to the printer instead to
a file.

See also

#text directive

735 XSharp

© 2015- 2024 XSharp BV

#endtext directive

1.8.4.16.9.3 TEXT Command (FoxPro)

Syntax

TEXT [TO <VariableName> [ADDITIVE] [TEXTMERGE] [NOSHOW] [FLAGS
nValue] [PRETEXT eExpression]]
 TextLines
ENDTEXT

Arguments

TextLines Specifies text to send to the current output device. TextLines
can consist of text, memory variables, array elements,
expressions, functions, or any combination of these.
Note
X# evaluates expressions, functions, memory variables, and
array elements specified with TextLines only if you set SET
TEXTMERGE to ON and enclose them with the delimiters
specified by SET TEXTMERGE DELIMITERS. If SET
TEXTMERGE is OFF, Visual FoxPro outputs expressions,
functions, memory variables, and array elements as string
literals along with their delimiters.

For example, X# evaluates and outputs the current date
when you specify the DATE() function as TextLines only if
SET TEXTMERGE is ON, and TextLines contains the
function and the appropriate delimiters, such as <<DATE()
>>. If SET TEXTMERGE is OFF, X#outputs <<DATE()>>
as a string literal.

If you place comments within TEXT...ENDTEXT or after the
single backslash character (\) or double backslash
characters (\\), X# outputs the comments.

TO <VariableName> Specifies the memory variable name to use for passing the
contents of the TEXT...ENDTEXT. This variable can already
exist.

If the variable has not yet been declared, X# automatically
creates it as a private variable. The TO clause operates
regardless of how SET TEXTMERGE is set. If SET
TEXTMERGE is set to a file, and the TO statement is
included, Visual FoxPro outputs both the file and variable.

ADDITIVE Determines whether the contents of the TO variable are
overwritten or added to existing contents.

736X# Documentation

© 2015- 2024 XSharp BV

If the contents of TO VarName is not a string, X# always
overwrites the contents in VarName.

TEXTMERGE Enables evaluation of contents surrounded by delimiters
without setting SET TEXTMERGE to ON.

NOSHOW Disables display of the text merge to the screen.

FLAGS nValue Specifies a numerical value that determines if output is
suppressed to an output file, or if blank lines preceding any
text are included in the output.

Value
(additi
ve)

1 Suppresses output to the file specified with the
_TEXT System Variable.

2 When the NOSHOW clause is included,
preserves blank lines preceding text that
appears within TEXT...ENDTEXT. Setting
nValue to 2 will separate current
TEXT...ENDTEXT output from previous
TEXT...ENDTEXT output with a line feed.

Combining an nValue setting of 2 and PRETEXT
of 4 will separate current TEXT…ENDTEXT
output from previous TEXT…ENDTEXT output
with a line feed while removing empty lines in the
TEXT...ENDTEXT output.

PRETEXT eExpression Specifies a character string to insert before each line of the
text merge contents between TEXT...ENDTEXT or a
numeric expression.

The following table describes behaviors of the PRETEXT
clause depending on the expression specified by
eExpression.

eExpression PRETEXT behavior

Character expression Insert the expression before each line of the text merge
contents appearing between the TEXT...ENDTEXT
statement. When using PRETEXT with TEXT...ENDTEXT,
eExpression is limited to a maximum length of 255
characters.

eExpression overrides the contents of the _PRETEXT
system variable. When eExpression contains an expression
that needs to be evaluated, for example, a user-defined

737 XSharp

© 2015- 2024 XSharp BV

function (UDF), Visual FoxPro evaluates it only once when
the TEXT command first appears.

Numeric expression Specify additive flag values to determine behavior for the

text merge contents appearing between the
TEXT...ENDTEXT statement.

For example, a value of 7 specifies that Visual FoxPro
eliminate all white space including spaces, tabs, and
carriage returns. A value falling outside of the range of 0-15
produces an error.

Note
Specifying a value of zero does not eliminate white space.

When eExpression is a numeric expression, you can use
the _PRETEXT system variable to insert additional text after
Visual FoxPro eliminates white space.
The following table lists numeric additive flags that you can
use in eExpression to specify additional behavior.

Valu
e
(Addi
tive)

 Description

1 Eliminate spaces before each line.

2 Eliminate tabs before each line

4 Eliminate carriage returns, for example, blank
lines, before each line.

8 Eliminate line feeds.

Note
Unlike the _PRETEXT system variable, the PRETEXT
clause does not have global scope and applies only to the
TEXT...ENDTEXT statement in which it appears.

Characters removed using the PRETEXT clause apply only
to text within the TEXT...ENDTEXT statement and not to
evaluated text merged from cExpression. In the following
example, the spaces in the memory variable, myvar, are not
removed when merged with the text in TEXT...ENDTEXT:

myvar = " AAA"
TEXT TO x NOSHOW ADDITIVE TEXTMERGE PRETEXT 7
Start Line
<<myvar>>
 BBB
 CCC
ENDTEXT

738X# Documentation

© 2015- 2024 XSharp BV

By default, TEXT ... ENDTEXT sends output to the terminal window. To suppress output
to the terminal window, issue SET CONSOLE OFF. To send output to a printer or a text
file, use SET PRINTER. To send output from TEXT ... ENDTEXT to a low-level file that
you created or opened using FCREATE() or FOPEN(), store the file handle returned by
FCREATE() or FOPEN() to the _TEXT system variable, which you can use to direct
output to the corresponding low-level file.

The text merge process usually includes any white space that might appear before each
line in a TEXT...ENDTEXT statement. However, the inclusion of white space might cause
the text merge to fail, for example, when XML is used in a Web browser. You must
remove such white space to avoid incorrectly formatted XML.

Nesting TEXT...ENDTEXT statements is not recommended, especially if using the
PRETEXT clause because the nested statements can affect the format of the outer
statements.

Example 1

The following example demonstrates creating a low-level file called myNamesFile.txt and
storing its file handle in the _TEXT system variable. The program exits if the
myNamesFile.txt file cannot be created.

The code opens the customer table and outputs the names of the first ten contacts to
CotactList.txt.
The code outputs the text and results of the functions to the text file.

CLEAR
CLOSE DATABASES
SET TEXTMERGE ON
SET TEXTMERGE TO ContactList.TXT
CLOSE DATABASES
OPEN DATABASE ('C:\test\Data\testdata')
USE customer
TEXT
 CONTACT NAMES
 <<DATE()>> <<TIME()>>
ENDTEXT
WAIT "Press a key to generate the first ten names."
SCAN NEXT 10
 TEXT
 <<contact>>
 ENDTEXT
ENDSCAN
CLOSE ALL

739 XSharp

© 2015- 2024 XSharp BV

Example 2

The following example shows a custom procedure that uses TEXT...ENDTEXT to store
an XML DataSet to a variable. In the example, all spaces, tabs, and carriage returns are
eliminated.

PROCEDURE myProcedure
 DO CASE
 CASE nValue = 1
 TEXT TO myVar NOSHOW TEXT PRETEXT 7
 <?xml version="1.0" encoding="utf-8"?>
 <DataSet xmlns="http://tempuri.org">
 <<ALLTRIM(STRCONV(leRetVal.item(0).xml,9))>>
 </DataSet>
 ENDTEXT
 OTHERWISE
 ENDCASE
ENDPROC

See Also

FOPEN() Function
_PRETEXT System Variable
SET TEXTMERGE Command
SET TEXTMERGE DELIMITERS Command
_TEXT System Variable
#text directive
#endtext directive

1.8.4.16.10 WAIT Command

Note This command is defined in a header file and will be preprocessed by the X# preprocessor to a
function call. If you disable the standard header (-nostddefs) files then this command will not be
available. If you tell the compiler to use a different standard header file (-stddef) then this
command may also be not available

Purpose

Display a prompt after sending a carriage return/linefeed to the terminal window, then wait
for a key to be pressed.

Note: WAIT is a compatibility command and is no longer recommended.

Syntax

WAIT [<uValuePrompt>] [TO <idVar>]

740X# Documentation

© 2015- 2024 XSharp BV

Arguments

<uValuePrompt> An optional prompt displayed before the input area. If
omitted, "Press any key to continue..." is displayed. Specify
NULL_STRING if you do not want to display a prompt.

TO <idVar> The variable that will hold input from the keyboard. If there is
no variable named <idVar> that is visible to the current
routine, a private variable is created. <idVar> is assigned
the keystroke as a string. If an Alt or Ctrl key combination is
pressed, WAIT assigns Chr(0) to <idVar>.

Non-alphanumeric values entered by pressing an Alt+key
combination assign the specified character. If the character
can be displayed, it is echoed to the screen.

Example

This example illustrates how to store the WAIT keystroke as an array element:

FUNCTION Start AS VOID
LOCAL aVar[2]
WAIT "Press a key..." TO aVar[1]
? aVar[1] // Result: key pressed in
 // Response to WAIT
? aVar[2] // Result: NIL
? ValType(aVar) // Result: A
? ValType(aVar[1]) // Result: C

Assembly

XSharp.RT.DLL

See Also

ACCEPT

1.8.4.17 Variable Declaration

FIELD
LOCAL
MEMVAR
STATIC

741 XSharp

© 2015- 2024 XSharp BV

1.8.4.17.1 FIELD Statement

Purpose

Declare one or more database field names to be used by the current routine.

Syntax

FIELD <idFieldList> [IN <idAlias>]

Arguments

<idFieldList> A list of names to declare as fields to the compiler.

IN <idAlias> An alias to assume when there are unaliased references to
the names specified in the <idFieldList>.

Description

When you use the FIELD statement to declare fields, unaliased references to variables in
<idFieldList> are treated as if they were preceded by the special field alias (_FIELD->) or
<idAlias>-> if the IN clause is specified.

Like other variable declaration statements (i.e., LOCAL and MEMVAR), you must place
FIELD statements before any executable statements (including PRIVATE, PUBLIC, and
PARAMETERS) in the routine you are defining. The FIELD statement has no effect on the
macro operator, which always assumes memory variables.

The FIELD statement neither opens a database file nor verifies the existence of the
specified fields. It is useful primarily to ensure correct references to fields that are known
to exist at runtime. Attempting to access the fields when the associated database is not in
use will raise a runtime error.

Examples

This function includes statements to declare database field names in both the current and
Employee work areas:

FUNCTION DisplayRecord()
FIELD CustNo, OrderNo, Orders
FIELD EmpName, EmpCode IN Employee
USE employee NEW
USE orders NEW

? CustNo // Refers to Orders->CustNo

742X# Documentation

© 2015- 2024 XSharp BV

? EmpName // Refers to Employee->EmpName

CLOSE orders
CLOSE employee

See Also

DBFieldInfo(), LOCAL, MEMVAR, STATIC

1.8.4.17.2 LOCAL Statement

Purpose

Declare and initialize local variables and arrays.

Syntax

[STATIC] LOCAL <idVar> [:= <uValue>] [,...] [AS | IS <idType>]
[, ...]
[STATIC] LOCAL DIM <ArraySpec> [, ...] AS | IS <idType> [, ...]
[STATIC] LOCAL <ArraySpec> [, ...] [AS ARRAY] [, ...]
LOCAL ARRAY <arrayName> (<nRows> [, <nColumns>]) [, <arrayName>
(<nRows> [, <nColumns>])] // FoxPro dialect only
LOCAL ARRAY <arrayName> [<nRows> [, <nColumns>]] [, <arrayName>
[<nRows> [, <nColumns>]]] // FoxPro dialect only

Note: The LOCAL statement is shown using several syntax diagrams for convenience.
You can declare variables, dynamic arrays, and dimensioned arrays using a single
LOCAL statement if each definition is separated by a comma.

Arguments

STATIC Causes the local variable to retain its value across
invocations of the declaring entity but does not affect its
visibility.

<idVar> A valid identifier name for the local variable to declare.

<uValue> The initial value to assign to the variable.

For LOCAL, this can be any valid expression.

743 XSharp

© 2015- 2024 XSharp BV

For STATIC LOCAL, this value can be a literal
representation of one of the data types listed below or a
simple expression involving only operators, literals, and
DEFINE constants; however, more complicated
expressions (including class instantiation) are not allowed.

Note: Although <uValue> can be a literal array, it must be
one-dimensional. Multi-dimensional literal arrays are not
allowed. For example, {1, 2, 3} is allowed, but {{1, 2, 3}, {4,
5, 6}, {7, 8, 9}} is not.

Note: Although the Chr() function cannot be used in
<uValue>, the _Chr() operator can. _Chr() is otherwise
identical in functionality to Chr().

If <uValue> is not specified, the initial value of the variable
depends on the data type you declare (e.g., NIL if you do not
use strong typing, 0 for AS INT, etc.)

DIM <ArraySpec> The specification for a dimensioned array to declare.

<ArraySpec> The specification for a dynamic array to declare.
In both cases, <ArraySpec> is one of the following:
<idArray>[<nElements>, <nElements>, <nElements>]
<idArray>[<nElements>][<nElements>][<nElements>]
All dimensions except the first are optional.

<idArray> is a valid identifier name for the array to declare.
For dynamic arrays, array elements are initialized to NIL.
For dimensioned arrays, the initial value of the elements
depends on the data type as explained above for <uValue>.

<nElements> defines the number of elements in a particular
dimension of an array. The number of dimensions is
determined by how many <nElements> arguments you
specify.

<nElements> can be a literal numeric representation or a
simple numeric expression involving only operators, literals,
and DEFINE constants; however, more complicated
expressions (such as function calls) are not allowed.

AS <idType> Specifies the data type. If omitted, then depending on the
compiler options the type will be either USUAL or
determined by the compiler.

IS <idType> Specifies a structure data type in which the memory needed
to hold the structure is allocated on the stack (<idStructure>
is the only <idType> allowed with the IS keyword.) See the
VOSTRUCT entry in this guide for more information on data

744X# Documentation

© 2015- 2024 XSharp BV

structure memory allocation.

AS ARRAY For dynamic array declarations, specifies the data type of
the entire array.

<arrayName> Variable name of array . The array will have the dimensions
as declared with <nRows> and <nColumns>. The array
may be declared with parentheses as delimiters but also
with square brackets.
We recommend the use of square brackets.

Description

LOCAL is a declaration statement that declares one or more variables or arrays as local
to the current routine (i.e., function, method, or procedure). Like other variable declaration
statements (such as FIELD and MEMVAR), you must place LOCAL statements before
any executable statements (including PRIVATE, PUBLIC, and PARAMETERS) in the
routine you are defining.

Local variable declarations hide all inherited private variables, visible public variables,
instance variables, global variables, and constants with the same name. The search
order for a variable name is as follows:
1. LOCALs, local parameters, MEMVARs, and FIELDs
2. SELF instance variables (i.e., without <idObject>: prefix in class methods)
3. GLOBALs and DEFINEs

A LOCAL statement that declares a variable name which is already declared within the
same routine (with FIELD, LOCAL, or MEMVAR) causes a compiler error.

Local variables are visible only within the current routine, and unlike private variables, are
not visible within invoked routines. If a routine is invoked recursively, each recursive
activation creates a new set of local variables.

Unless you specify the STATIC keyword, local variables are created automatically each
time the routine in which they were declared begins executing. They continue to exist and
retain their values until the declaring routine returns control to the routine that invoked it.

The STATIC keyword serves as a lifetime modifier for a local variable, preventing the
variable from being released from memory when the creating entity returns to its calling
routine.

Important! When an application containing static variable declarations is invoked, the variables are
created and initialized before the beginning of program execution. Thus, initial values are assigned
only once per application run, not each time the creator is called.

745 XSharp

© 2015- 2024 XSharp BV

Notes

Local parameters: The FUNCTION, METHOD, and PROCEDURE statements allow you to
declare a list of local parameters enclosed in parentheses following the entity name. For
example:

FUNCTION <idFunction>(<idParamList>)

Exporting locals through code blocks: When you create a code block, you can access local
variables defined in the creating entity within the code block definition without passing
them as parameters (because local variables are visible to the code block). This, along
with the fact that you can pass a code block as a parameter, allows you to export local
variables. For example:

FUNCTION One()
 LOCAL nVar := 10 AS INT, cbAdd AS CODEBLOCK
 cbAdd := {|nValue| nValue + nVar}

 ? NextFunc(cbAdd) // Result: 210

FUNCTION NextFunc(cbAddEmUp)
 RETURN EVAL(cbAddEmUp, 200)

When the code block is evaluated in NextFunc(), nVar, which is local to function One(),
becomes visible even though it is not passed directly as a parameter.

Macro expressions: You cannot refer to local variables within macro variables and
expressions. If you refer to a local variable within a macro variable, a private or public
variable with the same name will be referenced instead. If no such variable exists, a
runtime error will be raised.
Type of a local variable: Since Type() uses the macro operator (&) to evaluate its argument,
you cannot use it to determine the type of a local variable or an expression containing a
local variable reference. You can, however, use ValType() which evaluates its argument
and returns the type of the return value
Memory files: You cannot SAVE or RESTORE local variables.

Examples

The following example declares two local arrays and two local variables:

LOCAL aArray1[20, 10], aArray2[20][10], var1, var2

746X# Documentation

© 2015- 2024 XSharp BV

This example declares two local variables with initializers. The first is initialized to a date
value and the second to an array:

LOCAL dWhen := TODAY()
LOCAL aVegies := {"Tomato", "Chickadee", "Butterbean"}

In this example, the variable x and the dimensioned array z are typed as INT, while the
variables cName and cAddr are typed as STRING:

LOCAL x, DIM z[100] AS INT, cName, cAddr AS STRING

The next example declares static variables both with and without initializers:

STATIC LOCAL aArray1[20, 10], aArray2[20][10]
STATIC LOCAL cVar, cVar2
STATIC LOCAL cString := "my string", var
STATIC LOCAL aArray := {1, 2, 3}

Here a static variable is manipulated within a function. In this example, a count variable
increments itself each time the function is called:

FUNCTION MyCounter(nNewValue)
// Initial value assigned once

STATIC LOCAL nCounter := 0
IF nNewValue != NIL

// New value for nCounter
nCounter := nNewValue
ELSE

// Increment nCounter
++nCounter

ENDIF
RETURN nCounter

See Also

FIELD, FUNCTION, DEFINE, GLOBAL, MEMVAR, METHOD, PROCEDURE, STATIC,
DIMENSION, DECLARE, PUBLIC

747 XSharp

© 2015- 2024 XSharp BV

1.8.4.17.3 LPARAMETERS Statement

Note This command is only available in the FOXPRO dialect

The LPARAMETERS Statemenent is identical to the PARAMETERS statement.
The Variables however will be created as LOCAL variables and not as Dynamic Memory
Variables and the optional <Type> clause is respected.

Purpose

Create local variables to receive passed values or references.

Syntax

LPARAMETERS <idParameterList>
LPARAMETERS <Parameter1> [AS <Type> [OF <ClassLibrary>]] [,
<Parameter2> [AS <Type> [OF <ClassLibrary>]]]

Arguments

<idParameterList> One or more parameter variables separated by commas.
These variables are used to receive arguments that you
pass when you call the routine. The variables will be
dynamic memory variables

<Type> & <ClassLibrary> The compiler recognizes the AS <Type> and the AS
<Type> of <Classlibrary> clauses in the FoxPro dialect.
The <ClassLibrary> is ignored but the <Type> is enforced.

Description

When a LPARAMETERS statement executes, all variables in the parameter list are
created as local variables.
Parameters can also be declared as local variables if specified as a part of the
PROCEDURE or FUNCTION declaration statement (see the example). Parameters
specified in this way are referred to as formal parameters. Note that you cannot specify
both formal parameters and a PARAMETERS statement within a procedure or function
definition.
Attempting to do this results in a compiler error.
The number of receiving variables does not have to match the number of arguments
passed by the calling routine. If you specify more arguments than parameters, the extra
arguments are ignored. If you specify fewer arguments than parameters, the extra
parameters are created with a NIL value. If you skip an argument, the corresponding
parameter is initialized to NIL.
The PCount() function returns the position of the last argument passed in the list of
arguments. This is different than the number of parameters passed, since it includes
skipped parameters.

748X# Documentation

© 2015- 2024 XSharp BV

Examples

This function receives values passed into private parameters with a PARAMETERS
statement:

FUNCTION MyFunc()
LPARAMETERS cOne, cTwo, cThree
? cOne, cTwo, cThree

The next example is identical, but receives values passed into local variables, declared
within the FUNCTION declaration:

FUNCTION MyFunc(cOne, cTwo, cThree)
? cOne, cTwo, cThree

See Also

PARAMETERS

1.8.4.17.4 STATIC Statement

Purpose

Declare and initialize static variables and arrays.

Syntax

STATIC [LOCAL] <idVar> [:= <uValue>] [, ...] [AS | IS <idType>] [,
...]
STATIC [LOCAL] DIM <ArraySpec> [, ...] AS | IS <idType> [, ...]
STATIC [LOCAL] <ArraySpec> [, ...] [AS ARRAY] [, ...]

Note: The STATIC statement is shown using several syntax diagrams for convenience
only. You can declare variables, dynamic arrays, and dimensioned arrays using a single
STATIC statement if each definition is separated by a comma.

<idVar> A valid identifier name for the local variable to declare.

<uValue> The initial value to assign to the variable.

749 XSharp

© 2015- 2024 XSharp BV

For LOCAL, this can be any valid expression.

For STATIC LOCAL, this value can be a literal
representation of one of the data types listed below or a
simple expression involving only operators, literals, and
DEFINE constants; however, more complicated
expressions (including class instantiation) are not allowed.

Note: Although <uValue> can be a literal array, it must be
one-dimensional. Multi-dimensional literal arrays are not
allowed. For example, {1, 2, 3} is allowed, but {{1, 2, 3}, {4,
5, 6}, {7, 8, 9}} is not.

Note: Although the Chr() function cannot be used in
<uValue>, the _Chr() operator can. _Chr() is otherwise
identical in functionality to Chr().

If <uValue> is not specified, the initial value of the variable
depends on the data type you declare (e.g., NIL if you do not
use strong typing, 0 for AS INT, etc.)

DIM <ArraySpec> The specification for a dimensioned array to declare.

<ArraySpec> The specification for a dynamic array to declare.
In both cases, <ArraySpec> is one of the following:
<idArray>[<nElements>, <nElements>, <nElements>]
<idArray>[<nElements>][<nElements>][<nElements>]
All dimensions except the first are optional.

<idArray> is a valid identifier name for the array to declare.
For dynamic arrays, array elements are initialized to NIL.
For dimensioned arrays, the initial value of the elements
depends on the data type as explained above for <uValue>.

<nElements> defines the number of elements in a particular
dimension of an array. The number of dimensions is
determined by how many <nElements> arguments you
specify.

<nElements> can be a literal numeric representation or a
simple numeric expression involving only operators, literals,
and DEFINE constants; however, more complicated
expressions (such as function calls) are not allowed.

AS <idType> Specifies the data type. If omitted, then depending on the
compiler options the type will be either USUAL or
determined by the compiler.

IS <idType> Specifies a structure data type in which the memory needed
to hold the structure is allocated on the stack (<idStructure>

750X# Documentation

© 2015- 2024 XSharp BV

is the only <idType> allowed with the IS keyword.) See the
VOSTRUCT entry in this guide for more information on data
structure memory allocation.

AS ARRAY For dynamic array declarations, specifies the data type of
the entire array.

<arrayName> Variable name of array . The array will have the dimensions
as declared with <nRows> and <nColumns>. The array
may be declared with parentheses as delimiters but also
with square brackets.
We recommend the use of square brackets.

Description

The STATIC keyword serves as a lifetime modifier for variables declared with the LOCAL
statement, preventing them from being released from memory when the creating entity
returns to its calling routine. It is listed here as a separate entry because, the LOCAL
keyword being optional, STATIC can stand alone in a routine as a variable declaration
statement. Refer to the LOCAL statement for a description and notes concerning static
variable declarations.

See Also

LOCAL

1.8.4.17.5 STACKALLOC

The STACKALLOC keyword allows you allocate a block of memory on the stack of the
current function / method
The syntax to use STACKALLOC is

VAR x := StackAlloc <dword>{1,2,3,4,5,6,7,8,9,10}
VAR y := StackAlloc int[]{10}

or more generic

VAR x := StackAlloc <typed Literal array>
VAR y := StackAlloc <typed array>

The compiler will generate variables of the type "Typed PTR". So in the first example x will
be of type DWORD PTR and y will be of type INT PTR.

You can also declare the variables with a normal LOCAL keyword. In that case the type
must be <Type> PTR

751 XSharp

© 2015- 2024 XSharp BV

LOCAL x := StackAlloc <dword>{1,2,3,4,5,6,7,8,9,10} AS DWORD PTR
LOCAL y := StackAlloc INT[]{10} AS INT PTR

You can also use STACKALLOC for an expression that is not a variable declaration. In
that case the compiler will resolve the STACKALLOC expression to an allocation of an
object of type System.Span<T>. This type is not available in the .Net Framework, but only
in .Net 5 and later.

1.8.4.17.6 VAR Statement

752X# Documentation

© 2015- 2024 XSharp BV

1.8.5 Expressions

Expressions are an important element of the language. There are many types of
expressions. The expression rule in the compiler is the biggest rule
The table below lists the various expression types in the order they are recognized by the
compiler. Some expression types are covered in a separate topic.
As you can see most expression types are recursive. They contain one or more
references to sub expressions

Expressions

Expression type Syntax

Member Access expression? (.|:) identifier

Member Access
with Ampersand
(resolved at
runtime)

expression? (.|:) &identifier
expression? (.|:) &(expr)

Method Call expression (argumentlist?)

Arrayelement
Access

expression [argumentlist]

Conditional
Access

expression ? boundexpression

Typecast (datatype)

Postfix expression (++ | --)

Await AWAIT expression

StackAlloc STACKALLOC expression

Prefix (+|-|~|@|++|--|̂) expression

Typecheck expression IS datatype VAR newVariable

As Typecheck expresion ASTYPE datatype

Powerof expression (|̂**) expression

MulDiv expression (*|/|%) expression

PlusMinus expression (+|-) expression

LShift expression << expression

RShift expression >> expression

Comparison
expression OPERATOR expression,
where OPERATOR is

753 XSharp

© 2015- 2024 XSharp BV

Expression type Syntax

<,<=, >, >=, =, ==, $, !=, <>, #

Bitwise And expression & expression

Bitwise XOR expression ~ expression

Bitwise OR expression | expression

Not Expression (.NOT. | !) expression

Logical AND
expression

expression (.AND.|&&) expression

Logical OR
expression

expression (.OR. | ||) expression

Default expression expression DEFAULT expression

Assignment
expression

expression ASSIGN_OP expression
where ASSIGN_OP is
:=, +=, -=, *=, =̂, /=, %=, &=, |=, <<=, >>=, ~=, ??=

Primary
expression

See other rule

1.8.5.1 Bound Expressions

Bound expressions are expressions that access properties or members from objects or
structures

Expression type Syntax

Bound Member
Access

boundexpression (.|:) simpleName

Bound Method Call boundexpression (argumentlist?)

Bound Array Access boundexpression [argumentlist]

754X# Documentation

© 2015- 2024 XSharp BV

Expression type Syntax

Bound Conditional
Access

expression ? boundexpression

Bind Member Access (.|:) simpleName

Bind Array Access [argumentlist]

1.8.5.2 Primary Expressions

Primary Expressions are the simplest building blocks in the expression rule in X#

Primary Expression
type

Syntax

Self SELF

Super SUPER

LiteralArray {......}

Anonymous Type CLASS { }

Tuple TUPLE { }

CodeBlock {||}

Lambda Expression { .. => }

LINQ query FROM .. SELECT ..

DelegateConstructor call datatype { expression, @Identifier() }

Constructor call with
optional initializer

datatype { argumentlist? } initializer? }

Checked CHECKED (expression)

Unchecked UNCHECKED (expression)

Typeof (_typeof | TYPEOF) (expression)

Sizeof (_sizeof | SIZEOF) (expression)

Nameof NAMEOF (identifier)

Default DEFAULT (expression)

Name identifier

755 XSharp

© 2015- 2024 XSharp BV

Primary Expression
type

Syntax

Conversion nativetype (expression): LONG(1+2)

XBase Conversion xbasetype (expression): FLOAT(1+2)

VOCast datatype (_CAST , exprsssion)

VoCastPtr PTR (datatype , expression)

VOTypeName typeName

IIF expression (IIF|IF) (expression , expression , expression)

Bitwise (_AND, _OR, _XOR, _NOT) (expressionlist)

AliasedField
FIELD -> identifier
| identifier -> identifier

Aliased Expression
FIELD -> expression
| expression -> expression

MacroExpr & (expression)

MacroVar & identifier

Parenthesized (expression)

ArgList _ARGLIST

1.8.5.3 Codeblocks

Codeblocks are an important part of the X# language.

Traditionally the codeblock looked like

codeblock : { | codeblockParamList? | expression }
;

codeblockParamList : identifier (, identifier)*
 ;

For example

 {|a,b| a*b}

X# has extended the Codeblock rule. We now not only accept a single expression, but
also a statement list and an expressionlist:

756X# Documentation

© 2015- 2024 XSharp BV

codeblock : { | codeblockParamList? |
(expression
| eos statementblock
| codeblockExpressionList)
}
;

codeblockExprList : (expression? ,)+ expression //
The last expression is the return value of the block
 ;

Examples of this are

 {|a,b| a:= Sqrt(a), a*b}
 {|a,b|
 ? a
 ? b
 }

The second example can be seen as an anonymous method with 2 parameters

1.8.5.4 Lamda Expressions

Lambda Expressions are a bit like a codeblock. it is a block of code with optional
parameters and a return value.
They are used to create anonymous functions.
Unlike a codeblock they do NOT inherit from a common class. They also cannot be stored
inside the USUAL type.

Code that expects a lambda expression often declares a delegate that describes the
parameter types and return value of the lambda expression.
Lambda expressions can also be used to declare an event handler.

The return value of the lambda expression is the last expression in the expression list, or
the value returned by the return statement in the statement list.

{ [pars] => expression [, expressionlist] }

or

{ [pars] =>
 statements // these are NOT separated with semi colons!
}

757 XSharp

© 2015- 2024 XSharp BV

pars Comma separated list of arguments. They can optionally be
typed.

Some examples:

// single expression, untyped parameters
{ a, b => a * b}

// single expression, typed parameters
{ a as int, b as int => a / b}

// typed parameters, expression list, last expression is return
value
{ a as int, b as int => a := iif(a == 0, 1, a), b / a}

// statement list, no semi colons needed, return statement is
return value
{ a as int, b as int =>

if a == 0
 a := 1
 endif
 return b / a
}

// Register a click event handler. No need to type the args
// The signature is derived from the signature of the Click Event
btnOk:Click += { sender, args => SELF:Close() }

758X# Documentation

© 2015- 2024 XSharp BV

1.8.5.5 LINQ Expressions

The LINQ expression rule is:

linqquery : fromClause queryBody
 ;

fromClause : FROM identifier (AS typeName)? IN expression
 ;

queryBody : (queryBodyClause)* selectOrGroupclause
(queryContinuation)?
 ;

queryBodyClause : fromClause

 | LET identifier ASSIGN_OP expression

 | WHERE expression

 | JOIN identifier (AS typeName)? IN expression
ON expression EQUALS expression joinIntoClause?

759 XSharp

© 2015- 2024 XSharp BV

 | ORDERBY ordering (, ordering)*

 ;

joinIntoClause : INTO identifier
 ;

ordering : expression (ASCENDING|DESCENDING)?
 ;

selectOrGroupclause : SELECT expression
 | GROUP expression BY expression
 ;

queryContinuation : INTO identifier queryBody

An example of a LINQ Query

 VAR oAll := FROM D IN oDev ;
 JOIN C IN oC ON D:Country EQUALS C:Name ;
 ORDERBY D:LastName ;
 SELECT CLASS {D:Name, D:Country, C:Region}

In this example you will see

fromclause: FROM D in oDev
querybody 1: JOIN C IN oC ON D:Country EQUALS C:Name
querybody 2: ORDERBY D:LastName
selectOrGroupClause: SELECT CLASS {...}

Other examples can be found in the LINQ Example topic

1.8.5.6 Initializers

X# has added two types of initializers to the language: collection Initializers and Object
Initializers. The syntax for these is:

constructorcall : datatype { parameterlist? }
initializer?
 ;

initializer : objectinitializer
 | collectioninitializer
 ;

760X# Documentation

© 2015- 2024 XSharp BV

objectinitializer : { (memberinitializer (,
memberinitializer)*)? }
 ;

memberinitializer : Name=identifierName :=
Expr=initializervalue
 ;

initializervalue : objectOrCollectioninitializer
 | expression

 ;

collectioninitializer : { expression (, expression)* }
 ;

Note:

· The initializer which is also delimited by curly braces immediately follows the closing
curly brace of the constructor call

An example of an object initializer:

VAR oPerson := Person{}{FirstName := "John", LastName :=
"Smith"}
 VAR oPerson := Person{"John", "Smith"} {Age := 35 }

An example of a collection initializer

oList := List<Int>{} {1,2,3,4,5}

And combined:

 Var oPeople := List<Person> {} {;
 Person{}{FirstName :=
"John", LastName := "Smith"}, ;
 Person{}{FirstName :=
"Jane", LastName := "Doe"} ;
 }

The LINQ example topic shows different initializers in action.

1.8.5.7 Compiler Macros

The following defines can be used in your code and will be replaced by the compiler with a
literal value:

Name Type Value

761 XSharp

© 2015- 2024 XSharp BV

__ARRAYBASE
__

Integer 0 or 1 depending on the /az compiler option

__CLR2__ String Literal __CLR2__ (only for compatibility with Vulcan, x#
does not implement the /clr compiler option). See
comment below.

__CLR4__ String Literal __CLR4__ (only for compatibility with Vulcan, x#
does not implement the /clr compiler option). See
comment below.

__CLRVERSIO
N__

String Literal "2" or "4"depending on the version. (only for
compatibility with Vulcan, x# does not implement the
/clr compiler option). See comment below.

__DATE__ String Literal Current date in YYYYMMDD format

__DATETIME__ String Literal Current date/time in format from regional settings

__DIALECT__ String Name of the current dialect

__DIALECT_C
ORE__

Logical Defined with TRUE when Core dialect is selected

__DIALECT_FO
XPRO__

Logical Defined with TRUE when FoxPro dialect is selected

__DIALECT_HA
RBOUR__

Logical Defined with TRUE when Harbour dialect is selected

__DIALECT_VO
__

Logical Defined with TRUE when VO dialect is selected

__DIALECT_VU
LCAN__

Logical Defined with TRUE when Vulcan dialect is selected

__DIALECT_XB
ASEPP__

Logical Defined with TRUE when Xbase++ dialect is
selected

__DEBUG__ Logical Literal TRUE when compiling in debug mode. Undefined in
Release mode

__ENTITY__ String Literal Name of current entity

__FILE__ String Literal Current source file name

__FOX1__,
__FOX2__

Logical Current value of the FoxPro compatibility compiler
options /fox1 and /fox2

__FUNCTION__ String Literal Current function/method name without class prefix
and in original case

__FUNCTIONS
__

String Literal Returns the name of the current Functions class

__HARBOUR__ Logic literal TRUE when the Harbour dialect is selected.
Otherwise not defined.

__LINE__ String Literal Current source line number

__MEMVAR__ Logical TRUE when the /memvar compiler option is used

762X# Documentation

© 2015- 2024 XSharp BV

__MODULE__ String Literal Current source file name

__SIG__ String Literal Signature of current entity

__SRCLOC__ String Literal Filename and line number in the source

__SYSDIR__ String Literal Systemdir (on developers machine!)

__TIME__ String Literal Compile time in HH:mm:ss format

__UNDECLARE
D__

Logical Literal TRUE when the /undeclared compiler option is used

__UNSAFE__ Logical Literal TRUE when the /unsafe compiler option is used

__UTCTIME__ String Literal UTC Compile time in HH:mm:ss format

__VERSION__ String Literal Version of the compiler

__VO__ Logic literal TRUE when the VO dialect is selected. Otherwise
not defined.

__VO1__ ,
__VO2__ ...
__VO17__

Logical Current value of the matching VO compatibility
compiler option, /vo1, /vo2 ... /vo17

__VULCAN__ Logic literal TRUE when the Vulcan dialect is selected.
Otherwise not defined.

__WINDIR__ String Literal Windows dir (on developers machine!)

__WINDRIVE__ String Literal Windows drive (on developers machine!)

__XPP__ Logic literal TRUE when the Xbase++ dialect is selected.
Otherwise not defined.

__XPP1__ Logical Current value of the /xpp1 compiler option. Only
defined in the Xbase++ dialect.

__XSHARP__ Logical Literal Always TRUE

__XSHARP_RT
__

Logical Literal TRUE when compiling against the X# runtime. Not
defined otherwise.

Note

The CLR2 and CLR4 version is determined by the X# compiler by looking at the version of
either system.dll or mscorlib.dll

1.8.5.8 Pseudo Functions

The following pseudo functions are supported by the X# compiler

Function Description

PCOUNT() This pseudo function is only available in methods or functions
with a CLIPPER calling convention.
It returns the number of argument passed to the function. The

763 XSharp

© 2015- 2024 XSharp BV

function does not expect and does not allow any arguments.
Not available in Core.

ARGCOUNT() This pseudo function returns the number of arguments
defined for the current method or function.

_GETMPARAM() and
_GETFPARAM()

These pseudo functions are only available in methods or
functions with a CLIPPER calling convention.
You can use them to retrieve a function parameter by
position. You must pass a numeric expression to these
functions. If you pass a number that is larger than the actual
number of parameters at runtime then you will get an array
access exception.
Not available in Core.

String2Psz() and
Cast2Psz()

These pseudo functions are used to convert DotNet strings to
unmanaged Ansi PSZ strings. Not only is a PSZ created, but
the functions also change the code generation and set up
code to clear the allocated PSZ variable on exit of the function
in which they are created.
Not available in Core.

ALTD() This function will insert a call to
System.Diagnostics.Debugger.Break inside a check to see if
the debugger is attached
(System.Diagnostics.Debugger.IsAttached)

_GetInst() This function will return the module handle for the current
module. Behind the scenes this is translated to
System.Runtime.InteropServices.Marshal.GetHINSTANCE(T
ypeOf(FunctionsClass):Module)

PCALL() and CCALL() The methods are used to call an API function for a strongly
typed PTR.
The function expects a first parameter of type PTR and the
other parameters must match the parameters defined in the
function to which the typed PTR points
The compiler creates a delegate with the proper prototype
and uses Marshal.GetDelegateForFunctionPointer() to call
the function.

PCallNative<Type>()
and
CCallNative<Type>()

The methods are used to call an API function for an untyped
PTR
The function expects a generic type parameter which
indicates the return type and a first parameter of type PTR.
Other parameters are allowed and must not point to
managed memory.
The compiler creates a delegate with the proper prototype
and uses Marshal.GetDelegateForFunctionPointer() to call
the function.

_ARGS() This pseudo function returns is replaced by the compiler to a
reference to the generated array of parameters for
functions/methods with clipper calling convention

764X# Documentation

© 2015- 2024 XSharp BV

SLen() This function is translated by the compiler to a call of the
Length property of the string, with a built-in check for NULL.

Chr(), _Chr() When the numeric parameter of this function is a literal
number between 0 and 127 then the compiler replaces the
function call with a literal string with a character of that value.
Larger values are not converted at compile time but at
runtime because these numbers are codepage dependent.
So an expression like
"Hello world"+Chr(13)+Chr(10)
will be translated into a literal string containing "Hello world"
followed by the CRLF characters (the compiler concatenates
the strings at compile time).

765 XSharp

© 2015- 2024 XSharp BV

1.8.6 Operators

X# has many operators. These are
· Binary operators

· Assignment operators

· Logical operators

· Bitwise operators

· Relational operators

· Shift operators

· Unary operators

· Workarea operators

· IIF() Operator

· SizeOf() Operator

· TypeOf() Operator

· NameOf() Operator

1.8.6.1 Binary

X# uses the following binary operators:

Operator Example Meaning

+ x + y addition

- x - y subtraction

* x * y multiplication

/ x / y division. If the operands are integers, the result is an integer
truncated toward zero (for example, -7 / 2 is -3).

% x % y modulus. If the operands are integers, this returns the
remainder of dividing x by y. If q = x / y and r = x % y, then x =
q * y + r.

 ̂or ** x ̂y or x **
y

power of. x ̂y returns x to the power of y

default
or ??

x DEFAULT
y
x ?? y

When x is not null then x, otherwise y. Can be chained: x
DEFAULT y DEFAULT z or x ?? y ?? z

Binary operators and XBase types

The following XBase types support binary operators.

Type Operator Description

ARRAY none binary operators are not supported for arrays

DATE + and - You can add and subtract a numeric to a date, which is the
equivalent of adding days.

766X# Documentation

© 2015- 2024 XSharp BV

You can subtract a date from a date which will return the
number of days between the dates

FLOAT all You can perform all binary operations on FLOATs when both
operands are numeric. The compiler will automatically insert
a conversion from <any numeric type> to FLOAT when the
right hand side of the binary operator is not a float

SYMBOL none binary operators are not supported for arrays

STRING + and - The + operator will add 2 strings. The - operator will add the
RHS to the LHS and move all trailing spaces of the LHS to
the end of the resulting string. You can also add STRING
values and SYMBOL values. The SYMBOLs will automatically
be converted to strings

USUAL all You can use all binary operators on USUALs. The code in the
runtime will check to see if the 2 sides are "compatible" and
will produce a runtime error when the operation is not
available.

1.8.6.2 Assignment operators

X# uses the following Assignment operators:

Operator Example Meaning

:= x := y Store the value of the second operand in the object specified
by the first operand (simple assignment).

= x = y Store the value of the second operand in the object specified
by the first operand (simple assignment).
This is allowed in the VFP dialect only ! In all other
dialects assigning a value with a '=' operator will
generate a warning.

+= x += y Add the value of the second operand to the value of the first
operand; store the result in the object specified by the first
operand

-= x -= y Subtract the value of the second operand from the value of
the first operand; store the result in the object specified by the
first operand.

/= x /= y Divide the value of the first operand by the value of the
second operand; store the result in the object specified by the
first operand

%= x %= y Take modulus of the first operand specified by the value of
the second operand; store the result in the object specified by
the first operand.

*= x *= y Multiply the value of the first operand by the value of the
second operand; store the result in the object specified by the
first operand.

767 XSharp

© 2015- 2024 XSharp BV

=̂ or **= x =̂ y Calculate the exponent of the first operand and the second
operand ; store the result in the object specified by the first
operand.
Please note that in languages such as C# the ^=
operator performs a Bitwise XOR

|= x |= y Obtain the bitwise inclusive OR of the first and second
operands; store the result in the object specified by the first
operand.

&= x &= y Obtain the bitwise AND of the first and second operands;
store the result in the object specified by the first operand.

~= x ~= y Obtain the bitwise exclusive OR of the first and second
operands; store the result in the object specified by the first
operand.

<<= x <<= y Shift the value of the first operand left the number of bits
specified by the value of the second operand; store the result
in the object specified by the first operand.

>>= x >>= y Shift the value of the first operand right the number of bits
specified by the value of the second operand; store the result
in the object specified by the first operand.

?= a ?=
"somevalue
"

When a is NULL then it will be assigned "somevalue".
Otherwise a is not changed

Assignment operators and XBase types

See the topic about Binary operators to see which complex assignment operators are
supported.

1.8.6.3 Logical

X# uses the following Logical operators:

Operator Example Meaning

.AND. x .AND. y Returns TRUE when both operands are TRUE, otherwise
FALSE

.OR. x .OR. y Returns TRUE with one or both operands are TRUE. Only
when both operands are FALSE then FALSE is returned

.NOT. or ! .NOT. x Reverses TRUE and FALSE.

1.8.6.4 Bitwise

X# uses the following Bitwise (binary) operators. There are simple character versions of
these and also pseudo functions:

Operator Pseudo
Function

Example Meaning

768X# Documentation

© 2015- 2024 XSharp BV

| _OR(..) x | y, _OR(x,y) Returns the bitwise OR of x
and y
_OR() may have more than 2
parameters.

~ _XOR(..) x ~ y, _XOR(x,y) Returns the bitwise XOR of x
and y

& _AND(..) x & y, _AND(x,y) Returns the bitwise AND of x
and y.
_AND() may have more than
2 parameters.

~ _NOT(..) ~ x, _NOT(x) Returns the bitwise NOT of x
(aka one's complement).
_NOT() can only have one
parameter

The result of a bitwise operation is best understood via ‘truth tables’. If two numbers can,
for instance, be defined by 4 bits (expressing numbers 0 up to 15 in decimal value) then,
when ‘Anding’ them, use the AND truth table for each bit in turn. If the values in decimal
are 5 and 1 then their bit representations are 0101 and 0001.

1.8.6.5 Relational

X# uses the following Logical operators:

Operator Example Meaning

< x < y less than (true if x is less than y).
See below for string comparisons

<= x <= y less than or equal to (true if x is less than or equal to y).
See below for string comparisons

> x > y greater than (true if x is greater than y).
See below for string comparisons

>= x >= y greater than or equals to (true if x is greater than or equal to
y).
See below for string comparisons

= x = y equality.
Note that there is a difference between = and == for
strings only. See below

769 XSharp

© 2015- 2024 XSharp BV

== x == y exact equality.
Note that there is a difference between = and == for
strings only. See below

<>, #, != x <> y, x #
y, x != y

not equal
Note that for strings this follows the same rules as the
single = operator.

$ x $ y Is substring of. Returns true if the first string is a substring of
the second (case sensitive !)

IS x IS y Type compatibility. Returns true if the evaluated left operand
can be cast to the type specified in the right operand (a static
type).

ASTYPE x ASTYPE
y

Type conversion. Returns the left operand cast to the type
specified by the right operand (a static type), but as returns
null where (T)x would throw an exception.

String comparisons

The '=' and '==' operators behave differently for strings, and the behavior of the single
equals also depends on a runtime setting.

If you call SetExact(FALSE) then ‘=’ equates the characters up to the length of the string
on the right-hand side of the operator ignoring the remaining characters on the left. This is
the default setting. If you call SetExact(TRUE) then = and == have the same meaning for
strings.
The <, <=, > and >= operators for strings have a behavior that depends on a compiler
option and a runtime setting. The -vo13 compiler option 'compatible string comparions'
tells the compiler that it needs to use a runtime function for string comparisons. The
behavior of this runtime function depends on the setting of SetCollation(). There are 4
possible values for SetCollation():

Setting Description

Clipper This setting will convert both strings to
OEM strings using the current DOS
codepage. After that the strings will be
compared using the string comparison /
weight tables that are defined with
SetNatDLL(). The default comparison uses
a wight based on the byte number. Other
comparisons available are for example
GERMAN, DUTCH, FRENCH, RUSSION,
SPANISH, SLOV852 etc.
This setting should be used if your
application needs to share files with
CLIPPER programs.

Windows This setting will convert both strings to
ANSI using the current ANSI codepage.
After that the strings will be compared
using the normal windows ANSI
CompareString() code. This setting should

770X# Documentation

© 2015- 2024 XSharp BV

be used when your application shares files
with VO programs

Unicode This setting will NOT convert strings and
will do a normal Unicode string comparison
using the String.Compare() method from
the .Net

Ordinal This setting will NOT convert strings and
will do a normal Ordinal string comparison
using the String.CompareOrdinal() method
 from the .Net. This is the fastest.

The >= and <= operators for strings also take into account the setting for SetExact(). The
'equalness' of the 2 strings is determined by the same rules as the '=' operator.

1.8.6.6 Shift

X# uses the following shift operators:

Operator Example Meaning

>> x >> y shift bits right. If the left operand is signed, then left bits are
filled with the sign bit. If the left operand is unsigned, then left
bits are filled with zero.

<< x << y shift bits left and fill with zero on the right.

Note that shift operators are only supported on integral numeric types

1.8.6.7 Unary

X# uses the following unary operators:

Operator Example Meaning

+ +x returns the value of x.

- -x numeric negation.

++ (prefix) ++x prefix increment. Returns the value of x after updating the
storage location with the value of x that is one greater
(typically adds the integer 1).

-- (prefix) --x prefix decrement. Returns the value of x after updating the
storage location with the value of x that is one greater
(typically adds the integer 1).

~ ~x bitwise complement

++ (postfix) x++ postfix increment. Returns the value of x and then updates
the storage location with the value of x that is one greater
(typically adds the integer 1).

-- (postfix) x-- postfix decrement. Returns the value of x and then updates
the storage location with the value of x that is one less
(typically subtracts the integer 1).

771 XSharp

© 2015- 2024 XSharp BV

Note that shift operators are only supported on integral numeric types

1.8.6.8 Workarea

X# uses the following Workarea operators:

Operator Example Meaning

-> Customer-
>LastName
FIELD-
>FirstName
_FIELD-
>Salary
M->Name
A->City

Field "LastName" in the "Customer" workarea
Field "FirstName" in the current workarea
Field "Salary" in the current workarea
The dynamic memory variable "Name" (public or private)
The field City in workarea 1.
Allowed single letter aliases are A .. J.

Note that FIELD and _FIELD are synonyms.
Keywords that appear directly after the -> operator are seen
as identifier and not keyword.

. (Dot) Customer.L
astName

In the VFP dialect we also support the DOT (".") syntax for
aliased operations.
Please note that this is ambiguous because the compiler
cannot detect at compile time if CUSTOMER is a workarea or
for example a MEMVAR. If there is a local variable with the
name CUSTOMER then this will access the LASTNAME
property of the CUSTOMER local variable.
In all other cases this will produce code that looks for either a
CUSTOMER workarea or memory variable at runtime.
Keywords that appear directly after the "." operator are seen
as identifier and not keyword.

. (Dot) M.Name In the VFP dialect we also support the DOT (".") syntax for
memvar access. This is also ambiguous because NAME can
be both a local variable or a dynamic memory variable
"NAME" (public or private). However the compiler will be able
to detect the local variable at compile time and when this is
not found then it will access the dynamic memory variable.

1.8.6.9 IIF Operator

The IIF operator returns one of two values, depending on an expression that returns a
value of type LOGIC. The IIF operator is of the form:

IIF(conditionExpression, trueExpression, falseExpression)

Remarks

conditionExpression may be any expression that returns a value of type LOGIC, or a type
that can be implicitly converted to LOGIC.

772X# Documentation

© 2015- 2024 XSharp BV

If conditionExpression evaluates to TRUE, trueExpression is evaluated and is the result. If
conditionExpression evaluates to FALSE, falseExpression is evaluated and is the result.
Only one of the two expressions is ever evaluated.

The return type of the IIF operator is determined by the following rules:
Given:
· tT is the type of trueExpression

· tF is the type of falseExpression

· tR is the return type of the IIF expression

1. If tT and tF are the same type, tR is that type.
2. If tT and/or tF is USUAL, then tT or tF is converted to USUAL if necessary, and tR is

USUAL.
3. If tT can be implicitly converted to tF, tR is tF.
4. If tF can be implicitly converted to tT, tR is tT.
5. If tT can be implicitly converted to tF and tF can be implicitly converted to tT, then tR is

ambiguous and a compiler error is raised.
6. If tT cannot be implicitly converted to tF and tF cannot be implicitly converted to tT, then

tR is indeterminate and a compiler error s raised.
Note that if tT and tF are VOID, tR is VOID and the IIF operator cannot be used as an
operand in another expression, or as a function or method parameter.
In this case, the IIF operator is essentially the same as an IF...ELSE...ENDIF construct
and can only be used in stand-alone expression statements.

In cases 5 and 6, it may be possible to resolve the error by specifying an explicit cast on
trueExpression or falseExpression.

This behavior is different than in some other XBase dialects In these dialects the return is
usually determined by the following rules
1. If tT and tF are the same type, tR is that type.
2. Otherwise tT and tR are implicitly converted to USUAL and tR is USUAL.

You can use the /vo10 compiler option to enable this behavior in X#, but this is only
recommended for code originally written in other environments, such as Visual Objects.

Note

For compatibility with Visual Objects and several other dialects the IF() operator is also
supported

1.8.6.10 SizeOf Operator

he sizeof operator returns the number of bytes occupied by a variable of a given type. The
argument to the sizeof operator must be the name of an unmanaged type or a type
parameter that is constrained to be an unmanaged type.

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/builtin-types/unmanaged-types
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/generics/constraints-on-type-parameters#unmanaged-constraint

773 XSharp

© 2015- 2024 XSharp BV

Syntax

SizeOf(type)

Expression Constant value

sizeof(sbyte) 1

sizeof(byte) 1

sizeof(short) 2

sizeof(word) 2

sizeof(int) 4

sizeof(dword) 4

sizeof(int64) 8

sizeof(uint64) 8

sizeof(char) 2

sizeof(real4) 4

sizeof(real8) 8

sizeof(decimal) 16

sizeof(logic) 1

For some types the size depends on how the program is running, e.g. in 32 bits mode or
64 bits mode. In that case you may see an error message that the SizeOf operator
requires the /unsafe compiler option.

Note

_sizeof() (with a leading underscore and parenthesis) is also supported for compatibility
with Visual Objects and is synonymous with sizeof.

774X# Documentation

© 2015- 2024 XSharp BV

1.8.6.11 TypeOf operator

In .Net, all types are inherited from the System.Type.

Syntax

TypeOf(type)

The TypeOf operator gets the System.Type of a type.
This code sample shows the use case of typeof operator using C#.

Console.WriteLine(typeof(String))
Console.WriteLine(typeof(USUAL))

The following example demonstrates several ways to obtain a type

Example

FUNCTION Start() AS VOID
LOCAL t1 AS Type
LOCAL t2 AS Type
LOCAL t3 AS Type
LOCAL t4 AS Type
LOCAL s AS STRING
s := "Live long and prosper!"
t1 := s:GetType()
t2 := typeof(System.String)
t3 := typeof(STRING)
t4 := Type.GetType("System.String")
? "Type objects are equal:", t1 == t2 .and. t1 == t3 .and. t1 ==
t4
? t1:Name
? t1:FullName
? t1:AssemblyQualifiedName
RETURN

Note

_typeof() (with a leading underscore and parenthesis) is also supported for compatibility
with Visual Objects and is synonymous with sizeof.

775 XSharp

© 2015- 2024 XSharp BV

1.8.6.12 NameOf Operator

A nameof expression produces the name of a variable, type, or member as the string
constant:

You can use a nameof expression to make the argument-checking code more
maintainable:

Syntax

NameOf(identifier)

FUNCTION Test(cName as STRING)
IF cName == null
 throw new ArgumentNullException(nameof(cName),
i"{nameof(cName)} cannot be null");
endif

776X# Documentation

© 2015- 2024 XSharp BV

1.8.7 X# Preprocessor Directives

The XSharp preprocessor supports the following preprocessor directives

#command
#define
#else
#endif
#endregion
#if
#ifdef
#ifndef
#include
#line
#region
#stdout
#translate
#undef

1.8.7.1 #command

Purpose

Specify a user-defined command or translation directive

Syntax

#command <matchPattern> => <resultPattern> // can be abbreviated
to 4 characters
#xcommand <matchPattern> => <resultPattern> // cannot be
abbreviated to 4 characters
#ycommand <matchPattern> => <resultPattern> // cannot be
abbreviated to 4 characters and must match case

 Arguments

<matchPattern> is the pattern the input text should match.

<resultPattern> is the text produced if a portion of input text matches the
<matchPattern>.

The => symbol between <matchPattern> and <resultPattern> is, along with #command
or #translate, a literal part of the syntax that must be specified in a #command or
#translate directive. The symbol consists of an equal sign followed by a greater than
symbol with no intervening spaces. Do not confuse the symbol with the >= or the <=

777 XSharp

© 2015- 2024 XSharp BV

comparison operators in the xBase language.

Description
#command and #translate are translation directives that define commands and
pseudofunctions. Each directive specifies a translation rule. The rule consists of two
portions: a match pattern and a result pattern.
The match pattern matches a command specified in the program (.prg) file and saves
portions of the command text (usually command arguments) for the result pattern to use.
The result pattern then defines what will be written to the result text and how it will be
written using the saved portions of the matching input text.

#command and #translate are similar, but differ in the circumstance under which their
match patterns match input text. A #command directive matches only if the input text is a
complete statement, while #translate matches input text that is not a complete statement.
 #command defines a complete command and #translate defines clauses and
pseudofunctions that may not form a complete statement. In general, use #command for
most definitions and #translate for special cases.

#command and #translate are similar to but more powerful than the #define directive.
#define, generally, defines identifiers that control conditional compilation and manifest
constants for commonly used constant values such as SDK codes. Refer to any of the
header files in the INCLUDE directory for examples of manifest constants defined using
#define.

#command and #translate directives have the same scope as the #define directive. The
definition is valid only for the current program (.prg) file unless defined in Std.ch or the
header specified with the /U option on the compiler command line. If defined elsewhere,
the definition is valid from the line where it is specified to the end of the program file.
Unlike #define, a #translate or #command definition cannot be explicitly undefined. The
#undef directive has no effect on a #command or #translate definition.

As the preprocessor encounters each source line preprocessor, it scans for definitions in
the following order of precedence: #define, #translate, and #command. When there is a
match, the substitution is made to the result text and the entire line is reprocessed until
there are no matches for any of the three types of definitions. #command and #translate
rules are processed in stack-order (i.e., last in-first out, with the most recently specified
rule processed first).

In general, a command definition provides a way to specify an English language statement
that is, in fact, a complicated expression or function call, thereby improving the readability
of source code. You can use a command in place of an expression or function call to
impose order of keywords, required arguments, combinations of arguments that must be
specified together, and mutually exclusive arguments at compile time rather than at
runtime. This can be important since procedures and user-defined functions can now be
called with any number of arguments, forcing any argument checking to occur at runtime.
 With command definitions, the preprocessor handles some of this.

Because directives are processed in stack order, when defining more than one rule for a
command, place the most general case first, followed by the more specific ones. This
ensures that the proper rule will match the command specified in the program (.prg) file.

Match Markers

778X# Documentation

© 2015- 2024 XSharp BV

See the topic about Match Markers for a detailed discussion

Result Markers

See the topic about Result Markers for a detailed discussion

 Notes

· Less than operator: If you specify the less than operator (<) in the <resultPattern>
expression, you must precede it with the escape character (\).

· Multistatement lines: You can specify more than one statement as a part of the result
pattern by separating each statement with a semicolon. If you specify adjacent
statements on two separate lines, the first statement must be followed by two
semicolons.

1.8.7.2 #define

Purpose

Syntax

#define identifier [token-string]

or

#define identifier LPAREN parameters RPAREN

#define lets you define a symbol, such that, by using the symbol as the expression in a
#ifdef directive, the expression will evaluate to true or in a or #ifndef directive the
expression will evaluate to false.
#define also allows you define a symbolic name for a token string, so you can use the
symbolic name in your code and the preprocessor will replace all occurences of that
name with the token string that you have specified.
For example:

#define DEBUG
// ...
#if DEBUG
 Console.WriteLine("Debug version");
#endif

or

779 XSharp

© 2015- 2024 XSharp BV

#define VERSION "1.2.0.0"
#define FILEVERSION "1.2.3.4"
// ...
[assembly: AssemblyVersion(VERSION)]
[assembly: AssemblyFileVersion(FILEVERSION)]

A define with parentheses, such as

#define MAX(a,b) iif(a>b, a, b)

will be treated like a #translate.

Notes

Please note that defines are CASE SENSITIVE, so the following code will work:

#define TEST 123

FUNCTION Test() AS INT
 RETURN TEST

but this will NOT compile:

#define TEST 123

FUNCTION TEST() AS INT
 RETURN TEST

because the preprocessor will replace the name TEST in the FUNCTION line with the
value 123 which is not a valid identifier. After preprocessing the code becomes:

FUNCTION 123() AS INT
 RETURN 123

780X# Documentation

© 2015- 2024 XSharp BV

1.8.7.3 #else

Purpose

#else lets you create a compound conditional directive, so that, if the expression in the
preceding #ifdef directive or #ifndef directive does not evaluate to true, the compiler will
evaluate all code between #else and the subsequent #endif.
For example, the following code will show the string "Debug Version" if the symbol
DEBUG is defined on the command line, else it will show the text "Release Version"

// DEBUG may be defined from the command line
// ...
#if DEBUG
 Console.WriteLine("Debug version");
#else
 Console.WriteLine("Release version");
#endif

1.8.7.4 #endif

Purpose

#endif specifies the end of a conditional directive, which began with the #ifdef or #ifndef
directive. For example:

// DEBUG may be defined from the command line
// ...
#if DEBUG
 Console.WriteLine("Debug version");
#else
 Console.WriteLine("Release version");
#endif

1.8.7.5 #endtext

Purpose

Mark the end of a #text .. #endtext region

781 XSharp

© 2015- 2024 XSharp BV

Syntax

#text := <varname>
First Line
Second Line
#endtext

Description

The language supports the TEXT .. ENDTEXT construct. These commands are
converted by the preprocessor into a #text .. #endtext constract.
#endtext always appears "alone" on a line of code and will be replaced by a call to the
(optional) endfunction that is declared with the #text directive and when the block is
assigned to a variable then the assignment will be performed on the #endtext line.

Example

Please note that the 2 UDCs below are already defined in XSharpDefs.xh

#xcommand ENDTEXT => #endtext

#xcommand TEXT TO FILE <(file)> ;
 => _TextSave(<(file)>) ;;
 #text QOut, _TextRestore

TEXT TO FILE EXAMPLE.TXT
line 1
line 2
line 3
line 4
ENDTEXT

The TEXT TO FILE command is translated into a call to the function _TextSave(), followed
by the #text directive, that specifies that each line must be sent to the QOut() function and
that also declares that the #endtext line must be replaced by a call to the _TextRestore()
function. The QOut() and _TextRestore function names are specified without parameters.
Each line in the block will be sent to the QOut() function as parameter.

So this code is converted to

_TextSave("EXAMPLE.TXT");
QOut("line 1")
QOut("line 2")

782X# Documentation

© 2015- 2024 XSharp BV

QOut("line 3")
QOut("line 4")
_TextRestore()

See also

TEXT command
#text Directive

1.8.7.6 #if

Purpose

Mark a region in the source code that will only be included in the compilation when a
logical condition evaluates to TRUE.

Syntax

#if <logical_expression>
<SourceCode included if <logical_expression> evaluates to .T.>
[#else
<SourceCode included if <logical_expression> othwerwise>
]
#endif

<logical_expression> : <expression>

<expression> : <unary_operator> <expression>
 // unary prefix expression
 | <expression> <binary_operator> <expression>
 // binary numeric expression
 | <expression> <shift_operator> <expression>
 // binary shift expression
 | <expression> <comparison_operator>
<expression> // binary logical expression
 | <expression> <bitwise_operator> <expression>
 // binary bitwise expression
 | <expression> <logical_operator> <expression>
 // binary logical expression
 | <negation_operator> <expression>

783 XSharp

© 2015- 2024 XSharp BV

 // negation expression
 | <primary_expression> // primary
expression

<unary_operator> : + | - | ++ | --

<binary_operator> : ^ | * | / | % | + | -

<shift_operator> : << | >>

<comparison_operator> : < | <= | > | >= | = | == | != | <>

<bitwise_operator> : & | |

<logical_operator> : .AND. | .OR. | .XOR.

<negation_operator> : ! | .NOT.

<primary_expression> :
<literal_value> // literal expression
 | (<expression>) //
parenthesized expression

<literal_value> : <string_literal>
 | <char_literal>
 | <logical_literal>
 | <integer>
 | <double>
 | <#define_constant>

<string_literal> : "double quoted"
 | 'single_quoted'
 | [block_quoted]
 | e"escaped"

<char_literal> c'<char>'

<logical_literal> : .T. | TRUE | .F. | FALSE

Description

The #if...#else...#endif directive forms a control structure for the preprocessor.
When the <logical_expression> evaluates to true (.T.), the preprocessor translates and
outputs the source code located between the directives #if and #else to the intermediary
file, and the source code between the directives #else and #endif is ignored.
If no #else directive is present, the preprocessor translates and outputs the source code
located between the directives #if and #endif .

784X# Documentation

© 2015- 2024 XSharp BV

If the <logical_expression> evaluates to false (.F.) the source code between the directives
#else and #endif is included only.
The <logical_expression> term can be formed using operands, compare operators and
logical operators. A compare operations always requires two operands and will be
evaluated prior to logical operations. The operands must be either string literals, numeric
literals or logical literals or a valid #define constant that results to one of the mentioned
literals.
A string will be recognized when it is enclosed within single or double quote characters. If
an undefined constant is encountered the result of that term will be false (.F.).
A logical expression consists either of two expression and one logical operator, or simply
of one literal.

Type conversions

When an expression mixes types then the preprocessor automatically converts types in
the following order for comparisons and calculations:

1. String
2. Double
3. Integer
4. Logic

Example

#if 1 > "abc"
 // the 1 is converted to "1" first before the comparison is
done
 ? "Compare number and string"
#endif
#if 1.2 > FALSE
 // the FALSE is converted to 0 first before the comparison is
done
 ? "Compare number and string"
#endif

Conversions
For comparisons and calculation operators the types of the 2 operands are compared. If
they are equal then no conversion is needed. If they are not of the same type then the
following rules are applied.

If one operand is of type Then the other operand is converted
like this

String Call .ToString() on the value

Double or Decimal Integer: ToDouble()
Logical: TRUE = 1.0, FALSE = 0.0

785 XSharp

© 2015- 2024 XSharp BV

Integer Logic: TRUE = 1, FALSE = 0

Logical (The expression on the #if line) String: Null or Empty = FALSE, All others =
TRUE
Integer: 0 = FALSE, All others = TRUE
Double: 0.0 = FALSE, All others = TRUE

Comparison operations

String comparisons are done in case sensitive way using an Ordinal comparison. The '='
operator is NOT supported for string comparisons since the preprocessor does not know
what the setting for "SetExact() is that you want to use. All comparisons are done with
String.Compare().

Dialects

In the FoxPro dialect the operators NOT, AND, OR and XOR are also available

1.8.7.7 #ifdef

Purpose

When the X# compiler encounters an #ifdef directive, followed eventually by an #endif
directive, it will compile the code between the directives only if the specified symbol is
defined.
The #ifdef statement in X# is Boolean and only tests whether the symbol has been defined
or not. For example,

// DEBUG may be defined from the command line
// ...
#if DEBUG
 Console.WriteLine("Debug version");
#else
 Console.WriteLine("Release version");
#endif

Note

The /vo8 compiler option will change this behavior:
when /vo8 is active then any symbol defined with TRUE or a non-0 numeric value will be
seen as "defined", symbols defined with FALSE or a 0 numeric value will be seen as
"undefined".

See also

786X# Documentation

© 2015- 2024 XSharp BV

1.8.7.8 #ifndef

Purpose

When the X# compiler encounters an #ifndef directive, followed eventually by an #endif
directive, it will compile the code between the directives only if the specified symbol is
NOT defined.
The #ifndef statement in X# is Boolean and only tests whether the symbol has been
defined or not. For example,

// DEBUG may be defined from the command line
// ...
#if DEBUG
 Console.WriteLine("Debug version");
#else
 Console.WriteLine("Release version");
#endif

Note

when /vo8 is active then any symbol defined with FALSE or a 0 numeric value will also be
seen as "undefined".

1.8.7.9 #include

Purpose

Tells the preprocessor to treat the contents of a specified file as if they appear in the
source program at the point where the directive appears.

#include "path-spec"

You can preprocessor definitions into include files and then use #include directives to add
them to any source file.
The path-spec is a file name that may optionally be preceded by a directory specification.
The file name must name an existing file.
The preprocessor searches for include files in this order:
1. In the same directory as the file that contains the #include statement.
2. Along the path that's specified by each /I compiler option.
3. In the Include folder inside the XSharp installation folder
4. Along the paths that are specified by the INCLUDE environment variable. (Not

supported yet)

787 XSharp

© 2015- 2024 XSharp BV

1.8.7.10 #line

Purpose

#line sets the current line number for the compiler. It is usually inserted by the
preprocessor after preprocessing an include file to synchronize the line numbers with the
original source file.

#line <number> [FileName]

Argumes

line number the new line number to use by the compiler.
FileName An optional new filename to use by the compiler

1.8.7.11 #pragma options

Purpose

The #pragma options directive allow you to enable / disable certain compiler options for a
range of code.

Syntax

#pragma options("option", state)

Note: #pragma directives must appear between before the first entity or between entities
and cannot appear in the middle of an entity

"option" can be one of the following (please note that not all compiler options can be used)

Option Description

"az" Zero based arrays

"allowdo
t"

Allow Dot for Instance Members

"enforce
override"

Enforce the use of the OVERRIDE keyword

"enforce
self"

Enforce SELF to access fields / properties / methods

788X# Documentation

© 2015- 2024 XSharp BV

"fovf" Overflow checking (duplicate of "ovf")

"initlocal
s"

Initialize local variables

"lb" Allow late binding

"memva
rs"

Allow dyamic memory variables (PUBLIC, PRIVATE, MEMVA

"named
args"

This option cannot be set with the #pragma keyword

"ovf" Overflow checking (duplicate of "fovf")

"undecla
red"

Allow undeclared variables

"vo1" This option cannot be set with the #pragma keyword

"vo2" Initialize string variables with empty strings

"vo3" All instance members virtual

"vo4" Implicit Signed / Unsigned conversions

"vo5" Implicit Clipper Calling convention

"vo6" Implicit pointer conversions

"vo7" Implicit Casts and Conversions

"vo8" This option cannot be set with the #pragma keyword

"vo9" Allow missing return statements or missing return values

"vo10" Compatible IIF Behavior

"vo11" Compatible numeric conversions

"vo12" Clipper Integer divisions

"vo13" Compatible String Comparisons

"vo14" Embed real constants as float

"vo15" Allow untyped locals

"vo16" Generate Clipper Calling Convention default constructors

"vo17" Clipper/VO Compatible Begin Sequence .. End Sequence

"fox1" This option cannot be set with the #pragma keyword

"fox2" Foxpro array syntax

"xpp1" This option cannot be set with the #pragma keyword

State can be one of the following
· on

· off

· default

789 XSharp

© 2015- 2024 XSharp BV

Please note that you can also enable / disable overflow checking with BEGIN CHECKED
.. END / BEGIN UNCHECKED .. END

1.8.7.12 #pragma warning(s)

Purpose

The #pragma warning directive allow you to suppress certain compiler warnings for a
piece of code.
We support both C# style pragma warnings commands (fully) and Vulcan style pragmas
(partially)

Syntax

#pragma warnings(number, state)
#pragma warnings (pop)
#pragma warning state2 [<errornumbers>]

Note

#pragma directives must appear between before the first entity or between entities and
cannot appear in the middle of an entity

Arguments

number Warning number to disable. Can be both numeric or in the
form of XSnnnn

state Off | Default Disables a warning or switches it back to the
situation from the command line

pop Switchs all warnings back to their default value
state2 Disable | Restore Disables or restores the warning numbers

that follow.
When no error numbers are specified, then disable disables
all warning and restore restores all warning to their default
value

errornumbers (Optional) comma separated list of numbers or names
(XSnnnn)

Note:

The compiler does NOT check if the numbers are valid or if they are indeed warnings. So
you can specify non existent numbers and/or numbers that represent errors in stead of
warnings. The compiler will not warn you when that is the case.

790X# Documentation

© 2015- 2024 XSharp BV

C# style syntax

Example Description

#pragma warning
disable 1234

Disable warning 1234

#pragma warning
disable 1234, XS2345

Disable 2 warnings 1234 and XS2345

#pragma warning
restore 1234

Reset warning 1234 to the state from the command line

#pragma warning
restore 1234, XS2345

Reset 2 warnings 1234 and XS2345 to the state from the
command line

#pragma warning
disable

Disables all warnings

#pragma warning
restore

Restores all warnings to the settings from the command line

Vulcan style syntax

Example Description

#pragma warnings
(1234, off)

Disable warning 1234

#pragma warnings
(1234, default)

Reset warning 1234 to the state from the command line

#pragma warnings
(pop)

Restores all warnings to the settings from the command line

NOT supported:

#pragma warnings
(1234, on)

#pragma warnings
(push)

1.8.7.13 #region - #endregion

Purpose

#region lets you specify a block of code that you can expand or collapse when using the
outlining feature of the Visual Studio Code Editor. In longer code files, it is convenient to be
able to collapse or hide one or more regions so that you can focus on the part of the file
that you are currently working on. The following example shows how to define a region:

791 XSharp

© 2015- 2024 XSharp BV

#region MyClass definition
CLASS MyClass
 EXPORT Name as STRING
END CLASS
#endregion

Comments

A #region block must be terminated with a #endregion directive.
A #region block cannot overlap with a #ifdef block or an #ifndef block. However, a #region
block can be nested in a #ifdef or #ifndef block, and a #ifdef or #ifndef block can be nested
in a #region block.
For now the compiler does not enforce this, but it will in the not too far future.
A #region and #endregion block may have optional comments after the #region and
#endregion keyword. The compiler will ignore everything after the keyword until the end of
the line

1.8.7.14 #stdout

Purpose

Send data to the output stream during compilation

Syntax

#stdout <message>

Description

The #stdout directive sends output to the standard output during compilation followed by
a CRLF.
If this output will be shown or not in the IDE that you are using depends on the settings of
this IDE.

Example

// example of #stdout
// The example demonstrates the use of #stdout
FUNCTION Start AS VOID
#ifndef DEBUG // output at compile time

792X# Documentation

© 2015- 2024 XSharp BV

 #stdout Compiling a debug version of the program
#endif
? "Hello world"
RETURN

1.8.7.15 #text

Purpose

Mark the start of a #text .. #endtext region.
The #text directive also defines the nature of the region. This region can either assign a
value to a local variable or process the contents of the region.
There are 2 variations of the #text directibe

1. #text [:= | +=] VarName [, LineDelimiter [, LineFunc, [,
EndFunc]]]
2. #text LineFunc [, EndFunc]

1. This variation can be recognized by the := or += operator that follows the #text
directive. This declares a #text .. #endtext region that stores the value to a local
variable for which the name is specified behind the operator. The text declaration may
also contain (optional) tokens that will be used as "line delimiters", an optional function
that will be used to calculate each line and an optional function name that will be called
from the #endtext line

2. This variation does not have a variable name and declares up to 2 function names for
each line and the #endtext line

Arguments

VarName is the Name of the variable that should be assigned the
value of the Text block

LineDelimiter is the delimiter that should be added to the end of every line
in the block

793 XSharp

© 2015- 2024 XSharp BV

LineFunc is the Name of a function that should be called on every line
in the block. The function gets passed the line and should
return a string

EndFunc is the Name of a function that gets called after all the lines
were created. This function receives the string value of the
block when the block is assigned to a variable and should
return a string. When the block is not assigned to a variable
then this function gets called without parameters.

Example 1

Please note that the 3 UDCs below are already defined in XSharpDefs.xh

#xcommand ENDTEXT => #endtext

#xcommand TEXT TO <varname> ;
 => #text := <varname>, chr(13)+chr(10)

#xcommand TEXT TO <varname> ADDITIVE ;
 => #text += <varname>, chr(13)+chr(10)

LOCAL cResult AS STRING
TEXT TO cResult
line 1
line 2
line 3
line 4
TEXT
? cResult

This code is converted to

LOCAL cResult AS STRING
var tempLocal := System.Text.StringBuilder{}
tempLocal:Append("Line 1"+chr(13)+chr(10))
tempLocal:Append("Line 2"+chr(13)+chr(10))
tempLocal:Append("Line 3"+chr(13)+chr(10))
cResult := tempLocal:ToString()
? cResult

Please note that the compiler declares different TEXT commands for different dialects.
The TEXT command above works in all dialects.
The TEXT command below is for the Non-Core dialects (with the exception of FoxPro):

794X# Documentation

© 2015- 2024 XSharp BV

#xcommand TEXT INTO <varname> WRAP [<lnbreak>] TRIMMED ;
 => #text := <varname>, iif(<.lnbreak.>,<!lnbreak!>, CRLF) ,
LTrim

This command allows a user defined end of line character and calls the LTrim() function
on each string before assigning it to the variable

FoxPro declares a special TEXT command that looks like this:

#xcommand TEXT TO <varname> [<tm:TEXTMERGE>] [<noshow:NOSHOW>]
[FLAGS <flags>] [PRETEXT <expression>] ;
 => __TextInit(<.tm.>, <.noshow.>, iif(<.flags.>, <!flags!>,
0), <!expression!>) ;;
 #text := <varname>, ,__TextWriteLine , __TextEnd

As you can see the command gets translated into a function call to __TextInit() with the
values of the various TEXT command options. Each line is send to the __TextWriteLine
function and the #endtext directive is replaced with a call to __TextEnd(). There are NO
delimiters added for each line. This is handled inside __TextWriteLine. This function is
also responsible for expanding expressions inside the text when the TEXTMERGE option
is chosen, or when the global SET TEXTMERGE is enabled.

Example 2

Please note that the 2 UDCs below are already defined in XSharpDefs.xh

#xcommand ENDTEXT => #endtext

#xcommand TEXT TO FILE <(file)> ;
 => _TextSave(<(file)>) ;;
 #text QOut, _TextRestore

TEXT TO FILE EXAMPLE.TXT
line 1
line 2
line 3
line 4
ENDTEXT

The TEXT TO FILE command is translated into a call to the function _TextSave(), followed
by the #text directive, that specifies that each line must be sent to the QOut() function and
that also declares that the #endtext line must be replaced by a call to the _TextRestore()
function. The QOut() and _TextRestore function names are specified without parameters.
Each line in the block will be sent to the QOut() function as parameter.

So this code is converted to

795 XSharp

© 2015- 2024 XSharp BV

_TextSave("EXAMPLE.TXT");
QOut("line 1")
QOut("line 2")
QOut("line 3")
QOut("line 4")
_TextRestore()

See also

TEXT command
Core TEXT Command
Non-Core TEXT Command
FoxPro TEXT Command
#endtext Directive

1.8.7.16 #translate

Purpose

Specify a user-defined translation directive

Syntax

#translate <matchPattern> => <resultPattern> // can be
abbreviated to 4 characters
#xtranslate <matchPattern> => <resultPattern> // cannot be
abbreviated to 4 characters
#ytranslate <matchPattern> => <resultPattern> // cannot be
abbreviated to 4 characters and must match case

 Arguments

<matchPattern> is the pattern the input text should match.

<resultPattern> is the text produced if a portion of input text matches the
<matchPattern>.

The => symbol between <matchPattern> and <resultPattern> is, along with #command
or #translate, a literal part of the syntax that must be specified in a #command or
#translate directive. The symbol consists of an equal sign followed by a greater than
symbol with no intervening spaces. Do not confuse the symbol with the >= or the <=
comparison operators in the xBase language.

796X# Documentation

© 2015- 2024 XSharp BV

Description
#command and #translate are translation directives that define commands and
pseudofunctions. Each directive specifies a translation rule. The rule consists of two
portions: a match pattern and a result pattern.
The match pattern matches a command specified in the program (.prg) file and saves
portions of the command text (usually command arguments) for the result pattern to use.
The result pattern then defines what will be written to the result text and how it will be
written using the saved portions of the matching input text.

#command and #translate are similar, but differ in the circumstance under which their
match patterns match input text. A #command directive matches only if the input text is a
complete statement, while #translate matches input text that is not a complete statement.
 #command defines a complete command and #translate defines clauses and
pseudofunctions that may not form a complete statement. In general, use #command for
most definitions and #translate for special cases.

#command and #translate are similar to but more powerful than the #define directive.
#define, generally, defines identifiers that control conditional compilation and manifest
constants for commonly used constant values such as SDK codes. Refer to any of the
header files in the INCLUDE directory for examples of manifest constants defined using
#define.

#command and #translate directives have the same scope as the #define directive. The
definition is valid only for the current program (.prg) file unless defined in Std.ch or the
header specified with the /U option on the compiler command line. If defined elsewhere,
the definition is valid from the line where it is specified to the end of the program file.
Unlike #define, a #translate or #command definition cannot be explicitly undefined. The
#undef directive has no effect on a #command or #translate definition.

As the preprocessor encounters each source line preprocessor, it scans for definitions in
the following order of precedence: #define, #translate, and #command. When there is a
match, the substitution is made to the result text and the entire line is reprocessed until
there are no matches for any of the three types of definitions. #command and #translate
rules are processed in stack-order (i.e., last in-first out, with the most recently specified
rule processed first).

In general, a command definition provides a way to specify an English language statement
that is, in fact, a complicated expression or function call, thereby improving the readability
of source code. You can use a command in place of an expression or function call to
impose order of keywords, required arguments, combinations of arguments that must be
specified together, and mutually exclusive arguments at compile time rather than at
runtime. This can be important since procedures and user-defined functions can now be
called with any number of arguments, forcing any argument checking to occur at runtime.
 With command definitions, the preprocessor handles some of this.

Because directives are processed in stack order, when defining more than one rule for a
command, place the most general case first, followed by the more specific ones. This
ensures that the proper rule will match the command specified in the program (.prg) file.

Match Markers

See the topic about Match Markers for a detailed discussion

797 XSharp

© 2015- 2024 XSharp BV

Result Markers

See the topic about Result Markers for a detailed discussion

 Notes

· Less than operator: If you specify the less than operator (<) in the <resultPattern>
expression, you must precede it with the escape character (\).

· Multistatement lines: You can specify more than one statement as a part of the result
pattern by separating each statement with a semicolon. If you specify adjacent
statements on two separate lines, the first statement must be followed by two
semicolons.

1.8.7.17 #undef

Purpose

Syntax

#undef identifier

#undef lets you undefine a symbol, such that, by using the symbol as the expression in a
#ifdef directive, the expression will evaluate to false or in a or #ifndef directive the
expression will evaluate to true.

1.8.7.18 Match Markers

Match Pattern

The <matchPattern> portion of a translation directive is the pattern the input text must
match. A match pattern is made from one or more of the following components, which
the preprocessor tries to match against input text in a specific way:

· Literal values are actual characters that appear in the match pattern. These characters
must appear in the input text, exactly as specified to activate the translation directive.

· Words are keywords and valid identifiers that are compared according to the dBASE
convention (case-insensitive, first four letters mandatory, etc.). The match pattern must
start with a Word.

· #xcommand and #xtranslate can recognize keywords of more than four significant
letters.

· Match markers are label and optional symbols delimited by angle brackets (<>) that
provide a substitute (idMarker) to be used in the <resultPattern> and identify the clause

798X# Documentation

© 2015- 2024 XSharp BV

for which it is a substitute. Marker names are identifiers and must, therefore, follow the
xBase identifier naming conventions. In short, the name must start with an alphabetic or
underscore character, which may be followed by alphanumeric or underscore
characters.

This table describes all match marker forms:

Match Marker Name

<idMarker> Regular match marker

<idMarker,...> List match marker

<idMarker:word list> Restricted match marker

 <*idMarker*> Wild match marker

<(idMarker)> Extended Expression match marker

<#idMarker> Single match marker.

<%idMarker%> Wildcard match marker

· Regular match marker: Matches the next legal expression in the input text. The regular
match marker, a simple label, is the most general and, therefore, the most likely match
marker to use for a command argument. Because of its generality, it is used with the
regular result marker, all of the stringify result markers, and the blockify result marker.

· List match marker: Matches a comma-separated list of legal expressions. If no input
text matches the match marker, the specified marker name contains nothing. You must
take care in making list specifications because extra commas will cause unpredictable
and unexpected results.

The list match marker defines command clauses that have lists as arguments.
Typically these are FIELDS clauses or expression lists used by database commands.
When there is a match for a list match marker, the list is usually written to the result text
using either the normal or smart stringify result marker. Often, lists are written as literal
arrays by enclosing the result marker in curly ({ }) braces.

· Restricted match marker: Matches input text to one of the words in a comma-
separated list. If the input text does not match at least one of the words, the match fails
and the marker name contains nothing.

A restricted match marker is generally used with the logify result marker to write a
logical value into the result text. If there is a match for the restricted match marker, the
corresponding logify result marker writes true (.T.) to the result text; otherwise, it writes
false (.F.). This is particularly useful when defining optional clauses that consist of a
command keyword with no accompanying argument. Std.ch implements the REST
clause of database commands using this form.

· Wild match marker: Matches any input text from the current position to the end of a
statement. Wild match markers generally match input that may not be a legal
expression, such as
#command NOTE <*x*> in Clippers Std.ch, gather the input text to the end of
thestatement, and write it to the result text using one of the stringify result markers.

799 XSharp

© 2015- 2024 XSharp BV

· Single match marker. Matches all consecutive tokens until a whitespace token.

· Wildcard match marker: Matches a list of tokens that are an Id, Comma, ? or *. This

can be used in commands such as SAVE ALL LIKE a*,b*

· Extended expression match marker: Matches a regular orextended expression,
including a file name or path specification. It is used with the smart stringify result
marker to ensure that extended expressions will not get stringified, while normal,
unquoted string file specifications will.

· Optional match clauses are portions of the match pattern enclosed in square brackets
([]). They specify a portion of the match pattern that may be absent from the input text.
 An optional clause may contain any of the components allowed within a
<matchPattern>, including other optional clauses.

Optional match clauses may appear anywhere and in any order in the match pattern
and still match input text. Each match clause may appear only once in the input text.
There are two types of optional match clauses: one is a keyword followed by match
marker, and the other is a keyword by itself. These two types of optional match clauses
can match all of the traditional command clauses typical ofthe xBase command set.

Optional match clauses are defined with a regular or list match marker to match input
text if the clause consists of an argument or a keyword followed by an argument (see
the INDEX clause of the USE command in Std.ch). If the optional match clause
consists of a keyword by itself, it is matched with a restricted match marker (see the
EXCLUSIVE or SHARED clause of the USE command in Std.ch).

In any match pattern, you may not specify adjacent optional match clauses consisting
solely of match markers, without generating a compiler error. You may repeat an
optional clause any number of times in the input text, as long as it is not adjacent to any
other optional clause. To write a repeated match clause to the result text, use repeating
result clauses in the <resultPattern> definition.

1.8.7.19 Result Markers

Result Pattern

The <resultPattern> portion of a translation directive is the text the preprocessor will
produce if a piece of input text matches the <matchPattern>. <resultPattern> is made
from one or more of the following components:

· Literal tokens are actual characters that are written directly to the result text.

· Words are xBase keywords and identifiers that are written directly to the result text.

· Result markers: refer directly to a match marker name. Input text matched by the
match marker is written to the result text via the result marker.

This table lists the Result marker forms:

800X# Documentation

© 2015- 2024 XSharp BV

Result Marker Name

<idMarker> Regular result marker

 #<idMarker> Dumb stringify result marker

 <"idMarker"> Normal stringify result marker

<(idMarker)> Smart stringify result marker

 <{idMarker}> Blockify result marker

<.idMarker.> Logify result marker

<!idmarker!> Notempty result marker

· Regular result marker: Writes the matched input text to the result text, or nothing if no
input text is matched. Use this, the most general result marker, unless you have special
requirements. You can use it with any of the match markers, but it almost always is
used with the regular match marker.

· Dumb stringify result marker: Stringifies the matched input text and writes it to the
result text. If no input text is matched, it writes a null string (""). If the matched input text
is a list matched by a list match marker, this result marker stringifies the entire list and
writes it to the result text.

This result marker writes output to result text where a string is always required. This is
generally the case for commands where a command or clause argument is specified
as a literal value but the result text must always be written as a string even if the
argument is not specified.

· Normal stringify result marker: Stringifies the matched input text and writes it to the
result text. If no input text is matched, it writes nothing to the result text. If the matched
input text is a list matched by a list match marker, this result marker stringifies each
element in the list and writes it to the result text.

The normal stringify result marker is most often used with the blockify result marker to
compile an expression while saving a text image of the expression (See the SET
FILTER condition and the INDEX key expression in Std.ch).

· Smart stringify result marker: Stringifies matched input text only if source text is
enclosed in parentheses. If no input text matched, it writes nothing to the result text. If
the matched input text is a list matched by a list match marker, this result marker
stringifies each element in the list (using the same stringify rule) and writes it to the
result text.

The smart stringify result marker is designed specifically to support extended
expressions for commands other than SETs with <xlToggle> arguments. Extended
expressions are command syntax elements that can be specified as literal text or as an
expression if enclosed in parentheses. The <xcDatabase> argument of the USE
command is a typical example. For instance, if the matched input for the
<xcDatabase> argument is the word Customer, it is written to the result text as the
string "Customer," but the expression (cPath + cDatafile) would be written to the result
text unchanged (i.e., without quotes).

801 XSharp

© 2015- 2024 XSharp BV

· Blockify result marker: Writes matched input text as a code block without any
arguments to the result text. For example, the input text x + 3 would be written to the
result text as {|| x + 3}. If no input text is matched, it writes nothing to the result text. If
the matched input text is a list matched by a list match marker, this result marker
blockifies each element in the list.

The blockify result marker used with the regular and list match markers matches
various kinds of expressions and writes them as code blocks to the result text.
Remember that a code block is a piece of compiled code to execute sometime later.
This is important when defining commands that evaluate expressions more than once
per invocation. When defining a command, you can use code blocks to pass an
expression to a function and procedure as data rather than as the result of an
evaluation. This allows the target routine to evaluate the expression whenever
necessary.

In Std.ch, the blockify result marker defines database commands where an expression
is evaluated for each record. Commonly, these are field or expression lists, FOR and
WHILE conditions, or key expressions for commands that perform actions based on key
values.

· Logify result marker: Writes true (.T.) to the result text if any input text is matched;
otherwise, it writes false (.F.) to the result text. This result marker does not write the
input text itself to the result text.

The logify result marker is generally used with the restricted match marker to write true
(.T.) to the result text if an optional clause is specified with no argument; otherwise, it
writes false (.F.). In Std.ch, this formulation defines the EXCLUSIVE and SHARED
clauses of the USE command.

· Notempty result marker. Writes the matched input text to the result text, or NIL if no
input text is matched. This may be required instead of the regular result marker if you
place the marker inside an IIF() expression.

· Repeating result clauses are portions of the <resultPattern> enclosed by square
brackets ([]). The text within a repeating clause is written to the result text as many
times as it has input text for any or all result markers within the clause. If there is no
matching input text, the repeating clause is not written to the result text. Repeating
clauses, however, cannot be nested. If you need to nest repeating clauses, you
probably need an additional
#command rule for the current command.

Repeating clauses are the result pattern part of the #command facility that create
optional clauses which have arguments. You can match input text with any match
marker other than the restricted match marker and write to the result text with any of the
corresponding result markers. Typical examples of this facility are the definitions for the
STORE and REPLACE commands in Std.ch.

802X# Documentation

© 2015- 2024 XSharp BV

1.9 X# Compiler Options

The X# compiler is a command line tool named xsc.exe. This tool can be controlled using
command line options. The following pages describe these command line options.

803 XSharp

© 2015- 2024 XSharp BV

1.9.1 Command-line Building With xsc.exe

You can invoke the X# compiler by typing the name of its executable file (xsc.exe) at a
command prompt.

If you use a standard Command Prompt window, you must adjust your path before you
can invoke xsc.exe from any subdirectory on your computer.

You can also use MSBuild to build X# programs programmatically. For more information,
see the MSBuild documentation on MSDN.

The xsc.exe executable file usually is located in the {Program Files}\XSharp\Bin folder
under the Windows directory.

When you build programs with the Visual Studio IDE then Visual Studio will locate the X#
compiler automatically for you and the build output from the compiler will be shown in the
Output Windows of Visual Studio.
You can set the verbosity level of the compiler output from the Tools/Options, Projects
and Solutions, Build and Run page.

Rules for Command-Line Syntax for the X# Compiler

The X# compiler uses the following rules when it interprets arguments given on the
operating system command line:

· Arguments are delimited by white space, which is either a space or a tab.

· The caret character ()̂ is not recognized as an escape character or delimiter. The
character is handled by the command-line parser in the operating system before it is
passed to the argv array in the program.

· A string enclosed in double quotation marks ("string") is interpreted as a single
argument, regardless of white space that is contained within. A quoted string can be
embedded in an argument.

· A double quotation mark preceded by a backslash (\") is interpreted as a literal double
quotation mark character (").

· Backslashes are interpreted literally, unless they immediately precede a double
quotation mark.

· If an even number of backslashes is followed by a double quotation mark, one
backslash is put in the compiler options array for every pair of backslashes, and the
double quotation mark is interpreted as a string delimiter.

· If an odd number of backslashes is followed by a double quotation mark, one backslash
is put in the compiler options array for every pair of backslashes, and the double
quotation mark is "escaped" by the remaining backslash. This causes a literal double
quotation mark (") to be added in compiler options array.

· Commandline options can start with a hyphen (-) or a slash (/). On Non windows
platforms the hyphen should be used because the slash may be seen as a path
delimiter character

· If you do not use the /noconfig compiler option then references to the assemblies listed
in xsc.exe will be automatically included.

804X# Documentation

© 2015- 2024 XSharp BV

Sample commands for the X# Compiler

xsc file.prg Compile File.prg and produce File.exe

xsc -target:library file.prg Compile File.prg and produce File.dll

xsc -out:Program.exe file.prg Compile File.prg and produce Program.exe

xsc -define:DEBUG -optimize -out:File.exe *.prg Compiles all the X# files in the current
directory, with optimizations on and defines
the DEBUG symbol. The output is File2.exe

xsc /target:library /out:File2.dll /warn:0 /nologo /
debug *.prg

Compiles all the X# files in the current
directory producing a debug version of
File2.dll. No logo and no warnings are
displayed

xsc /target:library /out:MyBase.rdd *.prg Compiles all the X# files in the current
directory to MyBase.rdd (a DLL):

805 XSharp

© 2015- 2024 XSharp BV

1.9.2 X# Compiler Options By Category

The following compiler options are sorted by category. For an alphabetical list, see : X#
Compiler Options Listed Alphabetically

Dialect support

Option Purpose

-dialect Specifies the dialect to use when compiling. The following
values are supported: Core, VO, Vulcan, dBase, FoxPro,
Xbase++ and Harbour. Work on the VO and Vulcan
dialects has started.

XBase Compatibility

Option Purpose

-allowdot Allow the DOT (.) character as operator for instance
members

-allowoldstyleassignments Allow assignments with a single Equals operator (=)

-az Specifies that arrays are zero-based rather than one-
based

-cs Specifies that the compiler should use case-sensitive type
names

-d Instruct the compiler to emit debugging information. (short
for /debug)

-enforceoverride Enforce the use of the OVERRIDE keyword to override
methods from parent classes in subclasses

-enforceself Enforce the use of SELF: to access fields, properties and
methods inside a class

-fovf Specifies that exceptions will be raised on invalid floating
point operations

-fox1 Classes are assumed to inherit from the Custom class

-fox2 Fompatible FoxPro Array support

-i Specifies a directory to add to the #include file search
path

-initlocals Initialize all local variables

-ins Use implicit namespace lookup mechanism

-lb Specifies that the compiler should generate late bound
calls when necessary

806X# Documentation

© 2015- 2024 XSharp BV

Option Purpose

-memvar Enables support for memory variables

-modernsyntax Disable certain legacy compiler options

-namedarguments Specifies whether to allow named arguments in the parser
or not.

-noinit Suppress generation of empty $Init1() and $Exit()
functions

-norun Obsolete compiler option in X#, inherited from Vulcan. To
achieve this simply remove the references to the runtime
DLLs and compile in the Core dialect

-nostddefs Suppresses preprocessor definitions in XSharpDefs.xh

-ns Specify the default namespace for the output assembly

-ovf Specifies that exceptions will be raised on integer
overflows

-showincludes Lists #include files in compiler output

-snk Signs assembly with strong name key pair

-undeclared Enables support for undeclared variables

-vo1 Use Init and Axit methods in stead of Constructors and
Destructors

-vo2 Initialize STRING variables, fields and DIM arrays to empty
strings

-vo3 Treats All Methods As VIRTUAL

-vo4 Allows implicit signed/unsigned integer conversions

-vo5 Implicit CLIPPER Calling Convention for Zero-Argument
Functions

-vo6 Resolves typed function pointers to PTR

-vo7 Allows compatible implicit casts and conversions

-vo8 Enables compatible preprocessor behavior

-vo9 Allows missing RETURN statements

-vo10 Enables compatible IIF behavior

-vo11 Enables Visual Objects compatible arithmetic
conversions

-vo12 Enables Clipper compatible integer divisions

-vo13 Enables Visual Objects compatible string comparisons

-vo14 Insert floating point literals as FLOAT

807 XSharp

© 2015- 2024 XSharp BV

Option Purpose

-vo15 Allow untyped Locals and return types

-vo16 Automatically generate Clipper calling convention
constructors for classes without constructor

-w This option is not supported. use -NoWarn in stead

-wx Treats all warnings as errors (alias for -warnaserror)

-xpp1 All classes inherit from the Abstract class

Optimization

Option Purpose

-filealign Specifies the size of sections in the output file.

-optimize Enables/disables optimizations.

Output files

Option Purpose

-doc Specifies an XML file where processed documentation
comments are to be written.

-modulename Specify the name of the source module

-out Specifies the output file.

-pathmap Specify a mapping for source path names output by the
compiler.

-pdb Specifies the file name and location of the .pdb file.

-platform Specify the output platform.

-preferreduilang Specify a language for compiler output.

-target Specifies the format of the output file using one of five
options: /target:appcontainerexe, /target:exe, /target:library,
/target:module, /target:winexe, or /target:winmdobj.

-touchedfiles Specify filename that will be updated with list of files read
and written by the compiler

.NET Assemblies

808X# Documentation

© 2015- 2024 XSharp BV

Option Purpose

-analyzer Run the analyzers from this assembly (Short form: /a)

-additionalfile Names additional files that don't directly affect code
generation but may be used by analyzers for producing
errors or warnings.

-addmodule Specifies one or more modules to be part of this
assembly.

-delaysign Instructs the compiler to add the public key but to leave the
assembly unsigned.

-keycontainer Specifies the name of the cryptographic key container.

-keyfile Specifies the filename containing the cryptographic key.

-lib Specifies the location of assemblies referenced by means
of /reference.

-nostdlib Instructs the compiler not to import the standard library
(mscorlib.dll).

-reference Imports metadata from a file that contains an assembly.

Debugging / Error checking

Option Purpose

-ast Dump the abstract syntax tree for each source file (.ast
extension)

-checked Specifies whether integer arithmetic that overflows the
bounds of the data type will cause an exception at run
time.

-debug Instruct the compiler to emit debugging information.

-errorendlocation Output line and column of the end location of each error

-errorreport Sets error reporting behavior.

-fullpaths Specifies the absolute path to the file in compiler output.

-lexonly Tells the compiler to only lex the source code.

-nowarn Suppresses the compiler's generation of specified
warnings.

-parseonly This compiler option tells the compiler to lex and parse the
code.

-ruleset Specify a ruleset file that disables specific diagnostics.

-warn Sets the warning level.

809 XSharp

© 2015- 2024 XSharp BV

Option Purpose

-warnaserror Promotes warnings to errors.

-wx This is an alias for the -warnaserror option

Preprocessor

Option Purpose

-define Defines preprocessor symbols.

-i Specifies a directory to add to the #include file search
path

-ppo Writes preprocessor output to file

-nostddef Suppresses preprocessor definitions in XSharpDefs.xh

-showdefs Show the defines that are added from the header files and
their usage

-showincludes Lists #include files in compiler output

-verbose Shows includes, source file names, defines and more. on
the console

Resources

Option Purpose

-link Makes COM type information in specified assemblies
available to the project.

-linkresource Creates a link to a managed resource.

-resource Embeds a .NET Framework resource into the output file.

-usenativeversion Prefer native resource (if any) over resources generated
from managed assembly properties

-win32icon Specifies an .ico file to insert into the output file.

-win32res Specifies a Win32 resource to insert into the output file.

Miscellaneous

810X# Documentation

© 2015- 2024 XSharp BV

Option Purpose

@ Specifies a response file.

-? Lists compiler options to stdout.

-appconfig Specify an application configuration file containing
assembly binding settings

-baseaddress Specifies the preferred base address at which to load a
DLL.

-checksumalgorithm Specify the algorithm for calculating the source file
checksum stored in PDB. Supported values are: SHA1
(default) or SHA256.

-codepage Specifies the code page to use for all source code files in
the compilation.

-help Lists compiler options to stdout.

-highentropyva Specifies that the executable file supports address space
layout randomization (ASLR).

-langversion Specify language version mode: core, VO, Vulcan,
Harbour, FoxPro, dBase

-main Specifies the location of the Main method.

-noconfig Instructs the compiler not to compile with xsc.rsp.

-nologo Suppresses compiler banner information.

-parallel Specifies whether to use concurrent build (+).

-recurse Searches subdirectories for source files to compile.

-s Syntax check only

-shared Use the shared compiler

-subsystemversion Specifies the minimum version of the subsystem that the
executable file can use.

-unsafe Enables compilation of code that uses the unsafe
keyword.

-utf8output Displays compiler output using UTF-8 encoding.

-win32manifest Specify a user-defined Win32 application manifest file to
be embedded into a executable file.

811 XSharp

© 2015- 2024 XSharp BV

1.9.3 X# Compiler Options Listed Alphabetically

The following compiler options are sorted by category. For an alphabetical list, see : X#
Compiler Options Listed Alphabetically
The options in RED are not supported yet.

Option Purpose

@ Specifies a response file.

-? Lists compiler options to stdout.

-additionalfile Names additional files that don't directly affect code
generation but may be used by analyzers for producing
errors or warnings.

-addmodule Specifies one or more modules to be part of this
assembly.

-allowdot Controls if the DOT (".") operator should be allowed to
access instance members

-allowoldstyleassignments Allow assignments with a single Equals operator (=)

-analyzer Run the analyzers from this assembly (Short form: /a)

-appconfig Specify an application configuration file containing
assembly binding settings

-ast Dump the abstract syntax tree for each source file (.ast
extension)

-az Specifies that arrays are zero-based rather than one-
based

-baseaddress Specifies the preferred base address at which to load a
DLL.

-checked Specifies whether integer arithmetic that overflows the
bounds of the data type will cause an exception at run
time.

-checksumalgorithm Specify the algorithm for calculating the source file
checksum stored in PDB. Supported values are: SHA1
(default) or SHA256.

-codepage Specifies the code page to use for all source code files in
the compilation.

-cs Specifies that the compiler should use case-sensitive type
names

-debug -d Instruct the compiler to emit debugging information.

-define Defines preprocessor symbols.

-dialect Specifies the dialect to use when compiling. The following
values are supported: Core, VO, Vulcan, dBase, FoxPro,

812X# Documentation

© 2015- 2024 XSharp BV

Option Purpose

Xbase++ and Harbour. Work on the VO and Vulcan
dialects has started.

-delaysign Instructs the compiler to add the public key but to leave the
assembly unsigned.

-doc Specifies an XML file where processed documentation
comments are to be written.

-enforceoverride Enforce the use of the OVERRIDE keyword to override
methods from parent classes in subclasses

-enforceself Enforce the use of SELF: to access fields, properties and
methods inside a class

-errorendlocation Output line and column of the end location of each error

-errorreport Sets error reporting behavior.

-filealign Specifies the size of sections in the output file.

-fox1 Assume classes inherit from Custom class. This also
controls the code generation for properties.

-fox2 Compatible FoxPro Array support

-fovf Specifies that exceptions will be raised on invalid floating
point operations (duplicate of -ovf)

-fullpaths Specifies the absolute path to the file in compiler output.

-help Lists compiler options to stdout.

-highentropyva Specifies that the executable file supports address space
layout randomization (ASLR).

-i Specifies a directory to add to the #include file search
path

-initlocals Initialize all local variables

-ins Use implicit namespace lookup mechanism

-keycontainer Specifies the name of the cryptographic key container.

-keyfile Specifies the filename containing the cryptographic key.

-lb Specifies that the compiler should generate late bound
calls when necessary

-langversion Specify language version mode: core, VO, Vulcan,
Harbour, FoxPro, dBase

-lexonly Tells the compiler to only lex the source code.

-lib Specifies the location of assemblies referenced by means
of /reference.

813 XSharp

© 2015- 2024 XSharp BV

Option Purpose

-link Makes COM type information in specified assemblies
available to the project.

-linkresource Creates a link to a managed resource.

-main Specifies the location of the Main method.

-memvar Enable support for memory variables

-modernsyntax Disable certain legacy compiler options

-modulename Specify the name of the source module

-namedargs Specifies whether to allow named arguments in the parser
or not.

-nostddefs Suppresses preprocessor definitions in XSharpDefs.xh

-ns Specify the default namespace for the output assembly

-noconfig Instructs the compiler not to compile with xsc.rsp.

-noinit Suppress generation of empty $Init1() and $Exit()
functions

-nologo Suppresses compiler banner information.

-norun Obsolete compiler option in X#, inherited from Vulcan. To
achieve this simply remove the references to the runtime
DLLs and compile in the Core dialect

-nostdlib Instructs the compiler not to import the standard library
(mscorlib.dll).

-nowarn Suppresses the compiler's generation of specified
warnings.

-optimize Enables/disables optimizations.

-ovf Specifies that exceptions will be raised on overflows
(duplicate of -fovf)

-out Specifies the output file.

-parallel Specifies whether to use concurrent build (+).

-parseonly Tells the compiler to only lex and parse the source code.

-pathmap Specify a mapping for source path names output by the
compiler.

-pdb Specifies the file name and location of the .pdb file.

-platform Specify the output platform.

-ppo Writes preprocessor output to file

-preferreduilang Specify a language for compiler output.

814X# Documentation

© 2015- 2024 XSharp BV

Option Purpose

-recurse Searches subdirectories for source files to compile.

-reference Imports metadata from a file that contains an assembly.

-resource Embeds a .NET Framework resource into the output file.

-ruleset Specify a ruleset file that disables specific diagnostics.

-s Syntax check only

-shared Use the shared compiler

-showdefs Show the defines that are added from the header files and
their usage

-showincludes Lists #include files in compiler output

-snk Signs assembly with strong name key pair

-subsystemversion Specifies the minimum version of the subsystem that the
executable file can use.

-target Specifies the format of the output file using one of five
options: /target:appcontainerexe, /target:exe, /target:library,
/target:module, /target:winexe, or /target:winmdobj.

-touchedfiles Specify filename that will be updated with list of files read
and written by the compiler

-undeclared Enables the support for undeclared memory variables

-unsafe Enables compilation of code that uses the unsafe
keyword.

-usenativeversion Prefer native resource (if any) over resources generated
from managed assembly properties

-utf8output Displays compiler output using UTF-8 encoding.

-vo1 Use Init and Axit methods in stead of Constructors and
Destructors

-vo2 Initialize STRING variables, fields and DIM arrays to empty
strings

-vo3 Treats All Methods As VIRTUAL

-vo4 Allows implicit numeric conversions

-vo5 Implicit CLIPPER Calling Convention for Zero-Argument
Functions

-vo6 Resolves typed function pointers to PTR

-vo7 Allows compatible implicit casts and conversions

-vo8 Enables compatible preprocessor behavior

-vo9 Allows missing RETURN statements

815 XSharp

© 2015- 2024 XSharp BV

Option Purpose

-vo10 Enables compatible IIF behavior

-vo11 Enables Visual Objects compatible arithmetic
conversions

-vo12 Enables Clipper compatible integer divisions

-vo13 Enables Visual Objects compatible string comparisons

-vo14 Insert floating point literals as FLOAT

-vo15 Allow untyped Locals and return types

-vo16 Automatically generate Clipper calling convention
constructors for classes without constructor

-w This option is not supported. use -nowarn in stead

-warn Sets the warning level.

-warnaserror Promotes warnings to errors.

-win32icon Specifies an .ico file to insert into the output file.

-win32manifest Specify a user-defined Win32 application manifest file to
be embedded into a executable file.

-win32res Specifies a Win32 resource to insert into the output file.

-wx Treats all warnings as errors (alias for -warnaserror)

-xpp1 Classes without parent class inherit from the Abstract
class

1.9.3.1 @

The @ option lets you specify a file that contains compiler options and source code files to
compile.

Syntax

@response_file

Arguments

response_file A file that lists compiler options or source code files to
compile.

816X# Documentation

© 2015- 2024 XSharp BV

Remarks

The compiler options and source code files will be processed by the compiler just as if
they had been specified on the command line.

To specify more than one response file in a compilation, specify multiple response file
options. For example:

@file1.rsp @file2.rsp

In a response file, multiple compiler options and source code files can appear on one line.
A single compiler option specification must appear on one line (cannot span multiple
lines). Response files can have comments that begin with the # symbol.

Specifying compiler options from within a response file is just like issuing those
commands on the command line. See Building from the Command Line for more
information.

The compiler processes the command options as they are encountered. Therefore,
command line arguments can override previously listed options in response files.
Conversely, options in a response file will override options listed previously on the
command line or in other response files.

X# provides the xsc.rsp file, which is located in the same directory as the xsc.exe file. See
-noconfig for more information on xsc.rsp.

This compiler option cannot be set in the Visual Studio development environment, nor can
it be changed programmatically.

Example

The following are a few lines from a sample response file:

build the first output file
-target:exe -out:MyExe.exe source1.prg source2.prg

817 XSharp

© 2015- 2024 XSharp BV

1.9.3.2 -additionalfile

The -additionalfile commandline option allows you to include extra files in the assembly.
To support this scenario the X# compiler can accept additional, non-source text files as
inputs.

Syntax

-additionalfile:file

For example, an analyzer may enforce that a set of banned terms is not used within a
project, or that every source file has a certain copyright header. The terms or copyright
header could be passed to the analyzer as an additional file, rather than being hard-coded
in the analyzer itself.

Example

On the command line, additional files can be passed using The -additionalfile option. For
example:

xsc alpha.prg -additionalfile:terms.txt

1.9.3.3 -addmodule

This option adds a module that was created with the target:module switch to the current
compilation.

Syntax

-addmodule:file[;file2]

Arguments

file, file2 An output file that contains metadata. The file cannot contain
an assembly manifest. To import more than one file,
separate file names with either a comma or a semicolon.

Remarks

All modules added with -addmodule must be in the same directory as the output file at run
time. That is, you can specify a module in any directory at compile time but the module
must be in the application directory at run time. If the module is not in the application
directory at run time, you will get a TypeLoadException.

818X# Documentation

© 2015- 2024 XSharp BV

file cannot contain an assembly. For example, if the output file was created with -
target:module, its metadata can be imported with -addmodule.

If the output file was created with a -target option other than -target:module, its metadata
cannot be imported with -addmodule but can be imported with -reference.

This compiler option is unavailable in Visual Studio; a project cannot reference a module.
In addition, this compiler option cannot be changed programmatically.

Example

Compile source file input.prg and add metadata from metad1.netmodule and
metad2.netmodule to produce out.exe:

xsc -addmodule:metad1.netmodule;metad2.netmodule -out:out.exe
input.prg

1.9.3.4 -allowdot

The -allowdot compiler option allows you to control if the DOT (".") operator should be
allowed to access instance members.
· The default for the Core and FoxPro dialects is /allowdot+

· The default for the other dialects is /allowdot-

Syntax

-allowdot[+ | -]

Arguments

+ | - Specifying +, or just -

To set this compiler option in the Visual Studio development environment:

1. Open the project's Properties page.
2. Click the Dialect tab.
3. Change the value.
4. Click here to see the property page

819 XSharp

© 2015- 2024 XSharp BV

1.9.3.5 -allowoldstyleassignments

The -allowoldstyleassignments compiler option allows you to control if the single Equals
("=") operator should be allowed to assign values.
· The default for the FoxPro dialect is /allowdot+

· The default for the other dialects is /allowdot-

Syntax

-allowoldstyleassignments[+ | -]

Arguments

+ | - Specifying +, or just -

To set this compiler option in the Visual Studio development environment:

1. Open the project's Properties page.
2. Click the Language tab.
3. Change the value.
4. Click here to see the property page

1.9.3.6 -analyzer, -a

Run the analyzers from this assembly

1.9.3.7 -appconfig

The -appconfig compiler option enables a X# application to specify the location of an
assembly's application configuration (app.config) file to the common language runtime
(CLR) at assembly binding time.

Syntax

-appconfig:file

Arguments

file Required. The application configuration file that contains
assembly binding settings.

820X# Documentation

© 2015- 2024 XSharp BV

Remarks

One use of -appconfig is advanced scenarios in which an assembly has to reference both
the .NET Framework version and the .NET Framework for Silverlight version of a
particular reference assembly at the same time. For example, a XAML designer written in
Windows Presentation Foundation (WPF) might have to reference both the WPF
Desktop, for the designer's user interface, and the subset of WPF that is included with
Silverlight. The same designer assembly has to access both assemblies. By default, the
separate references cause a compiler error, because assembly binding sees the two
assemblies as equivalent.

The -appconfig compiler option enables you to specify the location of an app.config file
that disables the default behavior by using a <supportPortability> tag, as shown in the
following example.

<supportPortability PKT="7cec85d7bea7798e" enable="false"/>

The compiler passes the location of the file to the CLR's assembly-binding logic.

Note
If you are using the Microsoft Build Engine (MSBuild) to build your application, you can set
The -appconfig compiler option by adding a property tag to the .xsproj file. To use the
app.config file that is already set in the project, add property tag
<UseAppConfigForCompiler> to the .xsproj file and set its value to true. To specify a
different app.config file, add property tag <AppConfigForCompiler> and set its value to the
location of the file.

Example

The following example shows an app.config file that enables an application to have
references to both the .NET Framework implementation and the .NET Framework for
Silverlight implementation of any .NET Framework assembly that exists in both
implementations. The -appconfig compiler option specifies the location of this app.config
file.

<configuration>
 <runtime>
 <assemblyBinding>
 <supportPortability PKT="7cec85d7bea7798e"
enable="false"/>
 <supportPortability PKT="31bf3856ad364e35"
enable="false"/>
 </assemblyBinding>

821 XSharp

© 2015- 2024 XSharp BV

 </runtime>
</configuration>

1.9.3.8 -ast

Tells the compiler to write abstract syntax trees for each of the source files that was
processed.

Syntax

-ast[+|-]

Arguments

+ | - Specifying +, or just -ast, tells the compiler to produce
abstract syntax trees for each of the source files.

Remarks

This command line option allows you to check the code without generating a binary.

To set this compiler option in the Visual Studio development environment:

1. Open the project's Properties page.
2. Click the Build tab.
3. Add the option in the "Extra Command Line options" property

1.9.3.9 -az

The -az option specifies that array elements begin with 0, rather than with 1 (the default).

Syntax

-az[+|-]

822X# Documentation

© 2015- 2024 XSharp BV

Arguments

+ | - Specifying +, or just -az, directs the compiler to use 0-based
array indexing rather than 1-based indexing.

Remarks

This option is off by default, since it would break existing Visual Objects source code. If
you prefer to use 0-based arrays with existing code written for Visual Objects, you will
need to examine every place in your source code that uses arrays and manually make the
appropriate adjustments.

Note: This option does not affect how the assembly being compiled is used from other
applications. When The -az option is not used, the compiler generates code to subtract 1
from the array index in order to provide 1-based array indexing semantics at the language
level. When The -az option is used, the compiler does not adjust array indexes. Either
way, the resulting arrays are always 0-based at the IL level, which allows compatibility with
all other .NET languages.

To set this compiler option in the Visual Studio development environment:

1. Open the project's Properties page.
2. Click the Language tab.
3. In the General section, modify the "Use Zero Based Arrays" property.
4. Click here to see the property page

Example

FUNCTION Start() AS VOID
 LOCAL DIM a[1] AS INT
 ? a[0] -/ runtime error when -az switch is NOT used
 ? a[1] -/ runtime error when -az switch is used

RETURN

823 XSharp

© 2015- 2024 XSharp BV

1.9.3.10 -baseaddress

The -baseaddress option lets you specify the preferred base address at which to load a
DLL.

Syntax

-baseaddress:address

Arguments

address The base address for the DLL. This address can be
specified as a decimal, hexadecimal, or octal number.

Remarks

The default base address for a DLL is set by the .NET Framework common language
runtime.

Be aware that the lower-order word in this address will be rounded. For example, if you
specify 0x11110001, it will be rounded to 0x11110000.

To complete the signing process for a DLL, use SN.EXE with the -R option.

To set this compiler option in the Visual Studio development environment

1. Open the project's Properties page.
2. Click the Build property page.
3. Add the option in the "User-Defined Command Line options" property

1.9.3.11 -checked

The -checked option specifies whether an integer arithmetic statement that results in a
value that is outside the range of the data type, and that is not in the scope of a checked or
unchecked keyword, causes a run-time exception.

Syntax

-checked[+ | -]

Remarks

An integer arithmetic statement that is in the scope of a checked or unchecked keyword is
not subject to the effect of The -checked option.

If an integer arithmetic statement that is not in the scope of a checked or unchecked
keyword results in a value outside the range of the data type, and -checked+ (/checked) is

824X# Documentation

© 2015- 2024 XSharp BV

used in the compilation, that statement causes an exception at run time. If -checked- is
used in the compilation, that statement does not cause an exception at run time.

The default value for this option is -checked-. One scenario for using -checked- is in
building large applications. Sometimes automated tools are used to build such
applications, and such a tool might automatically set -checked to +. You can override the
tool's global default by specifying -checked-.

The VO Compatibility compiler options -ovf and -fovf both set this option

To set this compiler option in the Visual Studio development environment

1. Open the project's Properties page.
2. Click the Build property page.
3. Add the option in the "User-Defined Command Line options" property

Example

The following command compiles t2.prg. The use of -checked in the command
specifies that any integer arithmetic statement in the file that is not in the scope of a
checked or unchecked keyword, and that results in a value that is outside the range of the
data type, causes an exception at run time.

xsc t2.prg -checked

1.9.3.12 -checksumalgorithm

Specify the algorithm for calculating the source file checksum stored in PDB. Supported
values are: SHA1 (default) or SHA256.

Syntax

-checksumalgorithm:<alg>

Arguments

To set this compiler option in the Visual Studio development environment

1. Open the project's Properties page.
2. Click the Build property page.
3. Add the option in the "User-Defined Command Line options" property

825 XSharp

© 2015- 2024 XSharp BV

1.9.3.13 -codepage

This option specifies which codepage to use during compilation if the required page is not
the current default codepage for the system.

Syntax

-codepage:id

Arguments

id The id of the code page to use for all source code files in the
compilation.

Remarks

If you compile one or more source code files that were not created to use the default code
page on your computer, you can use The -codepage option to specify which code page
should be used. -codepage applies to all source code files in your compilation.

If the source code files were created with the same codepage that is in effect on your
computer or if the source code files were created with UNICODE or UTF-8, you need not
use -codepage.

See GetCPInfo for information on how to find which code pages are supported on your
system.

This compiler option is unavailable in Visual Studio and cannot be changed
programmatically.

1.9.3.14 -cs

The -cs option directs the compiler to treat all identifiers and type names as case-
sensitive.

Syntax

-cs[+|-]

Arguments

+|- Specifying +, or just -cs, directs the compiler to treat all type
names as case-sensitive.

Remarks

This option is for those users who prefer a case-sensitive language.

826X# Documentation

© 2015- 2024 XSharp BV

This option can also affect case sensitivity of preprocessor symbols, depending on the
state of the -vo8 compiler option; if -vo8 is enabled, then -cs controls if also preprocessor
symbols are treated as case-sensitive; if -vo8 is disabled, then preprocessor symbols are
always case-sensitive and the state of -cs does not affect this behavior of the
preprocessor. See the topic about -vo8 for more information.

This option also does not affect keywords. Keywords in X# are always case-insensitive.

Note

If you run the shared compiler you have to pass the -cs compiler option through the
commandline and not through a response file.
And when you mix case sensitive and not case sensitive projects then there will be 2
shared compiler processes running, one in case sensitive mode and the other in case
insensitive mode.

To set this compiler option in the Visual Studio development environment:

1. Open the project's Properties page.
2. Click the Language tab.
3. In the General section, modify the Case Sensitive Type Names property in the

General.
4. Click here to see the property page

1.9.3.15 -debug

The -debug option causes the compiler to generate debugging information and place it in
the output file or files.

Syntax

-debug[+ | -]
-debug:{full | pdbonly}

Arguments

+ | - Specifying +, or just -debug, causes the compiler to
generate debugging information and place it in a program
database (.pdb file). Specifying -, which is in effect if you do
not specify -debug, causes no debug information to be
created.

full | pdbonly Specifies the type of debugging information generated by the
compiler. The full argument, which is in effect if you do not
specify -debug:pdbonly, enables attaching a debugger to the
running program. Specifying pdbonly allows source code
debugging when the program is started in the debugger but
will only display assembler when the running program is
attached to the debugger.

827 XSharp

© 2015- 2024 XSharp BV

Remarks

Use this option to create debug builds. If -debug, -debug+, or -debug:full is not specified,
you will not be able to debug the output file of your program.

If you use -debug:full, be aware that there is some impact on the speed and size of JIT
optimized code and a small impact on code quality with -debug:full. We recommend -
debug:pdbonly or no PDB for generating release code.

Note

One difference between -debug:pdbonly and -debug:full is that with -debug:full the
compiler emits a DebuggableAttribute, which is used to tell the JIT compiler that debug
information is available. Therefore, you will get an error if your code contains the
DebuggableAttribute set to false if you use -debug:full.

For more information on how to configure the debug performance of an application, see
Making an Image Easier to Debug.

To change the location of the .pdb file, see -pdb

To set this compiler option in the Visual Studio development environment

1. Open the project's Properties page.
2. Click the Build property page.
3. Click the Advanced button.
4. Modify the Debug Info property.

For information on how to set this compiler option programmatically, see DebugSymbols.

Example

Place debugging information in output file app.pdb:

xsc -debug -pdb:app.pdb test.prg

828X# Documentation

© 2015- 2024 XSharp BV

1.9.3.16 -define

The -define compiler option defines name as a symbol in all source code files your
program.

Syntax

-define:name[;name2]

Arguments

name, name2 The name of one or more symbols that you want to define.

Remarks

The -define option has the same effect as using a #define preprocessor directive except
that the compiler option is in effect for all files in the project. A symbol remains defined in a
source file until an #undef directive in the source file removes the definition. When you use
The -define option, an #undef directive in one file has no effect on other source code files
in the project.

You can use symbols created by this option with #if, #else, #elif, and #endif to compile
source files conditionally.

-d is the short form of -define.

You can define multiple symbols with -define by using a semicolon or comma to separate
symbol names. For example:

-define:DEBUG;TUESDAY

The X# compiler defines a couple of symbols automatically. See the Macros topic
elsewhere in this documentation.

To set this compiler option in the Visual Studio development environment
1. Open the project's Properties page.
2. On the Build tab, type the symbol that is to be defined in the Conditional compilation

symbols box. For example, if you are using the code example that follows, just type
xx into the text box.

For information on how to set this compiler option programmatically, see
DefineConstants.

Example

829 XSharp

© 2015- 2024 XSharp BV

-/ preprocessor_define.prg
-/ compile with: -define:xx
-/ or uncomment the next line
-/ #define xx
using System;
public class Test
{
 public static void Main()
 {
 #if (xx)
 Console.WriteLine("xx defined");
 #else
 Console.WriteLine("xx not defined");
 #endif
 }
}

1.9.3.17 -delaysign

This compiler option causes the compiler to reserve space in the output file so that a
digital signature can be added later.

Syntax

-delaysign[+ | -]

Arguments

+ | - Use -delaysign- if you want a fully signed assembly. Use -
delaysign+ if you only want to place the public key in the
assembly. The default is -delaysign-.

Remarks

The -delaysign option has no effect unless used with -keyfile or -keycontainer.

When you request a fully signed assembly, the compiler hashes the file that contains the
manifest (assembly metadata) and signs that hash with the private key. The resulting
digital signature is stored in the file that contains the manifest. When an assembly is delay
signed, the compiler does not compute and store the signature, but reserves space in the
file so the signature can be added later.

830X# Documentation

© 2015- 2024 XSharp BV

For example, using -delaysign+ allows a tester to put the assembly in the global cache.
After testing, you can fully sign the assembly by placing the private key in the assembly
using the Assembly Linker utility.

For more information, see Creating and Using Strong-Named Assemblies and Delay
Signing an Assembly.

To set this compiler option in the Visual Studio development environment

1. Open the Properties page for the project.
2. Modify the Delay sign only property.
3. Click here to see the property page

For information on how to set this compiler option programmatically, see DelaySign.

1.9.3.18 -dialect

The -dialect compiler option selects the dialect that the compiler should follow. Valid
options are: Core, VO, Vulcan, dBase, FoxPro, xBase++ and Harbour.
Note: There should be NO space between the colon and the dialect.

Syntax

-dialect: Core | VO | Vulcan | Harbour | XbasePP | FoxPro

Arguments

Core Use the Core dialect. This is like C# with an xBase syntax.
VO This activates the VO dialect.
Vulcan This activates the Vulcan dialect.
Harbour This activates the Harbour dialect.
XBasePP This activates the Harbour dialect.
FoxPro This activates the FoxPro dialect.

To set this compiler option in the Visual Studio development environment

1. Open the project's Properties page.
2. Click the Application property page.
3. Modify the Dialect property.
4. Click here to see the property page

See the dialect topic for differences between dialects

831 XSharp

© 2015- 2024 XSharp BV

1.9.3.19 -doc

The -doc compiler option allows you to place documentation comments in an XML file.

Syntax

-doc:file

Arguments

file The output file for XML, which is populated with the
comments in the source code files of the compilation.

Remarks

In source code files, documentation comments that precede the following can be
processed and added to the XML file:

· Such user-defined types as a class, delegate, or interface

· Such members as a field, event, property, or method

The source code file that contains Main is output first into the XML.

To use the generated .xml file for use with the IntelliSense feature, let the file name of the
.xml file be the same as the assembly you want to support and then make sure the .xml
file is in the same directory as the assembly. Thus, when the assembly is referenced in
the Visual Studio project, the .xml file is found as well. See Supplying Code Comments
and for more information.

Unless you compile with -target:module, file will contain <assembly></assembly> tags
specifying the name of the file containing the assembly manifest for the output file of the
compilation.

Note
The -doc option applies to all input files; or, if set in the Project Settings, all files in the
project. To disable warnings related to documentation comments for a specific file or
section of code, use #pragma warning.

See Recommended Tags for Documentation Comments for ways to generate
documentation from comments in your code.

To set this compiler option in the Visual Studio development environment

1. Open the project's Properties page.
2. Click the Build tab.
3. Modify the XML documentation file property.
4. Click here to see the property page

832X# Documentation

© 2015- 2024 XSharp BV

For information on how to set this compiler option programmatically, see
DocumentationFile.

1.9.3.20 -enforceoverride

This compiler option tells the compiler NOT to automatically add the OVERRIDE modifier
to methods in subclasses that override virtual methods in parent classes.

Syntax

-enforceoverride[+ | -]

Arguments

+ | - Specifying +, or just -

To set this compiler option in the Visual Studio development environment:

1. Open the project's Properties page.
2. Click the Language tab.
3. Change the value.
4. Click here to see the property page

1.9.3.21 -enforceself

The -enforceself compiler option allows you to control if you can access members of the
SELF objects with or without the SELF: prefix.
In Visual Objects and most other original languages this was not allowed. This is
equivalent to /enforceself+. In .Net the default is that this is allowed. This is equivalent
to /enforceself-.
The effect of this is that the compiler may report an ambiguity when a method exists with
the same name as a built in function. If you enable /enforceself then the compiler "knows"
that without the SELF: prefix you intend to call the function.

Syntax

-enforceself[+ | -]

Arguments

+ | - Specifying +, or just -

To set this compiler option in the Visual Studio development environment:

1. Open the project's Properties page.

833 XSharp

© 2015- 2024 XSharp BV

2. Click the Language tab.
3. Change the value.
4. Click here to see the property page

1.9.3.22 -errorendlocation

The -errorendlocation tells the compiler to Output the line and column of the end location
of each error in addition to the start location of the error/

Syntax

-errorendlocation

Remarks

This compiler option is unavailable in Visual Studio and cannot be changed
programmatically. It is enabled by default when compiling inside Visual Studio.

1.9.3.23 -errorreport

This compiler option provides a convenient way to report a X# internal compiler error

 Note
On Windows Vista and Windows Server 2008, the error reporting settings that you make
for Visual Studio do not override the settings made through Windows Error Reporting
(WER). WER settings always take precedence over Visual Studio error reporting settings.

Syntax

-errorreport:{ none | prompt | queue | send }

Arguments

none Reports about internal compiler errors will not be collected or sent to Microsoft.

prompt Prompts you to send a report when you receive an internal
compiler error. prompt is the default when you compile an
application in the development environment.

queue Queues the error report. When you log on with
administrative credentials, you can report any failures since
the last time that you were logged on. You will not be
prompted to send reports for failures more than once every

834X# Documentation

© 2015- 2024 XSharp BV

three days. queue is the default when you compile an
application at the command line.

send Automatically sends reports of internal compiler errors to
Microsoft. To enable this option, you must first agree to the
Microsoft data collection policy. The first time that you
specify -errorreport:send on a computer, a compiler
message will refer you to a Web site that contains the
Microsoft data collection policy.

Remarks

An internal compiler error (ICE) results when the compiler cannot process a source code
file. When an ICE occurs, the compiler does not produce an output file or any useful
diagnostic that you can use to fix your code.

A user's ability to send reports depends on computer and user policy permissions.

For more information about error debugger, see Description of the Dr. Watson for
Windows (Drwtsn32.exe) Tool.

To set this compiler option in the Visual Studio development environment

1. Open the project's Properties page.
2. Click the Build property page.
3. Click the Advanced button.

1.9.3.24 -filealign

The -filealign compiler option lets you specify the size of sections in your output file.

Syntax

-filealign:number

Arguments

number A value that specifies the size of sections in the output file.
Valid values are 512, 1024, 2048, 4096, and 8192. These
values are in bytes.

Remarks

Each section will be aligned on a boundary that is a multiple of The -filealign value. There
is no fixed default. If -filealign is not specified, the common language runtime picks a
default at compile time.

835 XSharp

© 2015- 2024 XSharp BV

By specifying the section size, you affect the size of the output file. Modifying section size
may be useful for programs that will run on smaller devices.

Use DUMPBIN to see information about sections in your output file.

To set this compiler option in the Visual Studio development environment

1. Open the project's Properties page.
2. Click the Build property page.
3. Add the option in the "User-Defined Command Line options" property

1.9.3.25 -fovf

The -fovf compiler option is an alias for the -checked command line option for
compatibility.

1.9.3.26 -fox1

The -fox1 compiler option tells the compiler that all classes with the FoxPro class syntax
are assumed to inherit from the Custom class. This means:
· the AS <idType> CLASS becomes mandatory

· the code generation for properties assumes that the class inherits from the Custom
class and creates Get and Set methods that read/write the values to the properties
collection inside the Custom class

Syntax

-fox1[+ | -]

Arguments

+ | - Specifying +, or just -

To set this compiler option in the Visual Studio development environment:

1. Open the project's Properties page.
2. Click the Dialect tab.
3. Change the value.
4. Click here to see the property page

836X# Documentation

© 2015- 2024 XSharp BV

1.9.3.27 -fox2

The -fox2 compiler option is enabled for foxpro compatible array support. It enables /
disables the following features:
· Assigning a single value to an array will fill the whole array with that value

· Support for parenthesized array access.
If the compiler encounters code that might be an array access such as Foo(1,2) then
it will check to see if Foo() is a local or field declared as a foxpro array. If that is the case
then the array element will be accessed. If Foo is not declared, then this might be an
array access for a dynamic memory variable declared outside of the scope of the
current method / function. The compiler will then generate code to resolve this at
runtime (just like FoxPro does)

Requirements

The -fox2 compiler options MUST be used together with the -memvar compiler option and
the FoxPro dialect.

Example

 LOCAL a
 Dimension a(10)
 a = 42 // With the /fox2 compiler option this will fill
the array with 42.
 // Without the option the variable will be
changed from an array to a number

or

Function Main()
Dimension foo(2,5)
 foo = 42 // with /fox2 this fills the array
 ? foo(1,2) // with /fox2 this returns element 1,2.
Without /fox2 this will call the Foo function below
 ? Foo[1,2] // this always returns element 1,2

FUNCTION Foo(n1, n2)
? n1, n2
RETURN n1 * n2

Please note

The fox2 compiler option generates some extra code to decide at runtime which action to
take.
It is only recommended for code that really needs this feature.
You can use #pragma options to enable / disable fox2 for some source files or even some
functions

837 XSharp

© 2015- 2024 XSharp BV

1.9.3.28 -fullpaths

The -fullpaths option causes the compiler to specify the full path to the file when listing
compilation errors and warnings.

Syntax

-fullpaths

Remarks

By default, errors and warnings that result from compilation specify the name of the file in
which an error was found. The -fullpaths option causes the compiler to specify the full
path to the file.

This compiler option is unavailable in Visual Studio and cannot be changed
programmatically. It is enabled by default when compiling inside Visual Studio.

1.9.3.29 -help, /?

This option sends a listing of compiler options, and a brief description of each option, to
stdout.

Syntax

-help
-?

Remarks

If this option is included in a compilation, no output file will be created and no compilation
will take place.

This compiler option is unavailable in Visual Studio and cannot be changed
programmatically.

1.9.3.30 -highentropyva

The -highentropyva compiler option tells the Windows kernel whether a particular
executable supports high entropy Address Space Layout Randomization (ASLR).

Syntax

-highentropyva[+ | -]

838X# Documentation

© 2015- 2024 XSharp BV

Arguments

+ | - This option specifies that a 64-bit executable or an
executable that is marked by The -platform:anycpu compiler
option supports a high entropy virtual address space. The
option is disabled by default. Use -highentropyva+ or -
highentropyva to enable it.

Remarks

The -highentropyva option enables compatible versions of the Windows kernel to use
higher degrees of entropy when randomizing the address space layout of a process as
part of ASLR. Using higher degrees of entropy means that a larger number of addresses
can be allocated to memory regions such as stacks and heaps. As a result, it is more
difficult to guess the location of a particular memory region.

When The -highentropyva compiler option is specified, the target executable and any
modules that it depends on must be able to handle pointer values that are larger than 4
gigabytes (GB) when they are running as a 64-bit process.

To set this compiler option in the Visual Studio development environment

1. Open the project's Properties page.
2. Click the Build property page.
3. Add the option in the "User-Defined Command Line options" property

1.9.3.31 -i

The -i option adds a directory to the list of directories the compiler searches for include
files.

Syntax

-i:dir

Arguments

dir A directory to add to list list of directories the compiler
searches for include files.

Remarks

The compiler searches for files included with #include in the following order:

1. The current working directory
2. The include subdirectory of the Vulcan.NET installation directory (when applicable)
3. The include subdirectory of the XSharp installation directory

839 XSharp

© 2015- 2024 XSharp BV

4. Any directories specified with -i
5. Any directories specified with the INCLUDE environment variable

Multiple directories can be specified by using The -i option multiple times.
The compiler does not search for filenames that are fully qualified in any location other
than in the directory specified in the #include directive.

To set this compiler option in the Visual Studio development environment:

1. Open the project's Properties page.
2. Click the Build tab.
3. In the Preprocessor section, modify the "Additional include paths" property.
4. Click here to see the property page

1.9.3.32 -initlocals

The -initlocals option specifies whether the compiler should automatically initialize local
variables

Syntax

-initlocals[+|-]

Arguments

+ | - Specifying +, or just -ins, directs the compiler to init local
variables or not.

Remarks

This can be used to automatically initialize all local variables and suppress compiler
warnings about local variables that are not initialized.

To set this compiler option in the Visual Studio development environment:

1. Open the project's Properties page.
2. Click the Language tab.
3. In the General section, modify the "Initialize Local Variables" value
4. Click here to see the property page

840X# Documentation

© 2015- 2024 XSharp BV

1.9.3.33 -ins

The -ins option specifies whether the compiler should automatically include namespaces
from assemblies compiled in VO/Vulcan dialect marked with the
ImplicitNameSpaceAttribute.

Syntax

-ins[+|-]

Arguments

+ | - Specifying +, or just -ins, directs the compiler to
automatically include namespaces from assemblies marked
with the VulcanImplicitNameSpaceAttribute.

Remarks

Class Libraries can be compiled with a special attribute:

[assembly: VulcanImplicitNamespaceAttribute("SomeNameSpace)]

This attribute tells the compiler that classes that are placed inside that namespace should
be automatically included when searching for classes, as if there was a #using
SomeNameSpace statement in the source code.

To set this compiler option in the Visual Studio development environment:

1. Open the project's Properties page.
2. Click the Language tab.
3. In the Namespaces section, modify the Enable Implicit Lookup of Namespaces

property.
4. Click here to see the property page

841 XSharp

© 2015- 2024 XSharp BV

1.9.3.34 -keycontainer

Specifies the name of the cryptographic key container.

Syntax

-keycontainer:string

Arguments

string The name of the strong name key container.

Remarks

When The -keycontainer option is used, the compiler creates a sharable component by
inserting a public key from the specified container into the assembly manifest and signing
the final assembly with the private key. To generate a key file, type sn -k file at the
command line. sn -i installs the key pair into a container.

If you compile with -target:module, the name of the key file is held in the module and
incorporated into the assembly when you compile this module into an assembly with -
addmodule.

You can also specify this option as a custom attribute
(System.Reflection.AssemblyKeyNameAttribute) in the source code for any Microsoft
intermediate language (MSIL) module.

You can also pass your encryption information to the compiler with -keyfile. Use -delaysign
if you want the public key added to the assembly manifest but want to delay signing the
assembly until it has been tested.

For more information, see Creating and Using Strong-Named Assemblies and Delay
Signing an Assembly.

To set this compiler option in the Visual Studio development environment

1. This compiler option is not available in the Visual Studio development environment.

You can programmatically access this compiler option with AssemblyKeyContainerName.

842X# Documentation

© 2015- 2024 XSharp BV

1.9.3.35 -keyfile

Specifies the filename containing the cryptographic key.

Syntax

-keyfile:file

Arguments

file The name of the file containing the strong name key.

Remarks

When this option is used, the compiler inserts the public key from the specified file into the
assembly manifest and then signs the final assembly with the private key. To generate a
key file, type sn -k file at the command line.

If you compile with -target:module, the name of the key file is held in the module and
incorporated into the assembly that is created when you compile an assembly with -
addmodule.

You can also pass your encryption information to the compiler with -keycontainer. Use -
delaysign if you want a partially signed assembly.

In case both -keyfile and -keycontainer are specified (either by command line option or by
custom attribute) in the same compilation, the compiler will first try the key container. If
that succeeds, then the assembly is signed with the information in the key container. If the
compiler does not find the key container, it will try the file specified with -keyfile. If that
succeeds, the assembly is signed with the information in the key file and the key
information will be installed in the key container (similar to sn -i) so that on the next
compilation, the key container will be valid.

Note that a key file might contain only the public key.

For more information, see Creating and Using Strong-Named Assemblies and Delay
Signing an Assembly.

To set this compiler option in the Visual Studio development environment:

1. Open the Properties page for the project.
2. Click the Signing property page.
3. Modify the Choose a strong name key file property.
4. Click here to see the property page

You can programmatically access this compiler option with AssemblyOriginatorKeyFile.

843 XSharp

© 2015- 2024 XSharp BV

1.9.3.36 -langversion

this compiler option is ignored. When compared to the C# compiler, X# always compiles
in the languageversion Latest.

1.9.3.37 -lb

The -lb option specifies if the compiler should allow code that uses the Late Binding
mechnism to call methods and or get/set properties

Syntax

-lb[+|-]

Arguments

+ | - Specifying +, or just -lb, directs the compiler to generate a
late-bound call to an instance variable or method when
compiler cannot generate code for an early bound call.

Remarks

The X# compiler always attempts to generate early bound calls to all class methods,
properties and fields. This is true even for methods referred to as "untyped" in Visual
Objects. Strictly speaking, nothing is "untyped". If an early bound call cannot be generated,
a compile-time error is raised.

In Visual Objects, it is possible to invoke methods and access instance variables on an
object without the compiler knowing the exact type of the object. This is done by using a
variable of type OBJECT or USUAL to hold the object reference. The "Only Early" option in
the VO Application Options dialog must not be checked in order to allow this.

In addition, it is also possible to invoke a method on each element of an ARRAY. Each
array element must contain an object that implements the specified method, or a runtime
error will occur.

The -lb option is the exact opposite of the Visual Objects Only Early option.

Late binding incurs considerably more runtime overhead than early binding, and prevents
compile-time parameter and return value checking. Any late-bound call has the potential to
fail at runtime if the object does not support the field or property that is being accessed,
the member being invoked or incorrect parameter types or count. Only use early binding
for existing code or when there is no viable alternative.

To set this compiler option in the Visual Studio development environment:

1. Open the project's Properties page.
2. Click the Language tab.
3. In the Visual Objects Compatibility section, modify the Allow Late Binding property.

844X# Documentation

© 2015- 2024 XSharp BV

4. Click here to see the property page

Example

The following example will compile when The -lb switch is used. Without -lb, errors will be
raised.

Note that using late-bound calls can affect the performance of an application and raises
the possibility of runtime errors that would otherwise be caught by the compiler if early
binding was used. Late binding should only be used for compatibility with existing VO
code.

If The -lb option is enabled, then the above example will be compiled as if it was written:

Note that while this particular example will compile and execute correctly, if the definition
of CLASS foo was changed and INSTANCE i was removed or changed to a method, the
example would fail at runtime. Similarly, if METHOD bar was changed or removed, the
example may also fail at runtime. For this reason, late-bound programming is strongly
discouraged. Consider using subclassing and inheritance instead.

1.9.3.38 -lexonly

Runs the lexer and preprocessor on the source files

Syntax

-lexonly[+|-]

Arguments

+ | - Specifying +, or just -lexonly, tells the compiler to only lex
the source code and not to parse, bind and generate an
output file.
When combined with The -ppo option then there will be .ppo
files written.

845 XSharp

© 2015- 2024 XSharp BV

Remarks

This command line option allows you to check the code without generating a binary.

To set this compiler option in the Visual Studio development environment:

1. Open the project's Properties page.
2. Click the Build tab.
3. Add the option in the "Extra Command Line options" property

1.9.3.39 -lib

The -lib option specifies the location of assemblies referenced by means of the -reference
option.

Syntax

-lib:dir1[,dir2]

Arguments

dir1 A directory for the compiler to look in if a referenced
assembly is not found in the current working directory (the
directory from which you are invoking the compiler) or in the
common language runtime's system directory.

dir2 One or more additional directories to search in for assembly
references. Separate additional directory names with a
comma, and without white space between them.

Remarks

The compiler searches for assembly references that are not fully qualified in the following
order:

1. Current working directory. This is the directory from which the compiler is invoked.
2. The common language runtime system directory.
3. Directories specified by -lib.
4. Directories specified by the LIB environment variable.

Use -reference to specify an assembly reference.

-lib is additive; specifying it more than once appends to any prior values.

An alternative to using -lib is to copy into the working directory any required assemblies;
this will allow you to simply pass the assembly name to -reference. You can then delete
the assemblies from the working directory. Since the path to the dependent assembly is

846X# Documentation

© 2015- 2024 XSharp BV

not specified in the assembly manifest, the application can be started on the target
computer and will find and use the assembly in the global assembly cache.

Because the compiler can reference the assembly does not imply the common language
runtime will be able to find and load the assembly at runtime. See How the Runtime
Locates Assemblies for details on how the runtime searches for referenced assemblies.

To set this compiler option in the Visual Studio development environment
1. Open the project's Property Pages dialog box.
2. Click the References Path property page.
3. Modify the contents of the list box.

For information on how to set this compiler option programmatically, see ReferencePath.

Example

Compile t2.prg to create an .exe file. The compiler will look in the working directory and in
the root directory of the C drive for assembly references.

xsc -lib:c:\ -reference:t2.dll t2.prg

1.9.3.40 -link

Causes the compiler to make COM type information in the specified assemblies available
to the project that you are currently compiling.

Syntax

-link:fileList
-/ -or-
-l:fileList

Arguments

fileList Required. Comma-delimited list of assembly file names. If
the file name contains a space, enclose the name in
quotation marks.

Remarks

The -link option enables you to deploy an application that has embedded type
information. The application can then use types in a runtime assembly that implement the
embedded type information without requiring a reference to the runtime assembly. If

847 XSharp

© 2015- 2024 XSharp BV

various versions of the runtime assembly are published, the application that contains the
embedded type information can work with the various versions without having to be
recompiled. For an example, see Walkthrough: Embedding Types from Managed
Assemblies.

Using The -link option is especially useful when you are working with COM interop. You
can embed COM types so that your application no longer requires a primary interop
assembly (PIA) on the target computer. The -link option instructs the compiler to embed
the COM type information from the referenced interop assembly into the resulting
compiled code. The COM type is identified by the CLSID (GUID) value. As a result, your
application can run on a target computer that has installed the same COM types with the
same CLSID values. Applications that automate Microsoft Office are a good example.
Because applications like Office usually keep the same CLSID value across different
versions, your application can use the referenced COM types as long as .NET Framework
4 or later is installed on the target computer and your application uses methods,
properties, or events that are included in the referenced COM types.

The -link option embeds only interfaces, structures, and delegates. Embedding COM
classes is not supported.

Note

When you create an instance of an embedded COM type in your code, you must create
the instance by using the appropriate interface. Attempting to create an instance of an
embedded COM type by using the CoClass causes an error.

To set the -link option in Visual Studio, add an assembly reference and set the Embed
Interop Types property to true. The default for the Embed Interop Types property is false.

If you link to a COM assembly (Assembly A) which itself references another COM
assembly (Assembly B), you also have to link to Assembly B if either of the following is
true:

· A type from Assembly A inherits from a type or implements an interface from
Assembly B.

· A field, property, event, or method that has a return type or parameter type from
Assembly B is invoked.

Like The -reference compiler option, the -link compiler option uses the xsc.rsp
response file, which references frequently used .NET Framework assemblies. Use The -
noconfig compiler option if you do not want the compiler to use the xsc.rsp file.

The short form of -link is -l.

Generics and Embedded Types

The following sections describe the limitations on using generic types in applications that
embed interop types.

Generic Interfaces

Generic interfaces that are embedded from an interop assembly cannot be used.

848X# Documentation

© 2015- 2024 XSharp BV

Types That Have Generic Parameters

Types that have a generic parameter whose type is embedded from an interop assembly
cannot be used if that type is from an external assembly. This restriction does not apply to
interfaces. For example, consider the Range interface that is defined in the
Microsoft.Office.Interop.Excel assembly. If a library embeds interop types from the
Microsoft.Office.Interop.Excel assembly and exposes a method that returns a generic type
that has a parameter whose type is the Range interface, that method must return a
generic interface, as shown in the following code example.

Example

The following code compiles source file OfficeApp.prg and reference assemblies from
COMData1.dll and COMData2.dll to produce OfficeApp.exe.

xsc -link:COMData1.dll,COMData2.dll -out:OfficeApp.exe
OfficeApp.prg

1.9.3.41 -linkresource

Creates a link to a .NET Framework resource in the output file. The resource file is not
added to the output file. This differs from The -resource option which does embed a
resource file in the output file.

Syntax

-linkresource:filename[,identifier[,accessibility-modifier]]

Arguments

filename The .NET Framework resource file to which you want to link
from the assembly.

identifier (optional) The logical name for the resource; the name that is used to
load the resource. The default is the name of the file.

accessibility-modifier
(optional) The accessibility of the resource: public or private. The

default is public.

Remarks

By default, linked resources are public in the assembly when they are created with the X#
compiler. To make the resources private, specify private as the accessibility modifier.
No other modifier other than public or private is allowed.

849 XSharp

© 2015- 2024 XSharp BV

-linkresource requires one of The -target options other than -target:module.

If filename is a .NET Framework resource file created, for example, by Resgen.exe or in
the development environment, it can be accessed with members in the
System.Resources namespace. For more information, see
System.Resources.ResourceManager. For all other resources, use the
GetManifestResource* methods in the Assembly class to access the resource at run
time.

The file specified in filename can be any format. For example, you may want to make a
native DLL part of the assembly, so that it can be installed into the global assembly cache
and accessed from managed code in the assembly. The second of the following
examples shows how to do this. You can do the same thing in the Assembly Linker. The
third of the following examples shows how to do this. For more information, see Al.exe
(Assembly Linker) and Working with Assemblies and the Global Assembly Cache
.
-linkres is the short form of -linkresource.

This compiler option is unavailable in Visual Studio and cannot be changed
programmatically.

Example

Compile in.prg and link to resource file rf.resource:

xsc -linkresource:rf.resource in.prg

Example

Compile A.prg into a DLL, link to a native DLL N.dll, and put the output in the Global
Assembly Cache (GAC). In this example, both A.dll and N.dll will reside in the GAC.

xsc -linkresource:N.dll -t:library A.prg
gacutil -i A.dll

Example

850X# Documentation

© 2015- 2024 XSharp BV

This example does the same thing as the previous one, but by using Assembly Linker
options.

xsc -t:module A.prg
al -out:A.dll A.netmodule -link:N.dll
gacutil -i A.dll

1.9.3.42 -main

This option specifies the class that contains the entry point to the program, if more than
one class contains a Main method.

Syntax

-main:class

Arguments

class The type that contains the Main method.

Remarks

If your compilation includes more than one type with a Main method, you can specify
which type contains the Main method that you want to use as the entry point into the
program.

This option is for use when compiling an .exe file.

To set this compiler option in the Visual Studio development environment

1. Open the project's Properties page.
2. Click the Application property page.
3. Modify the Startup object property.
4. Click here to see the property page

To set this compiler option programmatically, see StartupObject.

Example

Compile t2.prg and t3.prg, specifying that the Main method will be found in Test2:

851 XSharp

© 2015- 2024 XSharp BV

xsc t2.prg t3.prg -main:Test2

1.9.3.43 -memvar

The -memvar option tells the compiler to enable the support for 'memory variables'. This
option is also needed in the FoxPro dialect if you want to make local variables visible to the
macro compiler with the -fox2 compilation option.

Syntax

-memvar [+ | -]

Arguments

+ | - Specifying +, or just -memvar, directs the compiler to enable
support for memory variables.

Remarks

This will NOT work with the Core and Vulcan dialects.
Enabling this option will enable the following commands in the compiler:

MEMVAR <MemvarName,...>
PUBLIC <MemVarName,...>
PRIVATE <MemVarName,...>
PARAMETERS <ParameterName,,...>

Click here to see the property page

1.9.3.44 -modernsyntax

The -modernsyntax compiler option disables some legacy language features
These features are

· && for single line comments

? Today() && Show today's date

· * for whole line comments

852X# Documentation

© 2015- 2024 XSharp BV

* The next line calls DoSomething()
? DoSomething()

· Bracketed strings

? ["''"] // use brackets to include quotes in a literal string

· Parenthesized expression lists

var x := IIF(Dow() == 1, (Open(), DoSomeWork(), Close()), 42)

These were used by some users to include more than one expression / function call on
locations where a single expression was expected, such as inside an IIF() expression. If -
modernsyntax is not enabled then the compiler will generate a local function with (in this
example) 3 expression statements and insert a call to the local function in the IIF()
expression.

1.9.3.45 -moduleassemblyname

Specifies an assembly whose non-public types a .netmodule can access.

Syntax

-moduleassemblyname:assembly_name

Arguments

assembly_name The name of the assembly whose non-public types the
.netmodule can access.

Remarks

-moduleassemblyname should be used when building a .netmodule, and where the
following conditions are true:

· The .netmodule needs access to non-public types in an existing assembly.

· You know the name of the assembly into which the .netmodule will be built.

· The existing assembly has granted friend assembly access to the assembly into
which the .netmodule will be built.

For more information on building a .netmodule, see -target:module.

For more information on friend assemblies, see Friend Assemblies.

853 XSharp

© 2015- 2024 XSharp BV

This option is not available from within the development environment; it is only available
when compiling from the command line.

This compiler option is unavailable in Visual Studio and cannot be changed
programmatically.

Example

This sample builds an assembly with a private type, and that gives friend assembly
access to an assembly called csman_an_assembly.

-/ moduleassemblyname_1.prg
-/ compile with: -target:library
using System;
using System.Runtime.CompilerServices;

 [assembly:InternalsVisibleTo ("csman_an_assembly")]

 class An_Internal_Class

{
 public void Test()
 {

 Console.WriteLine("An_Internal_Class.Test called");
 }
}

Example

This sample builds a .netmodule that accesses a non-public type in the assembly
moduleassemblyname_1.dll. By knowing that this .netmodule will be built into an
assembly called csman_an_assembly, we can specify -moduleassemblyname, allowing
the .netmodule to access non-public types in an assembly that has granted friend
assembly access to csman_an_assembly.

-/ moduleassemblyname_2.prg
-/ compile with: -moduleassemblyname:csman_an_assembly -
target:module -reference:moduleassemblyname_1.dll
class B {

854X# Documentation

© 2015- 2024 XSharp BV

 public void Test() {
 An_Internal_Class x = new An_Internal_Class();
 x.Test();
 }
}

Example

This code sample builds the assembly csman_an_assembly, referencing the previously-
built assembly and .netmodule.

-/ csman_an_assembly.prg
-/ compile with: -addmodule:moduleassemblyname_2.netmodule -
reference:moduleassemblyname_1.dll
class A {
 public static void Main() {
 B bb = new B();
 bb.Test();
 }
}

1.9.3.46 -modulename:<string>

Specify the name of the source module

1.9.3.47 -namedargs

Specifies whether to allow named arguments in the parser or not.

Syntax

-namedargs [+ | -]

Arguments

+ | - Specifying +, or just -namedargs, directs the compiler to
allow namedarguments. Specifying - directs the compiler to
NOT use named arguments

855 XSharp

© 2015- 2024 XSharp BV

Remarks

The default = + for the Core dialect and - for all other dialects. So -namedargs- only is
useful in combination with the Core dialect.
Note If you enable this option then quite often existing code such as the code below will
produce compiler errors>
That is why we have disabled named arguments for most dialects.

FUNCTION Start as VOID
LOCAL a AS ARRAY
-/ When named arguments are enabled then the compiler will
complain that there is no parameter named "a" for the Empty
function
IF !Empty(a := SomeFunctionThatReturnsAnArray())
 -/ do something
ENDIF
RETURN

Click here to see the property page

1.9.3.48 -noconfig

The -noconfig option tells the compiler not to compile with the xsc.rsp file, which is located
in and loaded from the same directory as the xsc.exe file.

Syntax

-noconfig

Remarks

The xsc.rsp file references all the assemblies shipped with the .NET Framework. The
actual references that the Visual Studio .NET development environment includes depend
on the project type.

You can modify the xsc.rsp file and specify additional compiler options that should be
included in every compilation from the command line with xsc.exe (except The -noconfig
option).

The compiler processes the options passed to the xsc command last. Therefore, any
option on the command line overrides the setting of the same option in the xsc.rsp file.

If you do not want the compiler to look for and use the settings in the xsc.rsp file, specify -
noconfig.

This compiler option is unavailable in Visual Studio and cannot be changed
programmatically.

856X# Documentation

© 2015- 2024 XSharp BV

The current contents of xsc.rsp is:

Copyright (c) XSharp BV. All Rights Reserved.

This file contains command-line options that the X#
command line compiler (XSC) will process as part
of every compilation, unless the "/noconfig" option
is specified.

Reference the common Framework libraries
/r:Accessibility.dll
/r:Microsoft.CSharp.dll
/r:System.Configuration.dll
/r:System.Configuration.Install.dll
/r:System.Core.dll
/r:System.Data.dll
/r:System.Data.DataSetExtensions.dll
/r:System.Data.Linq.dll
/r:System.Data.OracleClient.dll
/r:System.Deployment.dll
/r:System.Design.dll
/r:System.DirectoryServices.dll
/r:System.dll
/r:System.Drawing.Design.dll
/r:System.Drawing.dll
/r:System.EnterpriseServices.dll
/r:System.Management.dll
/r:System.Messaging.dll
/r:System.Runtime.Remoting.dll
/r:System.Runtime.Serialization.dll
/r:System.Runtime.Serialization.Formatters.Soap.dll
/r:System.Security.dll
/r:System.ServiceModel.dll
/r:System.ServiceModel.Web.dll
/r:System.ServiceProcess.dll
/r:System.Transactions.dll
/r:System.Web.dll
/r:System.Web.Extensions.Design.dll
/r:System.Web.Extensions.dll
/r:System.Web.Mobile.dll
/r:System.Web.RegularExpressions.dll
/r:System.Web.Services.dll
/r:System.Windows.Forms.dll
/r:System.Workflow.Activities.dll
/r:System.Workflow.ComponentModel.dll
/r:System.Workflow.Runtime.dll
/r:System.Xml.dll
/r:System.Xml.Linq.dll

857 XSharp

© 2015- 2024 XSharp BV

1.9.3.49 -noinit

Suppress generation of empty $Init1() and $Exit() functions

Background info

The X# compiler generates special functions in each assembly that are used to call INIT
procedures and EXIT procedures.
There are 3 levels of INIT procedures.
For each of these 3 levels a special function is created: $Init1(), $Init2() and $Init3(). For
EXIT procedures the compiler creates a function $Exit().
The functions $Init2() and $Init3() are only created when needed.
The functions $Init1() and $Exit() are always created.

When you compile an EXE with X# then the compiler generates code that calls the
$Init1(), $Init2() and $Init3() functions in all referenced assemblies at startup and the
$Exit() functions at shutdown.

This mechanism also guarantees that classes in referenced assemblies are available at
runtime, even when you have not explicitly referenced them in your code, so you can
instantiate these classes with CreateInstance().

The compiler option -noinit suppresses the generation of empty $Init1() and $Exit()
functions. As a result there will be no hard link to external assemblies if you do not
reference code from these assemblies.
If you use these compiler option with an assembly that only contains DEFINES then the
defines will be resolved at compile time and you will not need to include the assembly at
runtime (unless these defines contain values that need to be resolved at runtime, such as
symbols or date values).

1.9.3.50 -nologo

The -nologo option suppresses display of the sign-on banner when the compiler starts up
and display of informational messages during compiling.

Syntax

-nologo

Remarks

This option is not available from within the development environment; it is only available
when compiling from the command line.

This compiler option is unavailable in Visual Studio and cannot be changed
programmatically.

858X# Documentation

© 2015- 2024 XSharp BV

1.9.3.51 -nostddefs

The -nostddefs option prevents the compiler from using the preprocessor directives in
XSharpDefs.xh.

Syntax

-nostddefs[+|-]

Arguments

+ | - Specifying +, or just -nostddefs, prevents the compiler from
using the preprocessor directives in XSharpDefs.xh.

Remarks

To set this compiler option in the Visual Studio development environment:

1. Open the project's Properties page.
2. Click the Build tab.
3. In the Preprocessor section, modify the "Suppress standard header file" property.
4. Click here to see the property page

1.9.3.52 -nostdlib

-nostdlib prevents the import of mscorlib.dll, which defines the entire System namespace.

Syntax

-nostdlib[+ | -]

Remarks

Use this option if you want to define or create your own System namespace and objects.

If you do not specify -nostdlib, mscorlib.dll will be imported into your program (same as
specifying -nostdlib-). Specifying -nostdlib is the same as specifying -nostdlib+.

To set this compiler option in the Visual Studio development environment

1. Open the Properties page for the project.
2. Click the Build properties page.
3. Add the option in the "User-Defined Command Line options" property

859 XSharp

© 2015- 2024 XSharp BV

1.9.3.53 -nowarn

The -nowarn option lets you suppress the compiler from displaying one or more warnings.
Separate multiple warning numbers with a comma.

Syntax

-nowarn:number1[,number2,...]

Arguments

number1, number2 Warning number(s) that you want the compiler to suppress.

Remarks

You should only specify the numeric part of the warning identifier. For example, if you want
to suppress XS0028, you could specify -nowarn:28.

To set this compiler option in the Visual Studio development environment

1. Open the project's Properties page.
2. Click the Build property page.
3. Modify the "Suppress Specific Warnings" property.
4. Click here to see the property page

1.9.3.54 -nowin32manifest

Use The -nowin32manifest option to instruct the compiler not to embed any application
manifest into the executable file.

Syntax

-nowin32manifest

Remarks

When this option is used, the application will be subject to virtualization on Windows Vista
unless you provide an application manifest in a Win32 Resource file or during a later build
step.

Click here to see the property page

860X# Documentation

© 2015- 2024 XSharp BV

1.9.3.55 -ns

The -ns option explicitly specifies the default namespace for all types that do not have an
explicit namespace in their name.

Syntax

-ns[:]namespaceName

Arguments

namespaceName The name of the default namespace for all types declared in
the application or class library.

Remarks

If The -ns option is not specified, then types that are not prefixed with a namespace and
types that are not in a BEGIN NAMESPACE .. END NAMESPACE construct will be
compiled as so-called global types.

The -ns option will work on the following types:

· Classes

· Interfaces

· Structures

· Vostructs

· Delegates

Namespace names must follow the same rules for program identifiers: they must begin
with an uppercase or lowercase letter or an underscore, followed by zero or more
uppercase or lowercase letters, numbers or underscores. All other characters are illegal,
and will raise a compile-time error.

The default namespace is used for any declared types that do not have an explicit
namespace in their name.

To set this compiler option in the Visual Studio development environment:

1. Open the project's Properties page.
2. Click the General tab.
3. In the Application section, modify the Default Namespace property.
4. Click the Language tab
5. In the Namespaces section, modify the Prefix classes with Default Namespace

property.
6. Click here to see the property page

Example

861 XSharp

© 2015- 2024 XSharp BV

When the following code is compiled without -ns compiler option the following types will be
produced:

· Customer

· Point

· MyProject.Customer

· MyProject.Data.Customer

CLASS Customer
.
.
END CLASS

STRUCT Point
.
.
END STRUCT

ENUM CustomerType
.
END ENUM

CLASS MyProject.Customer
.
.
END CLASS

BEGIN NAMESPACE MyProject.Data
CLASS Customer
.
.
END CLASS
END NAMESPACE

If you compile the same code with a -ns:MyNameSpace option the following types will be
produced:

· MyNameSpace.Customer

· MyNameSpace.Point

· MyProject.Customer

· MyProject.Data.Customer

862X# Documentation

© 2015- 2024 XSharp BV

1.9.3.56 -optimize

The -optimize option enables or disables optimizations performed by the compiler to make
your output file smaller, faster, and more efficient.

Syntax

-optimize[+ | -]

Remarks

-optimize also tells the common language runtime to optimize code at runtime.

By default, optimizations are disabled. Specify -optimize+ to enable optimizations.

When building a module to be used by an assembly, use the same -optimize settings as
those of the assembly.

-o is the short form of -optimize.

It is possible to combine The -optimize and -debug options.

To set this compiler option in the Visual Studio development environment

1. Open the project's Properties page.
2. Click the Build property page.
3. Modify the "Optimize" property.
4. Click here to see the property page

Example

Compile t2.prg and enable compiler optimizations:

xsc t2.prg -optimize

863 XSharp

© 2015- 2024 XSharp BV

1.9.3.57 -out

The -out option specifies the name of the output file.

Syntax

-out:filename

Arguments

filename The name of the output file created by the compiler.

Remarks

On the command line, it is possible to specify multiple output files for your compilation.
The compiler expects to find one or more source code files following The -out option.
Then, all source code files will be compiled into the output file specified by that -out option.

Specify the full name and extension of the file you want to create.

If you do not specify the name of the output file:

· An .exe will take its name from the source code file that contains the Main method.

· A .dll or .netmodule will take its name from the first source code file.

A source code file used to compile one output file cannot be used in the same compilation
for the compilation of another output file.

When producing multiple output files in a command-line compilation, keep in mind that
only one of the output files can be an assembly and that only the first output file specified
(implicitly or explicitly with -out) can be the assembly.

Any modules produced as part of a compilation become files associated with any
assembly also produced in the compilation. Use ildasm.exe to view the assembly
manifest to see the associated files.

The -out compiler option is required in order for an exe to be the target of a friend
assembly.

To set this compiler option in the Visual Studio development environment

1. Open the project's Properties page.
2. Click the Application property page.
3. Modify the Assembly name property.
4. Click here to see the property page

To set this compiler option programmatically: the OutputFileName is a read-only property,
which is determined by a combination of the project type (exe, library, and so forth) and

864X# Documentation

© 2015- 2024 XSharp BV

the assembly name. Modifying one or both of these properties will be necessary to set the
output file name.

Example

Compile t.prg and create output file t.exe, as well as build t2.prg and create module
output file mymodule.netmodule:

xsc t.prg -out:mymodule.netmodule -target:module t2.prg

1.9.3.58 -ovf

The -ovf compiler option is an alias for the -checked command line option for compatibility.

Click here to see the property page

1.9.3.59 -parallel

Specifies whether to use concurrent build (+).

1.9.3.60 -parseonly

Performs a syntax check on the input files only. Does not produce the output exe, dll or
pdb

Syntax

-parseonly[+|-]

Arguments

+ | - Specifying +, or just -parseonly, tells the compiler to only
parse the source code and not to not to bind and generate
an output file.
When combined with The -ppo option then there will be .ppo
files written.

Remarks

This command line option allows you to check the code without generating a binary.

865 XSharp

© 2015- 2024 XSharp BV

To set this compiler option in the Visual Studio development environment:

1. Open the project's Properties page.
2. Click the Build tab.
3. Add the option in the "Extra Command Line options" property

1.9.3.61 -pathmap

Specify a mapping for source path names output by the compiler.

Syntax

-pathmap:path1=sourcePath1,path2=sourcePath2

Arguments

path1 The full path to the source files in the current
environment

sourcePath1 The source path substituted for path1 in any output files.

To specify multiple mapped source paths, separate each with a comma.

Remarks
The compiler writes the source path into its output for the following reasons:
1. The source path is substituted for an argument when the CallerFilePathAttribute is

applied to an optional parameter.
2. The source path is embedded in a PDB file.
3. The path of the PDB file is embedded into a PE (portable executable) file.
This option maps each physical path on the machine where the compiler runs to a
corresponding path that should be written in the output files.

1.9.3.62 -pdb

The -pdb compiler option specifies the name and location of the debug symbols file.

Syntax

-pdb:filename

Arguments

filename The name and location of the debug symbols file.

866X# Documentation

© 2015- 2024 XSharp BV

Remarks

When you specify -debug , the compiler will create a .pdb file in the same directory where
the compiler will create the output file (.exe or .dll) with a file name that is the same as the
name of the output file.

-pdb allows you to specify a non-default file name and location for the .pdb file.

This compiler option cannot be set in the Visual Studio development environment, nor can
it be changed programmatically.

Example

Compile t.prg and create a .pdb file called tt.pdb:

xsc -debug -pdb:tt t.prg

1.9.3.63 -platform

Specifies which version of the common language runtime (CLR) can run the assembly.

Syntax

-platform:string

Arguments

string anycpu (default), anycpu32bitpreferred, ARM, x64, x86, or
Itanium.

Remarks

· anycpu (default) compiles your assembly to run on any platform. Your application runs
as a 64-bit process whenever possible and falls back to 32-bit when only that mode is
available.

· anycpu32bitpreferred compiles your assembly to run on any platform. Your application
runs in 32-bit mode on systems that support both 64-bit and 32-bit applications. You
can specify this option only for projects that target the .NET Framework 4.5.

· ARM compiles your assembly to run on a computer that has an Advanced RISC
Machine (ARM) processor.

867 XSharp

© 2015- 2024 XSharp BV

· x64 compiles your assembly to be run by the 64-bit common language runtime on a
computer that supports the AMD64 or EM64T instruction set.

· x86 compiles your assembly to be run by the 32-bit, x86-compatible common
language runtime.

· Itanium compiles your assembly to be run by the 64-bit common language runtime on
a computer with an Itanium processor.

On a 64-bit Windows operating system:

· Assemblies compiled with -platform:x86 execute on the 32-bit CLR running under
WOW64.

· A DLL compiled with The -platform:anycpu executes on the same CLR as the
process into which it is loaded.

· Executables that are compiled with The -platform:anycpu execute on the 64-bit CLR.

· Executables compiled with -platform:anycpu32bitpreferred execute on the 32-bit CLR.

The anycpu32bitpreferred setting is valid only for executable (.EXE) files, and it requires
the .NET Framework 4.5.

To set this compiler option in the Visual Studio development environment

1. Open the Properties page for the project.
2. Click the General property page.
3. Modify the Platform target property and, for projects that target the .NET Framework

4.5, select or clear the Prefer 32-bit check box.
4. Click here to see the property page

Example

The following example shows how to use The -platform option to specify that the
application should be run by the 64-bit CLR on a 64-bit Windows operating system.

xsc -platform:anycpu filename.prg

1.9.3.64 -ppo

The -ppo option directs the compiler to write the output of the preprocessor to a file.

Syntax

-ppo [+ | -]

868X# Documentation

© 2015- 2024 XSharp BV

Arguments

+ | - Specifying +, or just -ppo, directs the compiler to write the
output of the preprocessor to a file.
When ppo is not enabled then the compiler will delete any
existing ppo files that match input file names

Remarks

Each source file will be written to a file with the same base name and an extension of
.ppo, in the same directory as the source file. If a .ppo file already exists, it will be
overwritten without warning.

Tip:

.ppo files can be viewed within Visual Studio. After enabling The -ppo option and rebuilding
the project, select any node in the project in Solution Explorer, click the Show All Files
button in the Solution Explorer toolbar, then double click the desired .ppo file node.

To view a .prg and .ppo file side-by-side to compare them, right click the document tab in
either the .prg or .ppo file and click New Vertical Tab Group.

To set this compiler option in the Visual Studio development environment:

1. Open the project's Properties page (see How to: Set Build Properties).
2. Click the Build tab.
3. In the Preprocessor section, modify the "Generate preprocessor output"property.
4. Click here to see the property page

1.9.3.65 -preferreduilang

By using The -preferreduilang compiler option, you can specify the language in which the
X# compiler displays output, such as error messages.

Syntax

-preferreduilang: language

Arguments

language The language name of the language to use for compiler
output.

869 XSharp

© 2015- 2024 XSharp BV

Remarks

The preferreduilang compiler option is recognized but ignored. The X# compiler only
works in the english language (for now ?)

1.9.3.66 -recurse

The -recurse option enables you to compile source code files in all child directories of
either the specified directory (dir) or of the project directory.

Syntax

-recurse:[dir\]file

Arguments

dir (optional) The directory in which you want the search to begin. If this is
not specified, the search begins in the project directory.

file The file(s) to search for. Wildcard characters are allowed.

Remarks

The -recurse option lets you compile source code files in all child directories of either the
specified directory (dir) or of the project directory.
You can use wildcards in a file name to compile all matching files in the project directory
without using -recurse.
This compiler option is unavailable in Visual Studio and cannot be changed
programmatically.

Example

Compiles all X# files in the current directory:

xsc *.prg

Compiles all of the X# files in the dir1\dir2 directory and any directories below it and
generates dir2.dll:

xsc -target:library -out:dir2.dll -recurse:dir1\dir2*.prg

870X# Documentation

© 2015- 2024 XSharp BV

1.9.3.67 -reference

The -reference option causes the compiler to import public type information in the
specified file into the current project, thus enabling you to reference metadata from the
specified assembly files.

Syntax

-reference:[alias=]filename
-reference:filename

Arguments

filename The name of a file that contains an assembly manifest. To
import more than one file, include a separate -reference
option for each file.

alias A valid X# identifier that will represent a root namespace that
will contain all namespaces in the assembly.

Remarks

To import from more than one file, include a -reference option for each file.

The files you import must contain a manifest; the output file must have been compiled with
one of The -target options other than -target:module.

-r is the short form of -reference.

Use -addmodule to import metadata from an output file that does not contain an assembly
manifest.

If you reference an assembly (Assembly A) that references another assembly (Assembly
B), you will need to reference Assembly B if:

· A type you use from Assembly A inherits from a type or implements an interface from
Assembly B.

· You invoke a field, property, event, or method that has a return type or parameter type
from Assembly B.

Use -lib to specify the directory in which one or more of your assembly references is
located. The -lib topic also discusses the directories in which the compiler searches for
assemblies.

In order for the compiler to recognize a type in an assembly, and not in a module, it needs
to be forced to resolve the type, which you can do by defining an instance of the type.
There are other ways to resolve type names in an assembly for the compiler: for example,

871 XSharp

© 2015- 2024 XSharp BV

if you inherit from a type in an assembly, the type name will then be recognized by the
compiler.

Sometimes it is necessary to reference two different versions of the same component
from within one assembly. To do this, use the alias suboption on The -reference switch for
each file to distinguish between the two files. This alias will be used as a qualifier for the
component name, and will resolve to the component in one of the files.

The xsc response (.rsp) file, which references commonly used .NET Framework
assemblies, is used by default. Use -noconfig if you do not want the compiler to use
xsc.rsp.

Note

In Visual Studio, use the Add Reference dialog box.

Example

This example shows how to use the extern alias feature.

You compile the source file and import metadata from grid.dll and grid20.dll,which
have been compiled previously. The two DLLs contain separate versions of the same
component, and you use two -reference with alias options to compile the source file. The
options look like this:

-reference:GridV1=grid.dll and -reference:GridV2=grid20.dll

This sets up the external aliases "GridV1" and "GridV2," which you use in your program by
means of an extern statement:

extern alias GridV1;
extern alias GridV2;
-/ Using statements go here.

Once this is done, you can refer to the grid control from grid.dll by prefixing the control
name with GridV1, like this:

GridV1::Grid

In addition, you can refer to the grid control from grid20.dll by prefixing the control name
with GridV2 like this:

872X# Documentation

© 2015- 2024 XSharp BV

GridV2::Grid

1.9.3.68 -refonly

The -refonly option indicates that a reference assembly should be output instead of an
implementation assembly, as the primary output. The -refonly parameter silently disables
outputting PDBs, as reference assemblies cannot be executed.

Syntax

-refonly

Metadata-only assemblies have their method bodies replaced with a single throw null
body, but include all members except anonymous types. The reason for using throw null
bodies (as opposed to no bodies) is so that PEVerify could run and pass (thus validating
the completeness of the metadata).
Reference assemblies include an assembly-level ReferenceAssembly attribute. This
attribute may be specified in source (then the compiler won't need to synthesize it).
Because of this attribute, runtimes will refuse to load reference assemblies for execution
(but they can still be loaded in reflection-only mode). Tools that reflect on assemblies need
to ensure they load reference assemblies as reflection-only, otherwise they will receive a
typeload error from the runtime.
Reference assemblies further remove metadata (private members) from metadata-only
assemblies:
· A reference assembly only has references for what it needs in the API surface. The real

assembly may have additional references related to specific implementations.
· Private function-members (methods, properties, and events) are removed in cases

where their removal doesn't observably impact compilation. If there are no
InternalsVisibleTo attributes, do the same for internal function-members.

· But all types (including private or nested types) are kept in reference assemblies. All
attributes are kept (even internal ones).

· All virtual methods are kept. Explicit interface implementations are kept. Explicitly
implemented properties and events are kept, as their accessors are virtual (and are
therefore kept).

· All fields of a struct are kept. (This is a candidate for post-C#-7.1 refinement)
The -refonly and -refout options are mutually exclusive.

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-options/refout-compiler-option

873 XSharp

© 2015- 2024 XSharp BV

1.9.3.69 -refout

The -refout option specifies a file path where the reference assembly should be output.
This translates to metadataPeStream in the Emit API.

Syntax

-refout:filepath

Arguments

filepath The name and path of the output file created by the
compiler.

Remarks

The filename should generally match that of the primary assembly. The recommended
convention (used by MSBuild) is to place the reference assembly in a "ref/" sub-folder
relative to the primary assembly.

Metadata-only assemblies have their method bodies replaced with a single throw null
body, but include all members except anonymous types. The reason for using throw null
bodies (as opposed to no bodies) is so that PEVerify could run and pass (thus validating
the completeness of the metadata).
Reference assemblies include an assembly-level ReferenceAssembly attribute. This
attribute may be specified in source (then the compiler won't need to synthesize it).
Because of this attribute, runtimes will refuse to load reference assemblies for execution
(but they can still be loaded in reflection-only mode). Tools that reflect on assemblies need
to ensure they load reference assemblies as reflection-only, otherwise they will receive a
typeload error from the runtime.
Reference assemblies further remove metadata (private members) from metadata-only
assemblies:
· A reference assembly only has references for what it needs in the API surface. The real

assembly may have additional references related to specific implementations.
· Private function-members (methods, properties, and events) are removed in cases

where their removal doesn't observably impact compilation. If there are no
InternalsVisibleTo attributes, do the same for internal function-members.

· But all types (including private or nested types) are kept in reference assemblies. All
attributes are kept (even internal ones).

· All virtual methods are kept. Explicit interface implementations are kept. Explicitly
implemented properties and events are kept, as their accessors are virtual (and are
therefore kept).

· All fields of a struct are kept.
The -refout and -refonly options are mutually exclusive.

874X# Documentation

© 2015- 2024 XSharp BV

1.9.3.70 -resource

Embeds the specified resource into the output file.

Syntax

-resource:filename[,identifier[,accessibility-modifier]]

Arguments

filename The .NET Framework resource file that you want to embed
in the output file.

identifier (optional) The logical name for the resource; the name that is used to
load the resource. The default is the name of the file name.

accessibility-modifier (optional) The accessibility of the resource: public or
private. The default is public.

Remarks

Use -linkresource to link a resource to an assembly and not add the resource file to the
output file.

By default, resources are public in the assembly when they are created by using the X#
compiler. To make the resources private, specify private as the accessibility modifier.
No other accessibility other than public or private is allowed.

If filename is a .NET Framework resource file created, for example, by Resgen.exe or in
the development environment, it can be accessed with members in the
System.Resources namespace. For more information, see
System.Resources.ResourceManager. For all other resources, use the
GetManifestResource* methods in the Assembly class to access the resource at run
time.

-res is the short form of -resource.

The order of the resources in the output file is determined from the order specified on the
command line.

To set this compiler option in the Visual Studio development environment

1. Add a resource file to your project.
2. Select the file that you want to embed in Solution Explorer.
3. Select Build Action for the file in the Properties window.
4. Set Build Action to Embedded Resource.

For information about how to set this compiler option programmatically, see BuildAction.

875 XSharp

© 2015- 2024 XSharp BV

Example

Compile in.prg and attach resource file rf.resource:

xsc -resource:rf.resource in.prg

1.9.3.71 -ruleset

Specify a ruleset file that disables specific diagnostics.

Syntax

-ruleset:filename

1.9.3.72 -shared

Used the shared compiler process (XSCompiler.exe) to compile the project. This process
caches type information so repeated compilations will be faster

Syntax

/shared[: pipeName]

Arguments

pipeName This optional parameter specifies the pipename that the
compiler uses to communicate between the foreground
process (xsc.exe) and the background compiler
(xscompiler.exe)

Remarks

This commandline option is useful to speed up compilation

To set this compiler option in the Visual Studio development environment:

876X# Documentation

© 2015- 2024 XSharp BV

1. Open the project's Properties page.
2. Click the Build tab.
3. Check or uncheck the "Use Shared compiler" option.

1.9.3.73 -showdefs

Shows the #define tokens that the preprocessor sees

Syntax

/showdefs[+|-]

Arguments

+ | - Specifying +, or just /showdefs, causes the compiler to
output the names of #defines as they are processed.

Remarks

This commandline option is useful to debug the defines that are included in the
compilation

To set this compiler option in the Visual Studio development environment:

1. Open the project's Properties page.
2. Click the Build tab.
3. Add the option in the "Extra Command Line options" property

1.9.3.74 -showincludes

The -showincludes option causes the compiler to output the names of #include files as
they are processed.

Syntax

-showincludes[+|-]

Arguments

+ | - Specifying +, or just -showincludes, causes the compiler to
output the names of #include files as they are processed.

877 XSharp

© 2015- 2024 XSharp BV

Remarks

This option is useful in order to determine the files the compiler is processing as a result
of an #include directive. Nested include files are also displayed.

To set this compiler option in the Visual Studio development environment:

1. Open the project's Properties page.
2. Click the Build tab.
3. Add the option in the "Extra Command Line options" property

1.9.3.75 -snk

The -snk compiler option is an alias for the -keyfile option, for compatibility .

1.9.3.76 -stddefs

Override the name of the standard defines file (default = XSharpDefs.xh)

Syntax

-stddefs:filepath

Arguments

filepath The name and path of the header file to use in stead of XSharpDefs.Xh.
When no path is included then the compiler will use the Includepath
specified from the commandline (-i)

Click here to see the property page

1.9.3.77 -subsystemversion

Specifies the minimum version of the subsystem on which the generated executable file
can run, thereby determining the versions of Windows on which the executable file can
run. Most commonly, this option ensures that the executable file can leverage particular
security features that aren’t available with older versions of Windows.

Note
To specify the subsystem itself, use The -target compiler option.

Syntax

-subsystemversion:major.minor

878X# Documentation

© 2015- 2024 XSharp BV

Parameters
major.minor The minimum required version of the subsystem, as

expressed in a dot notation for major and minor versions.
For example, you can specify that an application can't run
on an operating system that's older than Windows 7 if you
set the value of this option to 6.01, as the table later in this
topic describes. You must specify the values for major and
minor as integers.

Leading zeroes in the minor version don't change the version, but trailing zeroes do. For
example, 6.1 and 6.01 refer to the same version, but 6.10 refers to a different version. We
recommend expressing the minor version as two digits to avoid confusion.

Remarks

The following table lists common subsystem versions of Windows.

Windows version Subsystem version

Windows 2000 5.00

Windows XP 5.01

Windows Server 2003 5.02

Windows Vista 6.00

Windows 7 6.01

Windows Server 2008 6.01

Windows 8 6.02

Default values

The default value of The -subsystemversion compiler option depends on the conditions in
the following list:

· The default value is 6.02 if any compiler option in the following list is set:
o -target:appcontainerexe
o -target:winmdobj
o -platform:arm

· The default value is 6.00 if you're using MSBuild, you're targeting .NET Framework
4.5, and you haven't set any of the compiler options that were specified earlier in this
list.

· The default value is 4.00 if none of the previous conditions is true.

Setting this option

To set The -subsystemversion compiler option in Visual Studio, you must open the .xsproj
file and specify a value for the SubsystemVersion property in the MSBuild XML. You can't
set this option in the Visual Studio IDE.

879 XSharp

© 2015- 2024 XSharp BV

1.9.3.78 -target

The -target compiler option can be specified in one of four forms:

-target:appcontainerexe To create an .exe file for Windows 8.x Store apps.
-target:exe To create an .exe file.
-target:library To create a code library.
-target:module To create a module.
-target:winexe To create a Windows program.
-target:winmdobj To create an intermediate .winmdobj file.

Unless you specify -target:module, -target causes a .NET Framework assembly manifest
to be placed in an output file. For more information, see Assemblies in the Common
Language Runtime and Common Attributes.
The assembly manifest is placed in the first .exe output file in the compilation or in the first
DLL, if there is no .exe output file. For example, in the following command line, the
manifest will be placed in 1.exe:

xsc -out:1.exe t1.prg -out:2.netmodule t2.prg

The compiler creates only one assembly manifest per compilation. Information about all
files in a compilation is placed in the assembly manifest. All output files except those
created with -target:module can contain an assembly manifest. When producing multiple
output files at the command line, only one assembly manifest can be created and it must
go into the first output file specified on the command line. No matter what the first output
file is (/target:exe, -target:winexe, -target:library or -target:module), any other output files
produced in the same compilation must be modules (/target:module).

If you create an assembly, you can indicate that all or part of your code is CLS compliant
with the CLSCompliantAttribute attribute.

// target_clscompliant.prg
[assembly:System.CLSCompliant(true)] // specify assembly
compliance

[System.CLSCompliant(false)]; // specify compliance for an
element
CLASS TestClass

 PUBLIC STATIC METHOD Start AS VOID
 RETURN
END CLASS

880X# Documentation

© 2015- 2024 XSharp BV

For more information about setting this compiler option programmatically, see
OutputType.Enter topic text here.

1.9.3.79 -touchedfiles

The -touchedfiles compiler option allows you to declare a file in which the compiler will list
which files have been touched during the compilation process.

Syntax

-touchedfiles:filename

Remarks

The compiler will produce 2 output files:

filename.read This lists all the files that were read by the compiler
filename.write This lists all the files that were written by the

compiler. That includes the exe, pdb, ppo etc.

The file names in both files are all capitalized and in alphabetical order

1.9.3.80 -undeclared

The -undeclared option tells the compiler to enable the support for 'undeclared variables'

Syntax

-undeclared [+ | -]

Arguments

+ | - Specifying +, or just -undeclared, directs the compiler to
enable the support for 'undeclared variables'

Remarks

This will NOT work with the Core and Vulcan dialects.
When the compiler detects an 'unknown identifier' it will assume that this is either a field in
the current workarea or a memory variable.
The compiler option will only have effect when you also enabled -memvar

Click here to see the property page

881 XSharp

© 2015- 2024 XSharp BV

1.9.3.81 -unsafe

The -unsafe compiler option allows code that uses the unsafe keyword to compile.

Syntax

-unsafe

Remarks

For more information about unsafe code, see Unsafe Code and Pointers.

To set this compiler option in the Visual Studio development environment

1. Open the project's Properties page.
2. Click the Language property page.
3. Set the Allow Unsafe Code property in the General Section
4. Click here to see the property page

Example

Compile in.prg for unsafe mode:

xsc -unsafe in.prg

1.9.3.82 -usenativeversion

The -usenativeversion compiler option tells the compiler to use the native Win32 version
resource supplied in a Win32 resource file and to not generate a resource from the
Assembly attributes

Syntax

-usenativeversion

Remarks

Managed resources are usually generated from code such as the code below:

[assembly: AssemblyTitleAttribute("Mycompany Custom Controls")]
[assembly: AssemblyDescriptionAttribute("This is a description of

882X# Documentation

© 2015- 2024 XSharp BV

the assembly")]
#ifdef __DEBUG__
[assembly: AssemblyConfigurationAttribute("Debug")]
#else
[assembly: AssemblyConfigurationAttribute("Release")]
#endif
[assembly: AssemblyCompanyAttribute("MyCompanyName")]
[assembly: AssemblyProductAttribute("MyProductName")]
[assembly: AssemblyCopyrightAttribute("Copyright © 2020
MyCompanyName")]
[assembly: AssemblyTrademarkAttribute("TM MyCompanyName")]
[assembly: AssemblyCultureAttribute("en-US")]
// Version information for an assembly consists of the following
four values:
[assembly: AssemblyVersionAttribute("2.3.1")]
[assembly: AssemblyFileVersionAttribute("2.3.1")]
[assembly: AssemblyInformationalVersionAttribute("2.3.1 Special
Build for customer Contoso")]

We use this kind of attributes to generate the version info in our runtime assemblies:

883 XSharp

© 2015- 2024 XSharp BV

Click here to see the property page

1.9.3.83 -utf8output

The -utf8output option displays compiler output using UTF-8 encoding.

Syntax

-utf8output

Remarks

In some international configurations, compiler output cannot correctly be displayed in the
console. In these configurations, use -utf8output and redirect compiler output to a file.

884X# Documentation

© 2015- 2024 XSharp BV

This compiler option is unavailable in Visual Studio and cannot be changed
programmatically.

1.9.3.84 -vo1

The -vo1 compiler option directs the compiler to treat Init() methods as constructors and
Axit methods as Destructor.

Syntax

-vo1[+ | -]

Arguments

+ | - Specifying +, or just -vo1, directs the compiler to convert
Init() and Axit() methods to constructors and destructors.

To set this compiler option in the Visual Studio development environment:

1. Open the project's Properties page.
2. Click the Dialect tab.
3. Change the value.
4. Click here to see the property page

1.9.3.85 -vo10

The -vo10 option enables the IIF operator to behave in a manner compatible with Visual
Objects

Syntax

-vo10[+|-]

Arguments

+ | - Specifying +, or just -vo10, causes the IIF operator to
behave as it does in Visual Objects.

Remarks

If the true and false expressions in an IIF operator are not the same, or one cannot be
implicitly converted to the type of the other, the compiler will raise an error.

885 XSharp

© 2015- 2024 XSharp BV

Visual Objects allows this, and implicitly converts both expressions to USUAL, causing the
IIF expression to also return USUAL. This is neither safe or efficient, but code originally
written in Visual Objects may depend on this behavior, and if -vo10 is not used, errors
may occur at runtime.

LOCAL x as LOGIC
x := TRUE
? IIF(x, 1, "Sunday")

When you use The -vo10 compiler option then the compiler will convert this to:

? IIF(x, (USUAL)1, (USUAL) "Sunday") // for the VO and
Vulcan dialect

or

? IIF(x, (OBJECT)1, (OBJECT) "Sunday") // for the Core
dialect

To set this compiler option in the Visual Studio development environment:

1. Open the project's Properties page.
2. Click the Dialect tab.
3. Change the value.
4. Click here to see the property page

1.9.3.86 -vo11

The -vo11 option enables Visual Objects compatible arithmetic conversions.

Syntax

-vo11[+|-]

Arguments

+ | - Specifying +, or just -vo11, directs the compiler to emit code
that performs arithmetic conversions that are compatible
with Visual Objects.

To set this compiler option in the Visual Studio development environment:

886X# Documentation

© 2015- 2024 XSharp BV

1. Open the project's Properties page.
2. Click the Dialect tab.
3. Change the value.
4. Click here to see the property page

Example

// using default or /vo11-
FUNCTION Start() AS VOID
LOCAL f AS FLOAT

f := 1.6
? (INT)f // 1 (rounding towards zero)

f := 1.5
? (INT)f // 1 (rounding towards zero)

f := 2.5 // 2 (rounding towards zero)
? (INT)f

f := 3.5 // 3 (rounding towards zero)
? (INT)f

RETURN

// using /vo11 or /vo11+
FUNCTION Start() AS VOID
LOCAL f AS FLOAT

f := 1.6
? (INT)f // 2 (rounding towards closest integer)

f := 1.5
? (INT)f // 2 (rounding towards closest even integer)

f := 2.5
? (INT)f // 2 (rounding towards closest even integer)

f := 3.5
? (INT)f // 4 (rounding towards closest even integer)

RETURN

887 XSharp

© 2015- 2024 XSharp BV

1.9.3.87 -vo12

The -vo12 option enables Clipper compatible integer divisions.

Syntax

-vo12[+|-]

Arguments

+ | - Specifying +, or just -vo12, directs the compiler to emit code
that performs Clipper-compatible integer divisions.

Remarks

When The -vo12 option is enabled and both operands of The - (division) operator are
integral values, both operands are converted to USUAL, and the return type is USUAL. The
return value contained in the USUAL is:

· INT64 (UsualType() == 22), if one or both operands are greater than Int32.MaxValue and
the remainder of the division is zero

· INT (UsualType() == 1), if one or both operands are INT or a smaller integral type and
the remainder of the division is zero

· FLOAT (UsualType() == 3), if one or both operands are INT or a smaller integral type
and the remainder of the division is not zero

The -vo12 option is enabled in projects created by the Transporter if the Compiler-
>Clipper Compatiblity->Integer Divisions option was enabled for the project in Visual
Objects.

To set this compiler option in the Visual Studio development environment:

1. Open the project's Properties page.
2. Click the Dialect tab.
3. Change the value.
4. Click here to see the property page

1.9.3.88 -vo13

The -vo13 option enables VO compatible string comparisons

Syntax

-vo13[+|-]

888X# Documentation

© 2015- 2024 XSharp BV

Arguments

+ | - Specifying +, or just -vo13, tells the compiler that string
comparisons are to be performed the same way as they are
in VO, and in the RDDs, where the comparison depends on
the SetCollation() setting. When - is specified, or -vo13 is
not specified, string comparisons in code use
String.Compare()

Remarks

When this option is enabled string comparisions are compatible with VO and the RDDs,
and depend on SetCollation() as follows:

When collation=#WINDOWS, string comparisons make use of services provided by
Windows that automatically handle foreign character sets. These string comparisons are
implemented with a call to CompareStringA() function in kernel32.dll.

When collation = #CLIPPER, comparisons are performed byte by byte, using a weight
table for each char. As in VO, a different table can be selected with the SetNatDll()
function.
In .Net we are using the runtime DLL for the weight tables. In the runtime the nation DLLs
are not physically implemented as separate files; the weighting tables are embedded as
resources inside XSharp.Core.dll.

When collation = #Unicode then the comparisons will be done with the normal
String.Compare() routine that uses the current culture.

When collation = #Ordinal then the comparisons will be done with the normal
String.Compare() routine using an ordinal comparison (this is the fastest)

When -v013 is not enabled string comparisons are performed using String.Compare(),
where the comparison makes use of culture-sensitive sort rules according to the current
culture selected.

The setting for -vo13 is registered with the runtime by the main application at startup. If
you library is compiled with -vo13+ but the main app isn't, then the string comparisons
called from the library will follow the same rules as the main app because the main app
registers -vo13 setting with the runtime and the stringcomparison routines in the runtime
now detect that the main app does not want to do VO compatible string comparisons.
We therefore recommend that 3rd party products always enable -vo13.

Compatibility Note:

When using -vo13 string comparisons involve converting unicode strings to ansi for
compatibility and consequently are slower than with String.Compare().

To set this compiler option in the Visual Studio development environment:

1. Open the project's Properties page.
2. Click the Dialect tab.

889 XSharp

© 2015- 2024 XSharp BV

3. Change the value.
4. Click here to see the property page

1.9.3.89 -vo14

The -vo14 option enables VO compatible handling of floating point literal numbers

Syntax

-vo14[+|-]

Arguments

+ | - Specifying +, or just -vo14, tells the compiler treat floating
point literal numbers (for example: 123.456) as FLOAT data
type, instead of as REAL8 (System.Double), which is the
default.

Remarks

When this option is enabled, floating point literal numbers are treated by the compiler as
FLOAT values, for compatibility with existing Visual Objects code. This option is enabled
by default in transported projects.

For new code, it is strongly recommended not to enable this compiler option, as it
generates less efficient code. For example, for the following code:

LOCAL r := 3.0 AS REAL8
r := r * 4.5 + r + 5.5

if -vo14 is enabled, the compiler treats the "1.0", "1.5" and "2.5" values as numbers of type
FLOAT, causing the whole calculation to be made on FLOAT values and the result is at
the end converted to REAL8, before it is finally stored to the local variable. FLOAT is a
special data type defined in the runtime and is significantly slower than the REAL8
(System.Decimal) data type, which maps directly to a (mathematic) processor registry.
Disabling -vo14 option, would cause the above code to execute faster by a large factor.

Note that by using the "d" or "s" suffix, as in 123.456d and 123.456s, the REAL8 or REAL4
data type is being enforced on a literal number, no matter if -vo14 is enabled or disabled.
See Literals for more information.

To set this compiler option in the Visual Studio development environment:

890X# Documentation

© 2015- 2024 XSharp BV

1. Open the project's Properties page.
2. Click the Dialect tab.
3. Change the value.
4. Click here to see the property page

1.9.3.90 -vo15

This compiler option will allow you to control what the compiler will do with local variables,
parameters and return types without type specification.
The default is -vo15+ for the VO and Vulcan dialects. For the Core dialect the default is -
vo15-

Syntax

-vo15[+|-]

Arguments

+ | - Specifying +, or just -vo15, tells the compiler to treat untyped
locals and return types as USUAL

To set this compiler option in the Visual Studio development environment:

1. Open the project's Properties page.
2. Click the Dialect tab.
3. Change the value.
4. Click here to see the property page

Example

FUNCTION LongSquare(nLong as LONG) -/ Note that the return
type is missing

RETURN nLong * nLong

In VO/Vulcan mode this will (by default) generate a method with a USUAL return type. In
Core mode this will not compile but produce a "Missing Type" error (XS1031)

When you compile with -vo15- this will also produce an error.

Similar code that will be influenced by this compiler option

891 XSharp

© 2015- 2024 XSharp BV

FUNCTION MultiplyLong(nParam1 as LONG, nParam2) AS LONG -/ Note
that the type for nParam2 is missing
RETURN nParam1 * nParam2

And

FUNCTION Tomorrow() AS Date
LOCAL dToday := Today() -/ Note that the AS DATE is
missing
RETURN dToday + 1

1.9.3.91 -vo16

Automatically generate Clipper calling convention constructors for classes without
constructor

Syntax

-vo16[+|-]

Arguments

+ | - Specifying +, or just -vo16, tells the compiler to
automatically generate constructors with the same
signature as the constructors of the parent class

To set this compiler option in the Visual Studio development environment:

1. Open the project's Properties page.
2. Click the Dialect tab.
3. Change the value.
4. Click here to see the property page

Example

CLASS Event
 EXPORT hWnd AS PTR
 EXPORT uMsg AS DWORD
 EXPORT wParam AS DWORD
 EXPORT lParam AS LONG
 EXPORT oWindow AS OBJECT

892X# Documentation

© 2015- 2024 XSharp BV

CONSTRUCTOR(_hWnd, _uMsg, _wParam, _lParam, _oWindow)
 SELF:hWnd := _hWnd
 SELF:uMsg := _uMsg
 SELF:wParam := _wParam
 SELF:lParam := _lParam
 SELF:oWindow := _oWindow
END CLASS

CLASS ControlEvent INHERIT Event
END CLASS

In the code above the compiler would generate a constructor for the ControlEvent class.
This constructor will pass all the parameters to the constructor of the Event class.

The generated constructor would look like:

 CONSTRUCTOR(_hWnd, _uMsg, _wParam, _lParam, _oWindow)
 SUPER(_hWnd, _uMsg, _wParam, _lParam, _oWindow)

1.9.3.92 -vo17

Generate code to fully implement the VO compatible BEGIN SEQUENCE .. END
SEQUENCE.
The compiler generates calls to the runtime functions _SequenceError and
_SequenceRecover that you may override in your own code.

-vo17[+|-]

Arguments

+ | - Specifying +, or just -vo17, tells the compiler to
automatically generate constructors with the same
signature as the constructors of the parent class

To set this compiler option in the Visual Studio development environment:

1. Open the project's Properties page.
2. Click the Dialect tab.
3. Change the value.
4. Click here to see the property page

893 XSharp

© 2015- 2024 XSharp BV

The generated code by the compiler will call 2 runtime functions to allow you to adjust
the behavior of the BEGIN SEQUENCE .. END SEQUENCE handling.

The default implementation of these functions is in the XSharp Runtime:

/// <summary>
/// This function is automatically inserted by the compiler in a
RECOVER USING block and gets called when the
/// RECOVER USING block is reached because of an exception.
/// </summary>
/// <param name="e">The exception that triggered the jump into the
RECOVER USING block</param>
/// <remarks>
/// The default implementation of this function (in the XSharp.RT
assembly) called the installed error handler
/// that is installed with ErrorBlock()
/// The function should then have the following prototype
/// <code language="X#">
/// FUNCTION _SequenceError(e as Exception) AS VOID
/// </code>
/// </remarks>
/// <returns>The result of the call to the error handler installed
in the ErrorBlock</returns>
/// <seelso cref='O:XSharp.RT.Functions._Break'>Break
Function</seealso>
/// <seelso cref='O:XSharp.RT.Functions.ErrorBlock'>Break
Function</seealso>
FUNCTION _SequenceError(e as Exception) AS USUAL
 LOCAL error as XSharp.Error
 IF e IS XSharp.Error VAR err
 error := err
 ELSE
 error := Error{e}
 ENDIF
 RETURN Eval(ErrorBlock(), error)
/// <summary>
/// This function is automatically inserted by the compiler in a
compiler generated
/// RECOVER USING block when you have a BEGIN SEQUENCE .. END
SEQUENCE in your code
/// without RECOVER USING clause
/// </summary>
/// <param name="u">The parameter that was passed in the BREAK
statement or the call to the _Break function</param>
/// <remarks>If a REAL exception occurs then this function is NOT
called. The function is only called when
/// the (generated) RECOVER USING block is called with a value
from a BREAK statement.

894X# Documentation

© 2015- 2024 XSharp BV

/// The default implementation of this function (in the XSharp.RT
assembly) does nothing.
/// You can override this function in your own code if you want.
/// The function should then have the following prototype
/// <code language="X#">
/// FUNCTION _SequenceRecover(u as USUAL) AS VOID
/// </code>
/// </remarks>
/// <seelso cref='O:XSharp.RT.Functions._Break'>Break
Function</seealso>
FUNCTION _SequenceRecover(u as USUAL) AS VOID
 RETURN

1.9.3.93 -vo2

The -vo2 option directs the compiler to initialize all variables and fields of type STRING
(System.String) and all elements of DIM ... AS STRING arrays to an empty string (/vo2[+|-]

Syntax

-vo2[+ | -]

Arguments

+ | - Specifying +, or just -vo2, directs the compiler to initialize all
variables and fields of type STRING and all elements of DIM
... AS STRING arrays to an empty string (String.Empty).

Remarks

This option is off by default, and all locals, globals, fields and array elements of type
STRING have an initial value of NULL, which is the default initial value for any local, global,
field or array element that contains a reference type.

Generally you will initialize a string variable to a specific value before it is used, and
initializing it to an empty string would incur unnecessary overhead. In addition, it is
inconsistent with the behavior of all other reference types, which have an initial value of
NULL. However, this may break existing Visual Objects code that relies on Visual Object's
behavior of initializing string variables to a string with zero characters.

When this option is not used, you may test for an empty string variable, field or array
element by comparing it against NULL. When this option is enabled, you may test for an

895 XSharp

© 2015- 2024 XSharp BV

empty string variable, field or array element by comparing it against "" or String.Empty, or
testing that its length equals zero. System.String.IsNullOrEmpty() may also be used to
test whether a string variable contains NULL or a valid string with zero characters.

Also note that the predefined constant NULL_STRING is normally equivalent to NULL, but
when -vo2 is used, NULL_STRING is equivalent to "" (a zero-length string).

 Compatibility Note:
-vo2 does not initialize STRING fields in structures. Since structures do not have default
constructors, structure fields cannot have initializer expressions. Although this is not a
compatiblity issue since you cannot create structures (value types) in Visual Objects, it is
something to keep in mind if you use structures in an application that uses -vo2.

Note that the use of the term "structure" here refers to STRUCTURE in X#, not
STRUCTURE in Visual Objects, which has been renamed VOSTRUCT in X#. -vo2 has no
effect on VOSTRUCT since you cannot declare fields that are reference types in a
VOSTRUCT.

To set this compiler option in the Visual Studio development environment:

1. Open the project's Properties page.
2. Click the Dialect tab.
3. Change the value.
4. Click here to see the property page

Example

// using default or /vo2-
FUNCTION Start() AS VOID
 LOCAL s AS STRING
 ? s == NULL // true
 ? s == "" // false
 ? s == String.Empty // false
 ? Len(a) // runtime error -
NullReferenceException
 ? a:Length // runtime error -
NullReferenceException
 ? String.IsNullOrEmpty(a) // true
 RETURN

// using /vo2 or /vo2+
FUNCTION Start() AS VOID
 LOCAL s AS STRING // this compiles as 'LOCAL s := "" AS
STRING'
 ? s == NULL // false
 ? s == "" // true
 ? s == String.Empty // true

896X# Documentation

© 2015- 2024 XSharp BV

 ? Len(a) // 0
 ? a:Length // 0
 ? String.IsNullOrEmpty(a) // true
RETURN

1.9.3.94 -vo3

The -vo3 option directs the compiler to treat all methods (including ACCESS and ASSIGN
methods) as virtual.

Syntax

-vo3[+|-]

Arguments

+ | - Specifying +, or just -vo3, directs the compiler to treat all
methods (including ACCESS and ASSIGN methods) as
virtual, regardless of whether the VIRTUAL modifier is used
or not. This provides compatibility with the Visual Objects
inheritance model.

Remarks
A class method may always be explicitly declared as a virtual method by using the
VIRTUAL keyword, regardless of whether -vo3 is used or not.

For performance reasons, this option is off by default. Virtual methods incur a slight
performance penalty since the actual method implementation that is called cannot be
determined until run-time, and depends on the run-time type of the instance on which the
invocation takes place. In contrast, calls to non-virtual members can be fully resolved at
compile time, and the call is always made to the compile-time type of the instance.

To set this compiler option in the Visual Studio development environment:

1. Open the project's Properties page.
2. Click the Dialect tab.
3. Change the value.
4. Click here to see the property page

897 XSharp

© 2015- 2024 XSharp BV

Example

CLASS BaseClass
METHOD WhoAmI() AS STRING
RETURN "BaseClass"
END CLASS

CLASS DerivedClass INHERIT BaseClass
METHOD WhoAmI() AS STRING
RETURN "DerivedClass"
END CLASS

FUNCTION Start() AS VOID
LOCAL c AS BaseClass
c := DerivedClass{}
? c:WhoAmI()
RETURN

// Output using default or /vo3-: BaseClass
// Output using /vo3 or /vo3+: DerivedClass

When The -vo3 switch is not used, the call to 'c:WhoAmI()' always resolves to the
implementation in BaseClass, since the variable 'c' is typed as 'BaseClass' and
'BaseClass.WhoAmI' is a non-virtual method.

When The -vo3 switch is used, the call to 'c:WhoAmI()' resolves to the implementation in
'DerivedClass'. Even though the variable 'c' is typed as 'BaseClass', the actual type of the
instance stored in 'c' at runtime determines what implementation of 'WhoAmI' to invoke
since 'BaseClass.WhoAmI' is a virtual method.

The same behavior without using -vo3 could be obtained by doing:

VIRTUAL METHOD WhoAmI() AS STRING CLASS BaseClass
 ...

This is preferable over using -vo3 since you have explicit control over which methods are
and are not virtual, and no unnecessary overhead is incurred where virtual inheritance is
not required. However, existing Visual Objects code may not work properly without -vo3,
and it may not be practical to modify existing code and add the VIRTUAL keyword to those
methods that really need it.

898X# Documentation

© 2015- 2024 XSharp BV

1.9.3.95 -vo4

The -vo4 option directs the compiler to implicitly convert numeric types from larger types
to smaller types but also from fractional types to integral types.

Syntax

-vo4[+|-]

Arguments

+ | - Specifying +, or just -vo4, directs the compiler to implicitly
convert signed integer values to/from unsigned values, and
larger integer types to smaller integer types. This provides
compatibility with Visual Objects, which permits such
conversions without an explicit cast or conversion operator.

Remarks

For safety reasons, this option is off by default. Implicitly converting between signed and
unsigned integer types or between larger to smaller integer types can cause numeric
overflow errors at runtime or unintended values to be passed depending upon whether
overflow checking is enabled or disabled. By default, you must explicitly cast a signed
integer to its unsigned counterpart and from larger integer types to smaller integer types
and by explicitly doing so, it is assumed that the conversion is known by the programmer
to be safe.

When this option is enabled, the compiler will implicitly convert the data types listed in the
table below:

From To

SByte BYTE, WORD, Char, DWORD

SHORT BYTE, SByte, WORD, Char, DWORD

INT BYTE, SByte, WORD, SHORT, Char,
DWORD

INT64 BYTE, SByte, WORD, SHORT, Char, INT,
DWORD, UINT64

BYTE SByte

WORD SByte, BYTE, SHORT, Char, INT

DWORD SByte, BYTE, WORD, SHORT, INT

UINT64 SByte, BYTE, WORD, SHORT, Char, INT,
DWORD, INT64

REAL8, REAL4, DECIMAL All other numeric types

899 XSharp

© 2015- 2024 XSharp BV

FLOAT, CURRENCY All other numeric types

For each conversion, the compiler will raise an appropriate warning. You may disable the
warning with The -wx switch, or insert an explicit cast in the source code to eliminate the
warning.

 It is strongly recommended that you do not use this compiler option in new code. All of the
conversions listed in the table above have the ability to lose data or return incorrect values,
since the range of values in the source data type cannot be represented in the target data
type.

For example, an INT containing a negative number cannot be represented in a DWORD.
Similarly, an INT greater than 65535 cannot be represeneted in a SHORT. If you must mix
signed and unsigned types or pass a larger type to a smaller type, you should always
supply an explicit cast rather than using -vo4. This will document the fact that the
conversion is known to be safe, and it will not suppress compile time errors if
incompatible integer types are unintentionally used.

To set this compiler option in the Visual Studio development environment:

1. Open the project's Properties page.
2. Click the Dialect tab.
3. Change the value.
4. Click here to see the property page

Example

FUNCTION Start() AS VOID
LOCAL dw := 4294967296 AS DWORD
LOCAL i := -1 AS INT

DWORD_Function(i) // no error if compiled with /vo4
INT_Function(dw) // no error if compiled with /vo4
RETURN

FUNCTION DWORD_Function(x AS DWORD) AS VOID
? x
RETURN

FUNCTION INT_Function(x AS INT) AS VOID
? x
RETURN

900X# Documentation

© 2015- 2024 XSharp BV

1.9.3.96 -vo5

The -vo5 option directs the compiler to implicitly use the CLIPPER calling convention for
functions declared with zero-arguments and no explicit calling convention.

Syntax

-vo5[+|-]

Arguments

+ | - Specifying +, or just -vo5, directs the compiler to implicitly
use the CLIPPER calling convention for functions, methods
and constructors that are declared with zero arguments and
no explicit calling convention.

Remarks

For compatibility with Clipper, Visual Objects uses the CLIPPER calling convention for all
functions and methods that are declared with zero arguments and no explicit calling
convention. The STRICT keyword may be used to override the default, and cause the
function to use the STRICT calling convention.

However, in the vast majority of cases, parameters are never passed to functions and
methods declared with zero arguments, and using the CLIPPER calling convention by
default incurs unnecessary overhead not only in the function itself, but at every call site. In
addition, the CLIPPER calling convention allows any number and type of arguments to be
passed, preventing compile time error checking.

In X#, functions and methods declared with zero arguments are compiled with the
STRICT calling convention by default, unless the CLIPPER keyword is explicitly specified.
This behavior is the exact opposite of Visual Objects, but results in more efficient code as
well as compile time error checking. Passing any arguments to a function declared to
accept zero arguments will raise a compile-time error.

However, this can cause compatibility issues in code originally written in Visual Objects.
The -vo5 compiler option reverses the default behavior of X# with regard to zero argument
functions, so that the behavior is identical to Visual Objects.

Regardless of whether this option is enabled or not, the CLIPPER and STRICT keywords
can always be used to explicitly specify the desired calling convention.

To set this compiler option in the Visual Studio development environment:

1. Open the project's Properties page.
2. Click the Dialect tab.
3. Change the value.
4. Click here to see the property page

901 XSharp

© 2015- 2024 XSharp BV

Example

FUNCTION foo() // CLIPPER
? pcount(), _getFParam(1)
RETURN

FUNCTION Start() AS VOID
foo(1)
RETURN

The above example will compile and run correctly if -vo5 is used, or if the CLIPPER
keyword is added at the end of the FUNCTION foo() declaration. Otherwise, a compiler
error will be generated on the call to foo(), as well as on the calls to pcount() and
_getFParam() (which are illegal in a STRICT calling convention function).

1.9.3.97 -vo6

The -vo6 option directs the compiler to resolve typed function pointers to PTR.

Syntax

-vo6[+|-]

Arguments

+ | - Specifying +, or just -vo6, directs the compiler to resolve
pointers that would resolve to typed function pointers in
Visual Objects to PTR.

Remarks

X# does not supported typed function pointers. Existing Visual Objects code that declares
typed function pointers will not compile in X#, unless the type is changed to PTR or IntPtr.

If this option is enabled and a pointer type cannot be resolved, the compiler will attempt to
locate a function with the same name as the pointer type (without "PTR"). If found, the
compiler will resolve the type to PTR. This allows existing Visual Objects code to be
compiled without modification, at least as far as the variable declaration is concerned.

The pointer type may be used as an argument to CCallNative(), PCallNative() or
CallManaged(), depending on the type of function the pointer points to.

902X# Documentation

© 2015- 2024 XSharp BV

To set this compiler option in the Visual Studio development environment:

1. Open the project's Properties page.
2. Click the Dialect tab.
3. Change the value.
4. Click here to see the property page

Example

The following code is valid in Visual Objects, but will not compile in X# unless -vo6 is
used.

FUNCTION foo(x AS INT) AS VOID
RETURN

GLOBAL pFoo AS foo PTR

Using /vo6 has the same effect as if the GLOBAL declaration were rewritten as:

GLOBAL pFoo AS PTR

Using -vo6 has the same effect as if the GLOBAL declaration were rewritten as:

GLOBAL pFoo AS PTR

Note that PTR does not have the same semantics as typed function pointers in Visual
Objects. However, typed function pointers are primarily used as arguments to CALL(),
CCALL() and PCALL() in Visual Objects, which are not supported in X#. They have been
replaced with CCallNative(), PCallNative() and CallManaged(), which accept IntPtr
arguments. The same end result (invoking a function indirectly through a pointer) is
therefore possible in X# without typed function pointers.

903 XSharp

© 2015- 2024 XSharp BV

1.9.3.98 -vo7

The -vo7 option directs the compiler to allow implicit casts and conversions that are
allowed in Visual Objects but which would normally be illegal or require an explicit cast in
X#.

Syntax

-vo7[+|-]

Arguments

+ | - Specifying +, or just -vo7, directs the compiler to allow
certain implicit casts and conversions that are allowed in
Visual Objects.

Remarks

Visual Objects allows implicit casts between types with different semantics, whereas X#
normally requires explicit casts in such cases.

For example, Visual Objects allows implicit conversions between integer types and pointer
types. While pointers are integers, they have different semantics. Integers are numerical
values and pointers are addresses representing memory locations. In addition to the
difference in semantics, the size of a pointer is dependent upon the underlying platform
whereas the size of an integer does not change from platform to platform (with the
exception of System.IntPtr).

While is it possible (and often necessary) to cast between types with different semantics,
it should always be done via an explicit cast. This not only insures that the correct
conversion code is generated (if necessary), it also self-documents the fact that you are
casting one type to another type that has a different meaning.

X# supports most of the casts that Visual Objects supports, but in cases where the types
have different semantics, an explicit cast is usually required. However, this can cause a
large number of compiler errors in existing Visual Objects code.

Using -vo7 allows the following conversions to be performed implicitly, allowing existing
Visual Objects code to compile:

From To Operation Performed

PTR strongly typed
PTR (e.g. INT
PTR)

None, the types are binary compatible. However, the
code may fail at runtime if the data the pointer points
to is not the correct type.

INT or
DWORD

strongly typed
PTR (e.g. INT
PTR)

None, the types are binary compatible. However, the
code may fail at runtime if the data the pointer points
to is not the correct type. Note that this conversion is
only allowed when the target platform is set to x86.

904X# Documentation

© 2015- 2024 XSharp BV

INT64 or
UINT64

strongly typed
PTR (e.g. INT
PTR)

None, the types are binary compatible. However, the
code may fail at runtime if the data the pointer points
to is not the correct type. Note that this conversion is
only allowed when the target platform is set to x64 or
Itanium.

OBJECT any other
reference type

Compiler inserts an explicit cast to the target type,
which may fail at runtime.

type PTR REF type The compiler converts the pointer into a reference.
Note that even with -vo7, not all pointers can be
converted to references or else it would compromise
the integrity of the garbage collector.

To set this compiler option in the Visual Studio development environment:

1. Open the project's Properties page.
2. Click the Dialect tab.
3. Change the value.
4. Click here to see the property page

Example

The following code is valid in Visual Objects, but will not compile in X# unless -vo7 is
used, because CreateObject() returns OBJECT and there is no implicit conversion from
OBJECT to a more derived type (such a conversion cannot be guaranteed to be safe, and
implicit conversions are always safe).

CLASS foo
...
END CLASS

FUNCTION Start() AS VOID
LOCAL f AS foo
LOCAL s AS SYMBOL
s := #foo
f := CreateObject(s) // no implicit conversion from 'OBJECT' to
'foo'
RETURN

Using -vo7 has the same effect as if the assignment into f were rewritten as:

f := (foo) CreateObject(s)

In either case, the resulting code is exactly the same, and the cast to foo may fail at
runtime. However, the explicit cast self-documents that you expect the return from
CreateObject() to contain an instance of foo.

905 XSharp

© 2015- 2024 XSharp BV

The following example is also valid in Visual Objects, but will not compile in X# unless -vo7
is used, because the @ operator returns the address of its operand (a typed pointer) and
pointers are not the same as references in X#:

LOCAL x AS INT
ByRef(@x)

...

FUNCTION ByRef(i REF INT) AS VOID
i := 5
RETURN

The -vo7 option will automatically convert @x, which resolves to type INT PTR, into REF
INT which is compatible with the function parameter. However, it is recommended that
you remove the @ operator rather than use -vo7 for this purpose.

1.9.3.99 -vo8

The -vo8 option enables Visual-Objects compatible preprocessor behavior.

Syntax

-vo8[+|-]

Arguments

+ | - Specifying +, or just -vo8, changes certain aspects of the
preprocessor to behave like Visual Objects.

Remarks

Unlike Visual Objects, X# uses a file-based preprocessor which has characteristics of
traditional preprocessors in languages such as C, C++ and Clipper. The -vo8 option
controls the following behaviors:

· Case Sensitivity

In a traditional preprocessor, #define foo 1 and #define FOO 2 declare two separate
preprocessor symbols, because preprocessor symbols are case-sensitive.

906X# Documentation

© 2015- 2024 XSharp BV

However, in Visual Objects, DEFINE foo := 1 and DEFINE FOO := 2 declare the same
entity (and would cause a compiler error because of the duplicate entity declaration).

In X#, by default, that is when -vo8 is disabled (not used or specified with "-vo8-"),
preprocessor symbols are always case sensitive. When -vo8 is enabled, then the case
sensitivity of symbols is decided by the state of the -cs option:
- when -cs is enabled, which makes the compiler treat all identifiers and type names as
case-sensitive, then also preprocessor symbols are still case-sensitive
- when -cs is disabled, then preprocessor symbols are case-insensitive and behave in the
same way as in VO

So, when -vo8 is enabled and -cs is disabled, #define foo 1 and #define FOO 2 declare
the same preprocessor symbol (and would cause a compiler warning because of the
redefinition).

The following code is valid in Visual Objects:

DEFINE foo := "bar"
? Foo // "bar"

but the following code would raise an unknown variable error on ? Foo because the X#
preprocessor is case-sensitive by default:

#define foo "bar"
? Foo

Using The -vo8 (but not the -cs) option will allow the above example to compile. An
alternative to using -vo8 is to modify the code so that the case of the text you want to
replace matches the case used in #define.

· #ifdef

In a traditional preprocessor, code within a #ifdef ... #endif (or #else) block is compiled if
the symbol after #ifdef is defined. It does not matter what the symbol resolves to, if it
resolves to anything at all.

In Visual Objects, code within a #ifdef ... #endif (or #else) block is compiled only if the
symbol after #ifdef is defined, and it resolves to an expression which resolves to a logical
TRUE value. In the example below, The code will print "in #else":

DEFINE foo := FALSE

#ifdef foo

907 XSharp

© 2015- 2024 XSharp BV

? "in #ifdef
#else
? "in #else" // <- this code is compiled in Visual Objects
#endif

whereas the equivalent code in X# would print "in #ifdef":

DEFINE foo := FALSE

#ifdef foo
? "in #ifdef // <- this code is compiled in Vulcan.NET
#else
? "in #else"
#endif

When -vo8 is used, the X# preprocessor examines the value of the preprocessor symbol
to determine if the symbol resolves to a logical TRUE or FALSE value. However, the X#
preprocessor does not evaluate preprocessor expressions, whereas Visual Objects does.
Even with -vo8 enabled, the preprocessor symbol must resolve to a single expression
containing TRUE or FALSE (case-insensitive) or a numerical value.
Numerical values of 0 resolve to FALSE and all non-zero numbers resolve to TRUE.
Preprocessor symbols that resolve to expressions are not evaluated and effectively
resolve to FALSE.

To set this compiler option in the Visual Studio development environment:

1. Open the project's Properties page.
2. Click the Dialect tab.
3. Change the value.
4. Click here to see the property page

Example

// For the purposes of #ifdef...

// these resolve to FALSE:
#define foo FALSE
#define foo 0

// these resolve to TRUE:
#define foo True
#define foo 1
#define foo -567

908X# Documentation

© 2015- 2024 XSharp BV

// these are not processed and effectively resolve to FALSE
// and therefore are incompatible with Visual Objects:
#define foo TRUE .AND. TRUE
#define foo TRUE .OR. TRUE
#define foo 1 * 2

 Tip:
The -ppo option is useful for debugging the output generated by the preprocessor.

1.9.3.100 -vo9

The -vo9 option prevents the compiler from raising error XS0161 when a function or
method does not have any RETURN statements. It also fixes problems with incorrect
return values.

Syntax

-vo9[+|-]

Arguments

+ | - Specifying +, or just -vo9, allows functions and methods that
do not have any RETURN statement to compile without
raising an error.

Remarks

Visual Objects allows functions and methods whose return type is not VOID to omit
RETURN statements. The return value from any such functions or methods will always be
the default value for the return type.

This is illegal in X#: all functions and methods must explicitly return a value unless the
return type is VOID. However, this may prevent code that was originally written in Visual
Objects from compiling in X#.

If -vo9 is enabled, any non-void functions or methods that do not have any RETURN
statements will raise warning XS9025 instead of error XS0106. The warning may be
disabled if desired, but it is strongly recommended that you fix the code in question. If the
return value is never used, then type the function or method AS VOID. Otherwise, add a
RETURN statement with an appropriate return value.
This compiler option also checks for methods/functions that have a return statement
without value. In that case a warning XS9026 is shown.

909 XSharp

© 2015- 2024 XSharp BV

The final check this compiler option does it for methods that have a return value but are
not expected to return anything. If that is found then a warning XS9032 is shown.

To set this compiler option in the Visual Studio development environment:

1. Open the project's Properties page.
2. Click the Dialect tab.
3. Change the value.
4. Click here to see the property page

Example

FUNCTION x(y)
? y

METHOD x(y AS INT) AS INT

? y

In the first example, the return type is not specified so it defaults to USUAL, and since
there is no RETURN statement the function will always returns NIL (the default value for
USUAL) in Visual Objects. In the second example, since there is no RETURN statement
the method will always return zero (the default value for INT) in Visual Objects.

1.9.3.101 -w

The -w compiler option is an alias for the -nowarn command line option for compatibility.

1.9.3.102 -warn

The -warn option specifies the warning level for the compiler to display.

Syntax

-warn:option

Arguments

option The warning level you want displayed for the compilation:
Lower numbers show only high severity warnings; higher
numbers show more warnings. Valid values are 0-4:

Warning level Meaning

0 Turns off emission of all warning messages.

1 Displays severe warning messages

910X# Documentation

© 2015- 2024 XSharp BV

2 Displays level 1 warnings plus certain, less-severe warnings,
such as warnings about hiding class members.

3 Displays level 2 warnings plus certain, less-severe warnings,
such as warnings about expressions that always evaluate to true
or false.

4 (the default) Displays all level 3 warnings plus informational warnings.

Remarks

To get information about an error or warning, you can look up the error code in the Help
Index. For other ways to get information about an error or warning, see X# Compiler
Errors.

Use -warnaserror to treat all warnings as errors. Use -nowarn to disable certain warnings.

-w is the short form of -warn.

To set this compiler option in the Visual Studio development environment

1. Open the project's Properties page.
2. Click the Build property page.
3. Modify the Warning Level property.
4. Click here to see the property page

For information on how to set this compiler option programmatically, see WarningLevel.

Example

Compile in.prg and have the compiler only display level 1 warnings:

xsc -warn:1 in.prg

1.9.3.103 -warnaserror

The -warnaserror+ option treats all warnings as errors

Syntax

-warnaserror[+|-][:warning-list]

911 XSharp

© 2015- 2024 XSharp BV

Remarks

Any messages that would ordinarily be reported as warnings are instead reported as
errors, and the build process is halted (no output files are built).

By default, -warnaserror- is in effect, which causes warnings to not prevent the generation
of an output file. -warnaserror, which is the same as -warnaserror+, causes warnings to
be treated as errors.

Optionally, if you want only a few specific warnings to be treated as errors, you may
specify a comma-separated list of warning numbers to treat as errors.

Use -warn to specify the level of warnings that you want the compiler to display. Use -
nowarn to disable certain warnings.

To set this compiler option in the Visual Studio development environment

1. Open the project's Properties page.
2. Click the Build property page.
3. Modify the "Warnings As Errors" property.
4. Click here to see the property page

Example

Compile in.prg and have the compiler display no warnings:

xsc -warnaserror in.prg
xsc -warnaserror:642,649,652 in.prg

1.9.3.104 -win32icon

The -win32icon option inserts an .ico file in the output file, which gives the output file the
desired appearance in the File Explorer.

Syntax

-win32icon:filename

Arguments

filename The .ico file that you want to add to your output file.

912X# Documentation

© 2015- 2024 XSharp BV

Remarks

An .ico file can be created with the Resource Compiler. The Resource Compiler is
invoked when you compile a Visual C++ program; an .ico file is created from the .rc file.

See -linkresource (to reference) or -resource (to attach) a .NET Framework resource file.
See -win32res to import a .res file.

To set this compiler option in the Visual Studio development environment

1. Open the project's Properties pages.
2. Click the Application property page.
3. Modify the Application icon property.
4. Click here to see the property page

Example

Compile in.prg and attach an .ico file rf.ico to produce in.exe:

xsc -win32icon:rf.ico in.prg

1.9.3.105 -win32manifest

Use The -win32manifest option to specify a user-defined Win32 application manifest file to
be embedded into a project's portable executable (PE) file.

Syntax

-win32manifest: filename

Arguments

filename The name and location of the custom manifest file.

Remarks

By default, the X# compiler embeds an application manifest that specifies a requested
execution level of "asInvoker." It creates the manifest in the same folder in which the
executable is built, typically the bin\Debug or bin\Release folder when you use Visual
Studio. If you want to supply a custom manifest, for example to specify a requested

913 XSharp

© 2015- 2024 XSharp BV

execution level of "highestAvailable" or "requireAdministrator," use this option to specify
the name of the file.

Note

This option and the -win32res option are mutually exclusive. If you try to use both options
in the same command line you will get a build error.
An application that has no application manifest that specifies a requested execution level
will be subject to file/registry virtualization under the User Account Control feature in
Windows Vista.
Your application will be subject to virtualization if either of these conditions is true:

· You use the -nowin32manifest option and you do not provide a manifest in a later build
step or as part of a Windows Resource (.res) file by using The -win32res option.

· You provide a custom manifest that does not specify a requested execution level.

Visual Studio creates a default .manifest file and stores it in the debug and release
directories alongside the executable file. You can add a custom manifest by creating one
in any text editor and then adding the file to the project. Alternatively, you can right-click the
Project icon in Solution Explorer, click Add New Item, and then click Application Manifest
File. After you have added your new or existing manifest file, it will appear in the Manifest
drop down list.

You can provide the application manifest as a custom post-build step or as part of a
Win32 resource file by using the -nowin32manifest option. Use that same option if you
want your application to be subject to file or registry virtualization on Windows Vista. This
will prevent the compiler from creating and embedding a default manifest in the portable
executable (PE) file.

Example

The following example shows the default manifest that the X# compiler inserts into a PE.

Note

The compiler inserts a standard application name " MyApplication.app " into the xml. This
is a workaround to enable applications to run on Windows Server 2003 Service Pack 3.

<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<assembly xmlns="urn:schemas-microsoft-com:asm.v1"
manifestVersion="1.0">
 <assemblyIdentity version="1.0.0.0" name="MyApplication.app"/>
 <trustInfo xmlns="urn:schemas-microsoft-com:asm.v2">
 <security>
 <requestedPrivileges xmlns="urn:schemas-microsoft-
com:asm.v3">
 <requestedExecutionLevel level="asInvoker"/>

914X# Documentation

© 2015- 2024 XSharp BV

 </requestedPrivileges>
 </security>
 </trustInfo>
</assembly>

1.9.3.106 -win32res

The -win32res option inserts a Win32 resource in the output file.

Syntax

-win32res:filename

Arguments

filename The resource file that you want to add to your output file.

Remarks

A Win32 resource file can be created with the Resource Compiler. The Resource
Compiler is invoked when include native resources (.RC files) in your X# Visual studio
solution

A Win32 resource can contain version or bitmap (icon) information that would help identify
your application in the File Explorer. If you do not specify -win32res, the compiler will
generate version information based on the assembly version. You can also include Menu
and Dialog definitions in a RC file.

See -linkresource (to reference) or -resource (to attach) a .NET Framework resource file.

To set this compiler option in the Visual Studio development environment

You cannot set this compiler option inside Visual Studio. If your application has native
resource files, then the build system will automatically convert this to a
nativeresources.res file and include this file with The -win32res command line option in
your assembly.

Example

Compile in.prg and attach a Win32 resource file rf.res to produce in.exe:

915 XSharp

© 2015- 2024 XSharp BV

xsc -win32res:rf.res in.prg

1.9.3.107 -wx

The -wx compiler option is an alias for the -warnaserror compiler option for compatibility

1.9.3.108 -xpp1

All XPP classes inherit from the Abstract class (default = OFF)

To set this compiler option in the Visual Studio development environment:

1. Open the project's Properties page.
2. Click the Dialect tab.
3. Change the value.
4. Click here to see the property page

916X# Documentation

© 2015- 2024 XSharp BV

1.10 X# Compiler Errors and Warnings

The complete list of X# Compiler errors and warnings is not included in this "book like"
documentation but can be found in the CHM, Visual Studio Help and/or Webhelp
The compiler warnings with numbers < 9000 are "standard" Roslyn (C#) compiler errors.
The compiler warnings with numbers > 9000 are specific X# compiler errors.

917 XSharp

© 2015- 2024 XSharp BV

1.11 X# Tips and Tricks

Enter topic text here.

918X# Documentation

© 2015- 2024 XSharp BV

1.11.1 Installer Command Line options

Our installer was created with the product Inno Setup. We are supporting the "normal"
Inno Setup command line options and the following extra options.
Some options are not installed because these are not relevant for our installer, such
as /lang and /password.

Custom Setup commandline options

Option Description

/nouninstall This option exists since X# 2.4.
This suppresses uninstalling the previous version.
When you choose this you can install 2 different versions
of X# side by side, assuming you choose different
installation folders.
Please note that if both versions install into the same
Visual Studio version then the latest installation "wins".
If you want to switch to another version of the VS
integration or MsBuild support files you should run the
"deployvs<num>".cmd files in the Uninst folder of the
installation that you want to activate.

Standard Inno Setup commandline options

Option Description

/help, /? Shows a summary of this information. Ignored if the
UseSetupLdr [Setup] section directive was set to no.

/silent, /verysilent Instructs Setup to be silent or very silent. When Setup is
silent the wizard and the background window are not
displayed but the installation progress window is. When a
setup is very silent this installation progress window is not
displayed. Everything else is normal so for example error
messages during installation are displayed and the startup
prompt is (if you haven't disabled it with
DisableStartupPrompt or the '/SP-' command line option
explained above).
If a restart is necessary and the '/norestart command isn't
used (see below) and Setup is silent, it will display a
Reboot now? message box. If it's very silent it will reboot
without asking.

/suppressmsgboxes Instructs Setup to suppress message boxes. Only has an
effect when combined with '/silent or '/verysilent.
The default response in situations where there's a choice
is:
· Yes in a 'Keep newer file?' situation.

· No in a 'File exists, confirm overwrite.' situation.

· Abort in Abort/Retry situations.

919 XSharp

© 2015- 2024 XSharp BV

· Cancel in Retry/Cancel situations.

· Yes (=continue) in a
DiskSpaceWarning/DirExists/DirDoesntExist/NoUninstal
lWarning/ExitSetupMessage/ConfirmUninstall situation.

· Yes (=restart) in a
FinishedRestartMessage/UninstalledAndNeedsRestart
situation.

· The recommended choice in a
PrivilegesRequiredOverridesAllowed=dialog situation.

5 message boxes are not suppressible:
o The About Setup message box.
o The Exit Setup? message box.
o The FileNotInDir2 message box displayed when Setup

requires a new disk to be inserted and the disk was
not found.

o Any (error) message box displayed before Setup (or
Uninstall) could read the command line parameters.

o Any task dialog or message box displayed by [Code]
support functions TaskDialogMsgBox and MsgBox.

/log="filename" This allows you to specify a fixed path/filename to use for
the log file. If a file with the specified name already exists it
will be overwritten. If the file cannot be created, Setup will
abort with an error message. If you do not specify this
command line option then the installer will log to a file with
the name "Setup Log <date>#<number>.txt" in the current
users TEMP folder.

/nocancel Prevents the user from canceling during the installation
process, by disabling the Cancel button and ignoring clicks
on the close button. Useful along with '/silent or '/verysilent.

/norestart Prevents Setup from restarting the system following a
successful installation, or after a Preparing to Install failure
that requests a restart. Typically used along with /silent
or /verysilent.

/restartexitcode=exit code Specifies a custom exit code that Setup is to return when
the system needs to be restarted following a successful
installation. (By default, 0 is returned in this case.)
Typically used along with /norestart.

/closeapplications Instructs Setup to close applications using files that need
to be updated by Setup if possible.

/nocloseapplications Prevents Setup from closing applications using files that
need to be updated by Setup. If /closeapplications was
also used, this command line parameter is ignored.

/forcecloseapplications Instructs Setup to force close when closing applications.

/noforcecloseapplications Prevents Setup from force closing when closing
applications. If /forcecloseapplications was also used, this
command line parameter is ignored.

920X# Documentation

© 2015- 2024 XSharp BV

/restartapplications Instructs Setup to restart applications if possible. Only has
an effect when combined with '/closeapplications.

/norestartapplications Prevents Setup from restarting applications.
If /restartapplications was also used, this command line
parameter is ignored.

/loadinf="filename" Instructs Setup to load the settings from the specified file
after having checked the command line. This file can be
prepared using the '/saveinf=' command as explained
below.Don't forget to use quotes if the filename contains
spaces.

/saveinf="filename" Instructs Setup to save installation settings to the specified
file. Don't forget to use quotes if the filename contains
spaces.

/dir="x:\dirname" Overrides the default directory name displayed on the
Select Destination Location wizard page. A fully qualified
pathname must be specified. May include an "expand:"
prefix which instructs Setup to expand any constants in the
name. For example: '/dir=expand:{autopf}\My Program'.

/group="folder name" Overrides the default folder name displayed on the Select
Start Menu Folder wizard page. May include an "expand:"
prefix, see '/dir='. If the [Setup] section directive
DisableProgramGroupPage was set to yes, this command
line parameter is ignored.

/noicons Instructs Setup to initially check the Don't create a Start
Menu folder check box on the Select Start Menu Folder
wizard page.

/type=type name Overrides the default setup type.

If the specified type exists and isn't a custom type, then
any /components parameter will be ignored.

The types in the X# installer are: full, compact, custom

/components=
"comma separated list of
component names"

Overrides the default component settings. Using this
command line parameter causes Setup to automatically
select a custom type. If no custom type is defined, this
parameter is ignored.
Only the specified components will be selected; the rest
will be deselected.
If a component name is prefixed with a "*" character, any
child components will be selected as well (except for those
that include the dontinheritcheck flag). If a component
name is prefixed with a "!" character, the component will
be deselected.
This parameter does not change the state of components
that include the fixed flag.

921 XSharp

© 2015- 2024 XSharp BV

Example:Deselect all components, then select the "help"
and "plugins" components:
/components="help,plugins"
Example:Deselect all components, then select a parent
component and all of its children with the exception of one:
/components="*parent,!parent\child"

The components in the X# installer are:

Component Description

main The XSharp Compiler
and Build System

main\script Register .prgx as X#
Script extension

main\ngen Optimize performance by
generating native images

main\gac Register runtime DLLs in
the GAC (recommended
!)

main\examples Install the Xsharp
Examples

main\debug Install debug versions of
the runtime

main\netcore Install the .Net Core
version of the compiler

vs Visual Studio Integration

vs\1 thru vs\6 The detected versions of
Visual Studio

xide Include the XIDE installer

922X# Documentation

© 2015- 2024 XSharp BV

1.11.2 UnInstaller Command Line options

The Uninstaller (which can be found in the <Installdir>\Uninst folder) has the following
command line options:

Option Description

/silent, /verysilent When specified, the uninstaller will not ask the user for
startup confirmation or display a message stating that
uninstall is complete. Shared files that are no longer in use
are deleted automatically without prompting. Any critical
error messages will still be shown on the screen. When
'/verysilent is specified, the uninstallation progress window
is not displayed.
If a restart is necessary and the '/norestart command isn't
used (see below) and '/verysilent is specified, the
uninstaller will reboot without asking.

/suppressmsgboxes Instructs the uninstaller to suppress message boxes. Only
has an effect when combined with '/silent and '/verysilent.

/log Causes Uninstall to create a log file in the user's TEMP
directory detailing file uninstallation and actions taken
during the uninstallation process. This can be a helpful
debugging aid.
The log file is created with a unique name based on the
current date. (It will not overwrite or append to existing
files.)
The information contained in the log file is technical in
nature and therefore not intended to be understandable by
end users. Nor is it designed to be machine-parsable; the
format of the file is subject to change without notice.

/log="filename" Same as /log, except it allows you to specify a fixed
path/filename to use for the log file. If a file with the
specified name already exists it will be overwritten. If the
file cannot be created, Uninstall will abort with an error
message.

/norestart Instructs the uninstaller not to reboot even if it's necessary.

923 XSharp

© 2015- 2024 XSharp BV

1.11.3 Building XSharp apps with Visual Studio and/or MsBuild

When you build an application with MsBuild and/or Visual Studio you work with at least 2
types of files:
· The solution file (with the .sln extention)

· One or more project files. XSharp projects have the .xsproj extension. CSharp projects
have the .csproj extension, Visual Basic projects the .vbproj extension.

The solution file (.sln)

The solution file is a text file with a list of project files and other information. Each project
entry looks like this:

Project("<language guid>") = "<ProjectName>", "<Path and filename
of the project file>", "<project guid>"
EndProject

The <language guid> is always "{AA6C8D78-22FF-423A-9C7C-5F2393824E04}" for X#
projects. This tells Visual Studio which project system to use to open the project file.
The <project guid> is a generated and should match the project GUID that is defined
inside the .xsproj file. These guids are also used in other sections of the .sln file.

Other language guids that you may see are {FAE04EC0-301F-11D3-BF4B-
00C04F79EFBC} and {9A19103F-16F7-4668-BE54-9A1E7A4F7556} for C# and
{2150E333-8FDC-42A3-9474-1A3956D46DE8} for subfolders in your solution. There are
many more guids of course.

Solution files also contain sections that describe the various configurations that are
available for the solution (such as "Debug" and "Release") and a section that maps
solution configurations to project configurations and sometimes also a section that
indicates how the source code control bindings for each of the projects are.

For the actual build process of your X# apps we can ignore the solution file for now.
Solution files are "language agnostic". The building is done based on information in the
project file.

The XSharp project file (.xsproj)

The project file contains all the instructions that are needed to build a X# project with
MsBuild. The file is a Text file and contains XML contents in a specific format that MsBuild
understands.
The file contains all the settings that you can set from the project properties dialogs in
Visual Studio and also a list of the items (prg files, resx files, rc files etc) in the project.

The file uses some common information that is installed in a MsBuild subfolder inside the
XSharp installation folder that belongs to the Visual Studio version that you are using.

The most important pieces in the file are for now:

Item Description

924X# Documentation

© 2015- 2024 XSharp BV

<Import
Project="$(MSBuildExtensionsPath)
\XSharp\XSharp.Default.props" />

This imports default settings for XSharp
from the XSharp folder inside the current
MsBuild folder. This file contains several
default values for XSharp and also imports
default values from a common file delivered
by Microsoft (Microsoft.Common.props)

Several <PropertyGroup> sections. These sections contain values for the
several options that you can find on the
Project Properties dialog in Visual Studio.
Some values are for all configurations,
some values are configuration specific.
These settings will be transformed to
command line options for the X# compiler.

One or more <ItemGroup> sections with
<Reference> items

The <Reference> items describe so called
Assembly references that your project has.
Usually you will find something like
<Reference Include="System" /> in there.
Reference Items may also contain more
information such as a version number etc.
These references will be converted to -
reference command line options for the
compiler

One or more <ItemGroup> sections with
<ProjectReference> items

The <ProjectReference> items describe so
called Project References to other projects
inside the same solution. MsBuild will
determine the build order inside the solution
based on the various project references
and will try to build the referenced projects
first before the projects referencing them.
MSBuild will include a reference to the file
produced by the project reference when
building the command line for the compiler.

One or more <ItemGroup> sectins with
<COMReference> items

The <COMReference> items describe
references to COM components. This may
be automation servers (such as Word or
Excel for example) or ActiveX components
(like the Shell Explorer that we use in the
email example). Automation Servers will
have a single COMReference with a
<wrappertool> child node of type "tlbImp".
ActiveX controls will have 2
COMReferences. One with the wrappertool
set to "tlbimp" and another with the
wrappertool set to "aximp". See the section
below on how this is processed by
MSBuild.

One or more <ItemGroup> sections with
<Compile> items

The <Compile> items describe the source
code items for the X# compiler. The
template for the Console application has 2
of these items:

925 XSharp

© 2015- 2024 XSharp BV

<Compile
Include="Properties\AssemblyInfo.prg" />
<Compile Include="Program.prg" />
The <Compile> items may have an
optional <SubType>child node with the
value "Code", "Form" or "UserControl". This
subtype is ignored by the build process but
used by Visual Studio to determine the icon
that is shown before the item in the tree
and to determine which editor to open
when the item is double clicked. "Code"
opens the source code editor by default.
The other 2 types open the Windows
Forms editor.

One or more <ItemGroup> sections with
<VOBinary>,
<NativeResource>,<EmbeddedResource>
and other types of items

<NativeResource> items are handled
specially by the X# build process. These
are combined together in an unmanaged
resource. See below
<EmbeddedResource> files are managed
resources. These are handled by MSBuild.
How this works is one of the things that is
described in a file that is included below

<Import
Project="$(MSBuildExtensionsPath)
\XSharp\XSharp.targets" />

This file tells MSBuild how to handle the
<Compile> and <NativeResource> items in
the project file and also (indirectly) imports
a file Microsoft.Common.targets that tells
MSBuild how to handle XAML files and how
to compile <EmbeddedResources>.

How does MSBuild locate referenced assemblies
When locating the referenced assemblies needed for compiling your project it looks at the
following:
1. When the reference node has a "hintpath" then it tries to locate the file through this

path. That could look like <HintPath>..\\SDK_Defines.dll</HintPath>
2. When the reference node is a "normal" .Net framework assembly, it looks at the folder

on your file system that matches the framework version. For example when the
framework version of your project is 4.6 (there will be a node
<TargetFrameworkVersion>v4.6</TargetFrameworkVersion> then it will look for
System.DLL in the folder c:\Program Files (x86)\Reference
Assemblies\Microsoft\Framework\.NETFramework\v4.6

3. When the reference node is not a standard .Net framework assembly and the 3rd party
vendor has registered a folder in a specific location then MsBuild will use that location.
X# registers a folder in the
HKLM\Software\Microsoft\.NETFramework\v4.0.30319\AssemblyFoldersEx\XSh
arp location. File registered in a location like this are also shown in the "Add
References" dialogs in Visual Studio.

4. Finally (during building) MSBuild will look in the Global Assembly Cache (GAC).

Please note that there is a difference between Compiling and Running. During the
compilation the files in the reference folders have preference over files in the GAC. When

926X# Documentation

© 2015- 2024 XSharp BV

running the app the GAC is used and/or the local folder or path. Files in the reference
folders are NEVER used at runtime. This would also not be possible since these files
have no executable code in them.
The idea behind this division is that you can have a newer Framework version installed
(for example 4.8) then you would like to compile against (for example 4.6). The reference
assembly in the 4.6 folder only contains the subset of the api that was available for .Net
Framework 4.6. So you will not be able to (accidentally) use methods or types that were
added after framework 4.6, even though these methods and/or types are installed in the
GAC.

How does MSBuild locate project references
When MSBuild delects a project reference then it tries to build that project first. When the
project is successfully compiled then the output assembly from that project is included as
"normal" reference to the X# compiler.

How are COM references handled

COM references require special processing. MSBuild uses 2 command line tools to
extract the type libraries from these COM references and produces .Net assemblies (so
called Interop assemblies) that describe the COM references. There are 2 tools involved:
tlbimp.exe for automation servers
aximp.exe for ActiveX controls
In our email example we are using the Shell.Explorer Active X. These 2 tools produce the
files Interop.SHDocVw.dll and AxInterop.SHDocVw.dll . The AxInterop file describes the
Windows Forms control and the Interop file the automation interface. In our Excel example
we are referencing a "precompiled" assembly for Office and therefore we are not
generating a new interop assembly but we are linking to a so called "Primary Interop
Assembly (PIA)", with the name Microsoft.Office.Interop.Excel.dll .
If you include a COM component but you are not actually creating the COM objects but
only consuming them then you can also set the "EmbedInteropTypes" option to true.
When you do that then the X# compiler will copy the relevant information from the interop
assembly and include that exe or dll, so you do not have to distribute the interop.dll with
your application. In the Excel example that will not work because we are creating an excel
application. The compiler will complain then "error XS1752: Interop type
'Microsoft.Office.Interop.Excel.ApplicationClass' cannot be embedded. Use the

applicable interface instead."
The resulting interop assemblies are produced before the compiler is called and are
passed to the compiler as "normal" assembly references.

How does MSBuild call the Native Resource compiler

When your application contains Native resources then we must compile these native
resources before the X# compiler can be used, since the result of the resource
compilation must be included in the final exe/dll file. Of course MSBuild does not "know"
about X#, so we have to tell it what to do. The instructions for this are stored in the
XSharp.Targets file.
This file contains the following instructions:

927 XSharp

© 2015- 2024 XSharp BV

<UsingTask TaskName="NativeResourceCompiler"
AssemblyFile="$(MSBuildThisFileDirectory)XSharp.Build.dll" />
<NativeResourceCompiler> </NativeResourceCompiler>

The first entry tells the compiler that there is a special DLL in the XSharp folder with the
name XSharp.Build.dll. This DLL contains a type NativeResourceCompile, which is a
subtype of Microsoft.Build.Utilities.ToolTask.
The second entry tells MSBuild how to pass information to this task to build the native
resources.
This includes a list of all items from the project file with the itemtype <NativeResource>.
The task will then try to find the native resource compiler. To do that it looks in the registry
in the following key:
- When running in 64 bit mode:
"HKEY_LOCAL_MACHINE\Software\WOW6432Node\XSharpBV\XSharp"
- When running in 32 bit mode: "HKEY_LOCAL_MACHINE\Software\XSharpBV\XSharp"
Inside this key it looks for the (string) value XSharpPath which is set by the installer at
compile time.
When it can't find that path it defaults to "C:\Program Files (x86)\XSharp"
The task will then look for the rc.exe program in the Bin subfolder below that folder.
When the tool is found then this task checks for the date/time stamps of the various .rc
files and compares these with the date/time stamp of the output file (NativeResources.res
) in the "intermediate" folder. If the output file is older or does not exist then a command
line for rc.exe is constructed and the compiler is called.
For this call we create a unique temporary rsp file in your temp folder. We are also saving
the last version of this file in the file "LastXSharpNativeResourceResponseFile.Rsp".
If you want to see which information was passed to the native resource compiler you can
look for this file in your temp folder.
The resulting NativeResources.res will be passed to the X# compiler later to be included
in the exe/dll. For this we use the /win32res command line option of xsc.exe.

How are managed resources compiled

The compilation process for managed resources is mostly managed by MSBuild itself. It
already knows how to handle these.
We do declare a task

<UsingTask TaskName="CreateXSharpManifestResourceName"
AssemblyFile="$(MSBuildThisFileDirectory)XSharp.Build.dll"/>
<CreateXSharpManifestResourceName> ...
</CreateXSharpManifestResourceName>

This task is also located in the same XSharp.Build.DLL and is used to help MSBuild to
detect the right namespace for the generated resources.
The result of the managed resource compilation is that .resx files are compiled to one or
more .resources file. These .resources files are then later passed to the compiler with
the /resources command line option of xsc.exe.

928X# Documentation

© 2015- 2024 XSharp BV

Processing of XAML files

If you are creating a project that contains WPF windows or controls then an extra step is
needed to produce the exe/dll.
In this step MSBuild produces so called .baml files and calls a code generator to
generate source code for each XAML file.
For the WPF template 2 source files are produced:
· WPFWindow1.g.prg

· App.g.prg
These source files are automatically added to the command line for the X# compiler.
These source files contain a class declaration with a InitializeComponent() method that
sets up the controls in your window. If you have named your controls then for each control
with a name there will also be a field in the class and the generated Connect() method will
set these fields to the control generated by the framework when the form is loaded.
App.g.prg also contains a class and a function Start() that is responsible for starting up
your application.

Note: This source code is generated by a tool that we have registered in c:
\Windows\Microsoft.NET\Framework\v4.0.30319\Config\machine.config .
 <system.codedom>
 <compilers>
 <compiler language="XSharp" extension=".prg"
type="XSharp.CodeDom.XSharpCodeDomProvider,XSharpCodeDomProvider,
Version=2.1.0.0, Culture=neutral,
 PublicKeyToken=ed555a0467764586,
ProcessorArchitecture=MSIL" />
 </compilers>
The XSharpCodeDomProvider.dll assembly is registered in the GAC and it contains a
XSharpCodeGenerator type that is responsible for the code generation.
Note: this tool uses the keyword case setting that was specified in your Visual Studio
options for the X# text editor.

How does MSBuild call the X# compiler

When MSBuild has successfully handled all external references and has created the
"code behind" for XAML files compiled the native and managed resources then it calls the
X# compiler.
Similar to how the native resource compiler is called the XSharp.Targets file also has
instructions on how to call the compiler:

<UsingTask TaskName="XSharp.Build.Xsc"
AssemblyFile="$(MSBuildThisFileDirectory)XSharp.Build.dll"/>
<Xsc> </Xsc>

Again this describes a class in the XSharp.Build.DLL and the <Xsc> entry describes the
properties of this type that need to be set.
The Xsc task looks for the xsc.exe just like how the native resource compiler does this:
- It looks for the installation location in the registry
- It defaults to the "C:\Program Files (x86)\XSharp" folder
There is one difference:

929 XSharp

© 2015- 2024 XSharp BV

- It also looks for an environment variable "XSHARPDEV". When this environment variable
exists it assumes that this is an alternate location where it can find the xsc.exe. We are
using this internally so we can compiler with a newer version of the compiler than the one
that is installed inside C:\Program Files (x86)\XSharp. You may use if you want to work
with more than one version of the compiler on your machine.

When we can find the xsc.exe compiler then we construct the command line to the
compiler. We are creating a unique temporaty RSP file in the temp folder, just like we do
for the native resource compiler. We are also saving the last version of this file to the
"LastXSharpResponseFile.Rsp" file in that folder.
If you have enabled the "Shared" compiler on the Build page in your project properties (this
defaults to true) then we add the command line option /shared. This will tell xsc.exe to run
XSCompiler.exe and pass the command line to that tool. XSCompiler.exe will continue to
run in memory even after the compilation is finished and will cache type information from
referenced assemblies. As a result a second compilation of the same project will usually
be much faster, since all the relevant type information is already cached. Of course the
compiler is smart enough to detect when a referenced DLL was changed (the reference
could be generated from a referenced project) and will then reload the type information
from that reference. Normally you will only see one copy of XSCompiler.exe running
memory. You may see multiple copies of xsc.exe running in memory when MSBuild
detects that 2 projects in the same solution are "independent" and can be compiled
simultaneously.
The only situation where you might see 2 copies of XSCompiler.exe running in memory is
when projects are compiled with difference settings for case sensitivity (the /cs command
line option). One of the 2 copies will then have a case sensitive type cache and the other a
case insensitive type cache.

Debugging MSBuild

If you want to see what MSBuild imports when compiling your xsproj file you can call
MSBuild with a special commandline option. To do so open a visual studio developer
command prompt and type the following:

msbuild -preprocess <yourproject.xsproj> > preprocessed.proj

The resulting preprocess.proj file will be an XML file that contains all imported instructions.
You can open this inside Visual Studio. You may want to Format the document to make it
a bit more readable.
You should see that all "<Import project" nodes are now converted to comments and the
contents of these imported files is inserted into the preprocessed output.
Some imports had a condition that was not met and these are just in the file as
comments.
The generated file is HUGE (the WPF template produces a file of over 8700 lines and
some of these lines are thousands of characters wide. Almost all of the first 8600 lines of
this preprocessed file are all imported.
Somewhere in this file you will see that MSBuild.
Please note that you are NOT able to build the output file. It just serves to see what
MSBuild imports to create your project.

If you want to see how msbuild resolves the various references you should call msbuild
from the command line and add the command line option to show detailed info.
The /target:rebuild on the next line makes sure that everything is rebuilt. If you are

930X# Documentation

© 2015- 2024 XSharp BV

compiling a project with native resources, managed resources or xaml files you should
also see the logging of the tools that process this.

msbuild -verbosity:detailed <yourproject.xsproj> /target:rebuild
>buildlog.txt

931 XSharp

© 2015- 2024 XSharp BV

1.11.4 Catching runtime errors at startup

Sometimes your program throws runtime errors at startup. These can be caused by
missing assemblies and or by errors in initialization code.
These errors can be difficult to trap, since the errors occur inside code that is executed
before the first line of code in your application.
Take the following example

GLOBAL x AS INT
GLOBAL y := 1 / x AS INT

FUNCTION Start AS VOID
 ? "Function Start"
 RETURN

This code will generate an exception at startup, which you can only see/read when you
run the app from the commandline

Unhandled Exception: System.TypeInitializationException: The type
initializer for 'Application1.Exe.Functions' threw an exception.
---> System.DivideByZeroException: Attempted to divide by zero.
at Application1.Exe.Functions..cctor() in C:
\XIDE\Projects\Default\Applications\Application1\Prg\Start.prg:lin
e 4
--- End of inner exception stack trace ---
at Application1.Exe.Functions.Start()

The normal program flow in an X# application is this:
· Your application is started

· The DotNet framework is initialized

· The entrypoint is called. The normal entrypoint in an app is the Start function, which is
converted by the compiler to a Start method in a compiler generated Functions class.
The same class also has the globals and defines from your app. If one of these globals
or defines contains an initialization expression that cannot be resolved at compile then
these this code will be executed in the static constructor of the Functions class (in the
error message above this is called the "type initializer").

· The code above clearly makes a mistake which causes a divide by zero error.

To intercept this we would like to run some other code at startup and add a try .. catch
construct to make sure we can catch this kind of errors.

Add the following code:
CLASS MyStartupCode
 STATIC METHOD Start AS VOID STRICT
 TRY
 // Note that in the following line the name before .Exe must
 // match the file name of your EXE. In my case I am generating
Application1.exe
 Application1.Exe.Functions.Start()
 CATCH e AS Exception

932X# Documentation

© 2015- 2024 XSharp BV

 // We should probably log this to disk as well !
 Console.WriteLine("An unhandled exception has occurred")
 Console.WriteLine("===================================")
 DO WHILE e != NULL
 Console.WriteLine("Exception: "+e:Message)

 Console.WriteLine("Callstack:")
 Console.WriteLine(e:StackTrace)
 Console.WriteLine()
 e := e:InnerException
 ENDDO
 Console.WriteLine("===================================")
 Console.WriteLine("Press any to close the application")
 Console.ReadLine()
 END TRY
 RETURN
END CLASS

You may have to change the call to Application1.Exe.Functions.Start() into something that
matches your EXE name.
Now goto the General page in the application properties in VS and at the entry "Startup
Object" set the value MyStartupCode.

In XIDE add the command line option -main:MyStartupCode:

and run the code again.
The error is now trapped and shown.
If you app is not a Console app but a Windows app then the console output may not be
visible.

Of course you can also register an UnHandledException handler in the AppDomain class
inside the new startup code.
Change the code to:

933 XSharp

© 2015- 2024 XSharp BV

CLASS MyStartupCode
 STATIC METHOD Start AS VOID STRICT
 TRY
 System.AppDomain.CurrentDomain:UnhandledException +=
ExceptionHandler
 Application1.Exe.Functions.Start()
 CATCH e AS Exception
 ExceptionHandler(NULL, UnhandledExceptionEventArgs{e, TRUE})
 END TRY
 RETURN

 STATIC METHOD ExceptionHandler(sender AS OBJECT, args AS
UnhandledExceptionEventArgs) AS VOID
 LOCAL e AS Exception
 LOCAL c AS STRINGe := (Exception) args:ExceptionObject
 c := "An unhandled exception has occurred"+crlf
 c += "==================================="+crlf
 DO WHILE e != NULL
 c += "Exception: "+e:Message+crlf
 c += "Callstack:"+crlf
 c += e:StackTrace+crlf
 e := e:InnerException
 ENDDO
 c += "==================================="+crlf

MessageBox(IntPtr.Zero, c,"Error",0x60010) // MB_OK +
MB_ICONSTOP+ MB_DEFAULT_DESKTOP_ONLY + MB_TOPMOST

[DllImport("user32.dll", CharSet := CharSet.Ansi)];
STATIC METHOD MessageBox(hwnd AS IntPtr, lpText AS STRING,
lpCaption AS STRING, uType AS DWORD) AS INT PASCAL
END CLASS

One remark:
Do NOT use or call any Xbase types and or functions in the exception handler, since you
can't be sure that the runtime was initialized properly.
If you use classes written by yourself make sure that everything is strongly typed and uses
native types only. So no USUAL, FLOAT, SYMBOL etc.
And do not call code inside functions in the same app or DLLs, because again the type
initializers for the classes in which these functions are located can also throw exceptions.

934X# Documentation

© 2015- 2024 XSharp BV

1.11.5 Compiler magic in the startup code

The X# compiler also does some extra "tricks" in the startup code.

XBase code may have so called INIT procedures, which contain code that will be
executed at startup. For example inside the VO GUI Classes there is a procedure

PROCEDURE __WCInitCriticalSections() _INIT1

To ensure that these procedures are called at start the compiler generates one to three
special methods in the functions class with the names $Init1, $Init2, $Init3 and $Exit. The
VOGuiclasses assembly has two of these ($Init1 and $Init3). When you look at the
contents of this method in ILSpy you see the following (using C# decompilation)

// VOGUIClasses.Functions
using System.Runtime.CompilerServices;

[CompilerGenerated]
public static void $Init1()
{
 __WCInitCriticalSections();
}

In some assemblies you will see that the $Init1() method is there but it is empty. For
example in the VOSystemClasses:

// VOSystemClasses.Functions
using System.Runtime.CompilerServices;

[CompilerGenerated]
public static void $Init1()
{
}

The reason why we are creating these empty initializers is the following:
many of our VO customers are instantiating classes indirectly, by calling
CreateInstance().
To be able to do so the classes have to be available at runtime.
The Roslyn compiler that we use is very smart. It does not include references to external
assemblies into the exe when the exe does not reference any types or methods in that
assembly.
As a result if you were calling CreateInstance(#DbServer) in your app but you were never
declaring variables of type DbServer (but only of type DataServer for example) then even
when you include a reference to the VORDDClasses assembly at compile time you would
not have a reference to the RDDClasses in your main app.
That is why we are generating the empty $Init() methods.

When building the main application, the X# compiler checks all referenced assemblies
and looks for all $Init1, $Init2, $Init3 and $Exit methods and build some code to call all
these methods. As a result all referenced assemblies will be loaded at startup. You will

935 XSharp

© 2015- 2024 XSharp BV

find this startup code in a special compiler generated method in the compiler generated
<module> class:

// <Module>
using Application1.Exe;
using System;
using System.Runtime.CompilerServices;
using VOWin32APILibrary;
using XSharp;
using XSharp.RT;

[CompilerGenerated]
internal static void $AppInit()
{
 try
 {
 RuntimeState.AppModule =
typeof(Application1.Exe.Functions).Module;
 RuntimeState.CompilerOptionOVF = false;
 RuntimeState.CompilerOptionVO11 = false;
 RuntimeState.CompilerOptionVO13 = false;
 RuntimeState.Dialect = XSharpDialect.VO;
 VOWin32APILibrary.Functions.$Init1();
 XSharp.RT.Functions.$Init1();
 Application1.Exe.Functions.$Init1();
 }
 catch (Exception innerException)
 {
 throw new Exception("Error when executing code in INIT
procedure(s)", innerException);
 }
}

As you can see this code not only calls several $Init1() methods, but it also sets some
properties in the X# runtime. You can also see that the code above was called in the VO
Dialect.
And if you look at the generated code for the Start function this looks like this:

// Application1.Exe.Functions
using System;
using XSharp.RT;

public static void Start()
{
 try
 {
 <Module>.$AppInit();

936X# Documentation

© 2015- 2024 XSharp BV

 XSharp.RT.Functions.QOut("Function Start");
 }
 finally
 {
 <Module>.$AppExit();
 GC.Collect();
 GC.WaitForPendingFinalizers();
 }
}

The compiler has created a try finally block and calls $AppInit() to initialize the runtime
state and call the init procedures in every referenced assembly.
You also see that in the finally clause there is a call to $AppExit() from which EXIT
procedures are called (we have added these in X#) and where the garbage collector
cleans all references and waits for all finalizers to finish before your app finished.

Unfortunately this does not mean that for example all open servers will be closed. If you
have opened a DbServer and assigned the object to a global variable then this does not
automatically close the server.
There is some code in the runtime that takes care of this (but that is the subject of another
topic)..

937 XSharp

© 2015- 2024 XSharp BV

1.11.6 Special classes and code generated by the compiler

The compiler may generate some special classes for optimization. Some of these
classes are generated by Roslyn (such as the classes for Lambda expressions or the
state machines for asynchronous code). Others are generated by the X# compiler.
Below are some examples of these classes (that you can see if you open a X# compiler
assembly with a tool such as IlSpy)

Class Purpose

Xs$PSZLiteralsTa
ble

This class is generated by the compiler if you have code in your
application that looks like this:

LoadLibrary(PSZ(_CAST, "RICHED20.DLL")) //
inside GUI classes

Since we cannot "know" at compile time what the lifetime of the
PSZ must be we create a static field in this class and assign the
generated PSZ value (a value type) to this field. As a result this PSZ
will be "alive" during the whole lifetime of your application.
If you know that the PSZ will not be needed after the call to the
WIN32 api then you are better off replacing the PSZ(_CAST with a
String2Psz(). This will ensure that the PSZ value is destroyed when
the function that creates it finishes.
The following code:

FUNCTION TestMe() AS VOID
 LoadLibrary(PSZ(_CAST, "RICHED20.DLL"))
 RETURN

generates the following

public unsafe static void TestMe()
{
 VOWin32APILibrary.Functions.LoadLibrary((Int
Ptr)(void*)Xs$PSZLiteralsTable._$psz_$0);
}

and the following PSZ table:

internal static class Xs$PSZLiteralsTable
{
 internal static readonly __Psz _$psz_$0 =
new __Psz("RICHED20.DLL");
}

As you can see the PSZ value is stored in the table. Please note
that every PSZ variable contains a pointer to static memory
allocated with the String2Mem function in the runtime. So these

938X# Documentation

© 2015- 2024 XSharp BV

static memory blocks are allocated for the whole lifetime of your
application.

If you change the code to use String2Psz() instead

FUNCTION TestMe() AS VOID
 LoadLibrary(String2Psz("RICHED20.DLL"))
 RETURN

then the result will be:

public unsafe static void TestMe()
{
 List<IntPtr> pszList = new List<IntPtr>();
 try
 {
 VOWin32APILibrary.Functions.LoadLibrary(
(IntPtr)(void*)new
__Psz(CompilerServices.String2Psz("RICHED20.DLL"
, pszList)));
 }
 finally
 {
 CompilerServices.String2PszRelease(pszLi
st);
 }
}

as you can see the compiler has now generated a local variable (a
list of IntPtr) which is passed to a runtime function at the end that
takes care of deleting the allocated memory when the function
finishes. To ensure that a try .. finally was added.

Xs$SymbolTable This class is generated by the compiler if you are using literal
symbols in your code. For each symbol in your app there will be a
field in the class. Inside the System classes there are 21 literal
symbols as you can see when you decompile its code:
internal static class Xs$SymbolTable

{
 internal static readonly __Symbol _init =
new __Symbol("INIT");
 internal static readonly __Symbol
_concurrencycontrol = new
__Symbol("CONCURRENCYCONTROL");
 internal static readonly __Symbol _notify =
new __Symbol("NOTIFY");

939 XSharp

© 2015- 2024 XSharp BV

.

.
 internal static readonly __Symbol _unknown =
 new __Symbol("UNKNOWN");
 internal static readonly __Symbol
_resourcestring = new
__Symbol("RESOURCESTRING");
}

This is very similar to the way how symbols are handed in Visual
Objects.
When the first symbol in an assembly is used then all the symbols
are created and after that using literal symbols is very fast.
Symbols are stored in a static table in the runtime and the symbol
value contains only the offset in this table. Comparing 2 symbols is
like comparing 2 numbers and therefore very fast.

<AssemblyName>
.Functions

Dotnet does not know the concept of functions or global variables.
The X# compiler is therefore creating a static class in each
assembly that contains static methods for each of the functions or
procedures in your code.
The name of this class is derived from the name of your output
assembly:
MyFile.DLL will contain a class MyFile.Functions
MyFile.EXE will contain a class MyFile.Exe.Functions
If your output assembly name contains embedded dots then these
dots will be replaced with underscore characters in the functions
class name:
MyApp.Main.EXE will contain a classname
MyApp_Main.EXE.Functions

Functions$<Mod
uleName>$

Whenever your code uses STATIC FUNCTION, STATIC DEFINE,
STATIC GLOBAL (whose visibility is within the same file only) then
the compiler generates a separate class for each modulde (PRG
file) where the name of the PRG file is used for the <Modulename>,
so the file Start.Prg in Application1.exe will result in a class name
Application1.Exe.Functions$Start$

$PCall$<Function
Name>$<suffix>

If your code contains PCALL() constructs then the compiler will
generate a special delegate with a name based on the
method/function name and will make this delegate a nested object
inside the type where the PCALL() is used. So a PCALL() inside a
function will result in a nested delegate inside the Functions class
and a PCALL() in a method of the Window class will result in a
nested delegate inside the Windows class.
The return type and parameter names and types of the delegates
are derived from the function declaration for the typed pointer that
you are passing to PCall().

For example The VOGUIClasses assembly contain a
$PCall$DeleteTrayIcon$430 inside the Window class and a

940X# Documentation

© 2015- 2024 XSharp BV

$PCall$__InitFunctionPointer$28 inside the Functions class.
If you look at the original code in the __InitFunctionPointer
procedure then it looks like this:

IF !PCALL(gpfnInitCommonControlsEx, @icex)

The resulting code looks like this:

 if
(!$PCallGetDelegate<$PCall$__InitFunctionPointer$28>(g
pfnInitCommonControlsEx)(&icex))

The $PCallGetDelegate function is a special compiler generated
function that looks like this:

[CompilerGenerated]
internal static T $PCallGetDelegate<T>(IntPtr p)
{
 return (T)(object)
Marshal.GetDelegateForFunctionPointer(p,
typeof(T));
}

In short: it takes a function pointer (p) and Gets a delegate of type T.
This delegate is then used to call the API function.
Please don't worry if you don't get this. It took us a while to create
this ourselves too !

$PCallNative$<F
unctionName>$<
suffix>

This is a delegate generated for PCallNative constructs. The return
type is the type of the generic argument and the parameter types
are derived from the types of the arguments. The parameter names
are $param1, $param2 etc.
So the following code inside a Test function

 LOCAL p AS IntPtr
 P := GetProcAddress(hDLL, "MyFunc")
 PCallNative<INT> (p,1,2,3)

Will generate a delegate like this:

[CompilerGenerated]
internal delegate int $PCallNative$Test$0(int
$param1, int $param2, int $param3);

Functions.$Init1
Functions.$Init2
Functions.$Init3

These special methods inside the function class are generated to
call Init and Exit procedures. See the topic about startup code for
more information about this

941 XSharp

© 2015- 2024 XSharp BV

Functions.$Exit
<Module>.$AppIn
it()
<Module>.$AppE
xit()

<Module>.RunIni
tProcs()

This special method inside the <Module> class is generated by the
compiler and will be called at runtime when you are dynamically
loading assemblies using the XSharpLoadLibrary() function. This
takes care of calling all init procedures when a DLL is loaded
dynamically.

<>ClassName Special classes that start with a <> prefix are generated by the
Roslyn compiler for lambda expressions and codeblocks.
If you look at the VORDDClasses assembly you will find many
examples of these. You may have to set ILSpy to show IL instead of
C# or XSharp code, because otherwise these classes will be
hidden by the tool.
If you look at the RDD classes in C# mode it will looks like this:

If you switch ILSpy to IL mode it looks like this:

942X# Documentation

© 2015- 2024 XSharp BV

As you can see there are now quite some nested classes inside
the DbServer class. The <>c class contains codeblocks that do not
need to access local variables from functions or methods. In the
DbServer class this class has some 25 methods, each of which is
a codeblock.
The classes with the name <>c_DisplayClass<nn> contain
codeblocks that need access to local variables from the function or
method where they are defined.
The compiler has detected this and has moved the local variables
out of the function/method and made them fields in a compiler
generated class, so the codeblocks can access them. In Clipper
and VO these were called "detached locals".

For example DisplayClass56_0 has the variables for the Average
function:

.class nested private auto ansi sealed
beforefieldinit '<>c__DisplayClass56_0'
 extends [mscorlib]System.Object
{
 .custom instance void [mscorlib]
System.Runtime.CompilerServices.CompilerGenerate
dAttribute::.ctor() = (
 01 00 00 00
)
 // Fields

943 XSharp

© 2015- 2024 XSharp BV

 .field public int32 iCount
 .field public class [XSharp.RT]
XSharp.__Array acbExpr
 .field public class [XSharp.RT]
XSharp.__Array aResults
 .field public valuetype [XSharp.RT]
XSharp.__Usual cbKey
 .field public valuetype [XSharp.RT]
XSharp.__Usual uValue

 // Methods
 .method public hidebysig specialname
rtspecialname
 instance void .ctor () cil managed
 {

} // end of class <>c__DisplayClass56_0

The codeblocks inside the Average method apparently access 5
locals variables (iCount, acbExpr, aResults, cbKey and uValue).

If you look inside the Average() method of DbServer you will see a
codeblock such as

SELF:__DBServerEval({ || iCount += 1,
__IterateForSum(acbExpr, aResults) }.......)

If you look in the decompiled code for Average() (in C# mode) you
will see something like this:

__DbServerEval(new
 {
 Cb$Eval$ =
(<>F<__Usual>)delegate
 {
 iCount++;
 VORDDClasses.Functio
ns.__IterateForSum(acbExpr, aResults);
 return
default(__Usual);
 },
 CbSrc = "{ || iCount
+= 1, __IterateForSum(acbExpr, aResults) }"
 },..........................
.)

944X# Documentation

© 2015- 2024 XSharp BV

The whole {} after the new is an anonymous codeblock expression
The Cb$Eval$ field in this expression is a delegate that contains the
code for the codeblock.
The CB$Src field in this expression includes the source for the
codeblock so at runtime you will be able to see the source of the
compiler time codeblock (this was introduced in build 2.3.0)

The actual body of the codeblock (the part from iCount++ until
return default(__Usual)) is in reality stored as a method of
<>c__DisplayClass56_0. And all the variables that are needed
inside this codeblock are not really stored as variables inside
Average() but they are stored as fields of <>c__DisplayClass56_0.

Please don't worry if you don't get this. It took us a while to
understand and create this ourselves too !

Xs$Args Whenever your code contains functions or methods with the so
called CLIPPER calling convention, then X# compiler will create
code that handles the parameters in a special way: For example
the function Str() in the runtime. This is declared with the following
parameters:

FUNCTION Str(nNumber,nLength,nDecimals) AS STRING

The compiler sees this as CLIPPER calling convention because all
3 of the parameters are optional.

The C# version of the IL code generated for this function is:

[ClipperCallingConvention(new string[]
{ "nNumber", "nLength", "nDecimals" })]
public static string Str([CompilerGenerated]
params __Usual[] Xs$Args)
{
 int num = (Xs$Args != null) ? Xs$Args.Length
 : 0;
 __Usual nNumber = (num >= 1) ? Xs$Args[0] :
__Usual._NIL;
 __Usual nLength = (num >= 2) ? Xs$Args[1] :
__Usual._NIL;
 __Usual nDecimals = (num >= 3) ?
Xs$Args[2] : __Usual._NIL;

As you can see the function now has a single argument, an array of
usuals.
The parameter names are stored in an attribute of type
ClipperCallingConvention. This attribute is used by the intellisense
inside Visual Studio and XIDE so the parameter names can be
shown.

945 XSharp

© 2015- 2024 XSharp BV

Inside the body of the generated method the compiler now declares
a variable that has the length of the array (the number of arguments
passed, which you can also request at runtime with PCount()). The
compiler also generates a local variable with the same name as the
parameter and initializes each variable with either the value passed
(0 based array elements) or with NIL.
In the body of the method you will see a try finally. In the finally
clause there is the following code:

finally
 {
 if (num >= 2)
 {
 Xs$Args[1] = nLength;
 }
 }

The reason for this code is that somewhere inside Str() nLength
has been assigned. Str() does not know if the variable was passed
by value or by reference. If the value was passed by reference then
the array element inside Xs$Args must be updated, which is exactly
what happens here.
The code that calls Str() is now responsible for assigning back the
value from the array to its local, when that value is passed by
reference

Part

II

947 XSharp

© 2015- 2024 XSharp BV

2 X# Examples

The following X# Examples will also be installed as an example solution on your machine
in the Users\Public\XSharp\Examples folder.

948X# Examples

© 2015- 2024 XSharp BV

2.1 Anonymous Method Expressions

An example of an Anonymous Method Expression (AME) (note the DELEGATE keyword):
Note that the body of the that you can have :
1. A single Expression
2. An Expression List
3. A statement List
The first 2 require the expression(s) to be on the same line as the opening Curly { . Of
course you can use the statement continuation character ; to tell the compiler that you
have spread the statement over more than one line.
The last one requires the statements in the list to be on separate lines and the closing
Curly } must also be on a separate line. This is shown in the example below.

USING System.Windows.Forms
FUNCTION Start() AS VOID
 TestAnonymous()
 RETURN

FUNCTION TestAnonymous() AS VOID
 LOCAL oForm AS Form
 oForm := Form{}
 oForm:Text := "Click me to activate the anonymous method"
 oForm:Click += DELEGATE(o AS System.Object, e AS
System.EventArgs) {
 System.Windows.Forms.MessageBox.Show("Click 1!")

 System.Windows.Forms.MessageBox.Show("Click 2!")

 }
 oForm:ShowDialog()
 RETURN

949 XSharp

© 2015- 2024 XSharp BV

2.2 Anonymous Types

Anonymous types are used a lot in relation to LINQ. See the LINQ example below. In the
first LINQ statement an anonymous class is created

The following example shows a couple of LINQ Queries in X#

//references:
//System.dll
//System.Core.dll
//System.Linq.dll
USING System.Collections.Generic
USING System.Linq
USING STATIC System.Console

FUNCTION Start AS VOID
 VAR oDev := GetDevelopers()
 VAR oC := GetCountries()
 VAR oAll := FROM D IN oDev ;
 JOIN C IN oC ON D:Country EQUALS C:Name
;
 ORDERBY D:LastName ;
 SELECT CLASS {D:Name, D:Country,
C:Region} // Anonymous class !
 // The type of oAll is
IOrderedEnumerable<<>f__AnonymousType0<Developer,Country>>
 // We prefer the VAR keyword!

 VAR oGreek := FROM Developer IN oDev ;
 WHERE Developer:Country == "Greece" ;
 ORDERBY Developer:LastName DESCENDING ;
 SELECT Developer
 // The type of oGreek is IOrderedEnumerable<Developer>
 // We prefer the VAR keyword!

 VAR oCount := FROM Developer IN oDev ;
 GROUP Developer BY Developer:Country INTO NewGroup ;
 ORDERBY NewGroup:Key SELECT NewGroup
 // The type of oCount is
IOrderedEnumerable<<IGrouping<string,Developer>>
 // We prefer the VAR keyword!

 WriteLine(e"X# does LINQ!\n")
 WriteLine(e"All X# developers (country+lastname order)\n")
 FOREACH VAR oDeveloper IN oAll
 WriteLine("{0} in {1}, {2}",oDeveloper:Name,
oDeveloper:Country, oDeveloper:Region)
 NEXT

950X# Examples

© 2015- 2024 XSharp BV

 WriteLine(e"\nGreek X# Developers (descending lastname)\n")
 FOREACH oDeveloper AS Developer IN oGreek
 WriteLine(oDeveloper:Name)
 NEXT

 WriteLine(e"\nDevelopers grouped per country\n")

 FOREACH VAR country IN oCount
 WriteLine(i"{country.Key}, {country.Count()} developer(s)")
 FOREACH VAR oDeveloper IN country
 WriteLine(" " + oDeveloper:Name)
 NEXT
 NEXT
 WriteLine("Enter to continue")
 ReadLine()
 RETURN

FUNCTION GetDevelopers AS IList<Developer>
 // This function uses a collection initializer for the List of
Developers
 // and Object initializers for the Developer Objects
 VAR oList := List<Developer>{} { ;
 Developer{}{ FirstName := "Chris",
LastName := "Pyrgas", Country := "Greece"},;
 Developer{}{ FirstName := "Robert",
LastName := "van der Hulst", Country := "The Netherlands"},;
 Developer{}{ FirstName := "Fabrice",
LastName := "Foray", Country := "France"},;
 Developer{}{ FirstName := "Nikos",
LastName := "Kokkalis", Country := "Greece"} ;
 }
 RETURN oList

FUNCTION GetCountries AS IList<Country>
 // This function uses a collection initializer for the List of
Counties
 // and Object initializers for the Country Objects
 VAR oList := List<Country>{}{ ;
 Country{} {Name := "Greece", Region
:= "South East Europe"},;
 Country{} {Name := "France", Region
:= "West Europe"},;
 Country{} {Name := "The Netherlands",
Region := "North West Europe"} ;
 }
 RETURN oList

951 XSharp

© 2015- 2024 XSharp BV

CLASS Developer
 PROPERTY Name AS STRING GET FirstName + " " + LastName
 PROPERTY FirstName AS STRING AUTO
 PROPERTY LastName AS STRING AUTO
 PROPERTY Country AS STRING AUTO
END CLASS

CLASS Country
 PROPERTY Name AS STRING AUTO
 PROPERTY Region AS STRING AUTO
END CLASS

952X# Examples

© 2015- 2024 XSharp BV

2.3 ASYNC Example

//
// This example shows that you can call an async task and wait for
it to finish
// The result of the async task (in this case the size of the file
that has been downloaded)
// will be come available when the task has finished
// The calling code (The Start()) function will not have to wait
until the async task has
// finished. That is why the line "2....." will be printed before
the results from TestClass.DoTest()
// The sample also shows an event and displays the thread id's.
You can see that the DownloadFileTaskAsync() method
// starts multiple threads to download the web document in
multiple pieces.

USING System
USING System.Threading.Tasks

FUNCTION Start() AS VOID
 ? "1. calling long process"
 TestClass.DoTest()
 ? "2. this should be printed while processing"
 Console.ReadKey()

CLASS TestClass
 STATIC PROTECT oLock AS OBJECT // To make sure we
synchronize the writing to the screen
 STATIC CONSTRUCTOR
 oLock := OBJECT{}

 ASYNC STATIC METHOD DoTest() AS VOID
 LOCAL Size AS INT64
 Size := AWAIT LoooongProcess()
 ? "3. returned from long process"
 ? Size, " Bytes downloaded"

 ASYNC STATIC METHOD LoooongProcess() AS Task<INT64>
 VAR WebClient := System.Net.WebClient{}
 VAR FileName := System.IO.Path.GetTempPath()+"temp.txt"
 webClient:DownloadProgressChanged += OnDownloadProgress
 webClient:Credentials :=
System.Net.CredentialCache.DefaultNetworkCredentials
 AWAIT
webClient:DownloadFileTaskAsync("http://www.xsharp.info/index.php"
, FileName)
 VAR dirInfo :=

953 XSharp

© 2015- 2024 XSharp BV

System.IO.DirectoryInfo{System.IO.Path.GetTempPath()}
 VAR Files := dirInfo:GetFiles("temp.txt")
 IF Files:Length > 0
 System.IO.File.Delete(FileName)
 RETURN Files[1]:Length
 ENDIF
 RETURN 0

 STATIC METHOD OnDownloadProgress (sender AS OBJECT, e AS
System.Net.DownloadProgressChangedEventArgs) AS VOID
 BEGIN LOCK oLock
 ? String.Format("{0,3} % Size: {1,8:N0} Thread {2}",
100*e:BytesReceived / e:TotalBytesToReceive , e:BytesReceived, ;
 System.Threading.Thread.CurrentThread:ManagedThreadId)
 END LOCK
 RETURN

END CLASS

954X# Examples

© 2015- 2024 XSharp BV

2.4 BEGIN UNSAFE Example

Enter topic text here.

955 XSharp

© 2015- 2024 XSharp BV

2.5 BEGIN USING Example

//
// XSharp allows you to not only use the using statement to link
to namespaces
// You can also link to a static class and call the methods in
this class as if they are functions.
// The functions WriteLine and ReadKey() in the following code are
actually resolved as System.Console.WriteLine()
// and System.Console.ReadKey()
// Finally there is also the BEGIN USING .. END USING construct
which controls the lifetime of a variable
// At the end of the block the Variable will be automatically
disposed.
USING System
USING STATIC System.Console

FUNCTION Start() AS VOID
 WriteLine("Before Using Block")
 WriteLine("------------------")
 BEGIN USING VAR oTest := Test{}
 oTest:DoSomething()
 END USING
 WriteLine("------------------")
 WriteLine("After Using Block")
 ReadKey()

CLASS Test IMPLEMENTS IDisposable
 CONSTRUCTOR()
 Console.WriteLine("Test:Constructor()")

 METHOD DoSomething() AS VOID
 Console.WriteLine("Test:DoSomething()")

 METHOD Dispose() AS VOID
 Console.WriteLine("Test:Dispose()")

END CLASS

956X# Examples

© 2015- 2024 XSharp BV

2.6 CHECKED Example

FUNCTION Start() AS VOID
 LOCAL d AS DWORD
 LOCAL n AS INT

 d := UInt32.MaxValue
 ? "Initial value of d:", d

 BEGIN UNCHECKED
 // arithmetic operations inside an UNCHECKED block will not
produce
 // overflow exceptions on arithmetic conversions and
operations,
 // no matter if overflow checking is enabled application-
wide or not
 n := (INT)d
 ? "Value of n after conversion:", n
 d ++
 ? "Value of d after increasing it:", d
 END UNCHECKED

 d := UInt32.MaxValue
 BEGIN CHECKED
 // arithmetic operations inside a CHECKED block always do
 // overflow checking and throw exceptions if overflow is
detected
 TRY
 n := (INT)d
 d ++
 CATCH e AS Exception
 ? "Exception thrown in CHECKED operation:", e:Message
 END TRY
 END CHECKED
 Console.ReadLine()
RETURN

957 XSharp

© 2015- 2024 XSharp BV

2.7 EVENT Example

USING System.Collections.Generic
FUNCTION Start AS VOID
 LOCAL e AS EventsExample
 e := EventsExample{}
 e:Event1 += TestClass.DelegateMethod
 e:Event1 += TestClass.DelegateMethod
 e:Event1 -= TestClass.DelegateMethod // added 2, removed 1,
should be called once
 e:Event2 += TestClass.DelegateMethod
 e:Event2 += TestClass.DelegateMethod
 e:Event2 -= TestClass.DelegateMethod // added 2, removed 1,
should be called once
 e:Event3 += TestClass.DelegateMethod
 e:RaiseEvent1("This is a test through a multi line event
definition")
 e:RaiseEvent2("This is a test through a single line event
definition")
 e:RaiseEvent3("This is a test through an old style event
definition")
 Console.WriteLine("Press a Key")
 Console.ReadLine()

DELEGATE EventHandler (s AS STRING) AS VOID

CLASS TestClass
 STATIC METHOD DelegateMethod(s AS STRING) AS VOID
 Console.WriteLine(s)
END CLASS

CLASS EventsExample
 PRIVATE eventsTable AS Dictionary<STRING, System.Delegate>
 PRIVATE CONST sEvent1 := "Event1" AS STRING
 PRIVATE CONST sEvent2 := "Event2" AS STRING
 CONSTRUCTOR()
 eventsTable := Dictionary<STRING, System.Delegate>{}
 eventsTable:Add(sEvent1,NULL_OBJECT)
 eventsTable:Add(sEvent2,NULL_OBJECT)

 // Multiline definition
 EVENT Event1 AS EventHandler
 ADD
 BEGIN LOCK eventsTable
 eventsTable[sEvent1] := ((EventHandler)
eventsTable[sEvent1]) + value

958X# Examples

© 2015- 2024 XSharp BV

 END LOCK
 Console.WriteLine(__ENTITY__ + " "+value:ToString())
 END
 REMOVE
 BEGIN LOCK eventsTable
 eventsTable[sEvent1] := ((EventHandler)
eventsTable[sEvent1]) - value
 END LOCK
 Console.WriteLine(__ENTITY__+ " "+value:ToString())
 END
 END EVENT

 // Single Line defintion on multilpe lines with semi colons,
for better reading !
 EVENT Event2 AS EventHandler ;
 ADD eventsTable[sEvent2] := ((EventHandler)
eventsTable[sEvent2]) + value ;
 REMOVE eventsTable[sEvent2] := ((EventHandler)
eventsTable[sEvent2]) - value

 // Old style definition
 EVENT Event3 AS EventHandler

 METHOD RaiseEvent1(s AS STRING) AS VOID
 VAR handler := (EventHandler) eventsTable[sEvent1]
 IF handler != NULL
 handler(s)
 ENDIF

 METHOD RaiseEvent2(s AS STRING) AS VOID
 VAR handler := (EventHandler) eventsTable[sEvent2]
 IF handler != NULL
 handler(s)
 ENDIF

 METHOD RaiseEvent3(s AS STRING) AS VOID
 IF SELF:Event3 != NULL
 Event3(s)
 ENDIF
END CLASS

959 XSharp

© 2015- 2024 XSharp BV

2.8 Expression Examples

//
// This example shows various new expression formats
//
using System.Collections.Generic

Function Start() as void
 VAR oNone := Person{"No", "Parent"}

 FOREACH VAR oValue in GetList()
 if oValue IS STRING // Value IS Type
 ? (String) oValue
 ELSEIF oValue IS INT
 ? (Int) oValue
 ELSEIF oValue IS DateTime
 ? (DateTime) oValue
 ELSEIF oValue IS Person
 LOCAL oPerson as Person
 oPerson := (Person) oValue
 ? oPerson:FirstName, oPerson:LastName
 // Value DEFAULT Value2 . When Value IS NULL then Value2
will be used
 oPerson := oPerson:Parent DEFAULT oNone
 ? "Parent: ", oPerson:FirstName, oPerson:LastName
 ENDIF
 NEXT
 LOCAL oEmptyPerson as Person
 LOCAL sName as STRING
 oEmptyPerson := GetAPerson()
 sName := oEmptyPerson?:FirstName // Conditional
Access: This will not crash, even when Person is a NULL_OBJECT
 ? sName DEFAULT "None"
 Console.ReadLine()
 RETURN

FUNCTION GetList() AS List<OBJECT>
 VAR aList := List<OBJECT>{}
 aList:Add(DateTime.Now)
 aList:Add("abcdefg")
 aList:Add(123456)
 VAR oPerson := Person{"John", "Doe"}
 aList:Add(oPerson)
 VAR oChild := Person{"Jane", "Doe"}
 oChild:Parent := oPerson
 aList:Add(oChild)
 RETURN aList

960X# Examples

© 2015- 2024 XSharp BV

CLASS Person
 EXPORT FirstName AS STRING
 EXPORT LastName as STRING
 EXPORT Parent as Person
 CONSTRUCTOR(First as STRING, Last as STRING)
 FirstName := First
 LastName := Last

END CLASS

FUNCTION GetAPerson() as Person
 RETURN NULL_OBJECT

961 XSharp

© 2015- 2024 XSharp BV

2.9 FIXED Example

The new FIXED modifier and BEGIN FIXED .. END FIXED keywords allow you to tell the
.Net runtime that you do not want a variable to be moved by the Garbage collector.

UNSAFE FUNCTION Start AS VOID
 VAR s := "SDRS"
 BEGIN FIXED LOCAL p := s AS CHAR PTR
 VAR i := 0
 WHILE p[i] != 0
 p[i++]++
 END
 END FIXED
 Console.WriteLine(s)
 Console.Read()
 RETURN

As you can see the BEGIN FIXED statement requires a local variable declaration. The
contents of this local (in the example above a CHAR PTR) will be excluded from garbage
collection inside the block.

Please note:
The FIXED keyword and the example above should be used with extreme care. Strings in
.Net are immutable. You normally should not manipulate strings this way !

962X# Examples

© 2015- 2024 XSharp BV

2.10 GENERICs Example

Stack Example
This example shows that we can now create generic classes with X# !
In the Stack class the T parameter will be replaced with a type at compile time.

/*
Stack Example - Written by Robert van der Hulst
This example shows that we can now create generic classes with X#
!
Note: Compile with the /AZ option
*/

USING System.Collections.Generic
USING STATIC System.Console

FUNCTION Start AS VOID
 LOCAL oStack AS Stack<INT>
 LOCAL i AS LONG
 TRY
 oStack := Stack<INT>{25}
 WriteLine("Created a stack with {0} items",oStack:Capacity)
 WriteLine("Pushing 10 items")
 FOR I := 1 TO 10
 oStack:Push(i)
 NEXT
 WriteLine("Popping the stack until it is empty")
 i := 0
 WHILE oStack:Size > 0
 i += 1
 WriteLine(oStack:Pop())
 END
 WriteLine("{0} Items popped from the stack",i)
 WriteLine("Press Enter")
 ReadLine()
 WriteLine("The next line pops from an empty stack and throws an
exception")
 ReadLine()
 WriteLine(oStack:Pop())
 CATCH e AS Exception
 WriteLine("An exception was catched: {0}", e:Message)
 END TRY
 WriteLine("Press Enter to Exit")
 ReadLine()
 RETURN

CLASS Stack<T> WHERE T IS STRUCT, NEW()
 PROTECT _Items AS T[]

963 XSharp

© 2015- 2024 XSharp BV

 PROTECT _Size AS INT
 PROTECT _Capacity AS INT
 PROPERTY Size AS INT GET _Size
 PROPERTY Capacity AS INT GET _Capacity

 CONSTRUCTOR()
 SELF(100)

 CONSTRUCTOR(nCapacity AS INT)
 _Capacity := nCapacity
 _Items := T[]{nCapacity}
 _Size := 0
 RETURN

 PUBLIC METHOD Push(item AS T) AS VOID
 IF _Size >= _Capacity
 THROW StackOverFlowException{}
 ENDIF
 _Items[_Size] := item
 _Size++
 RETURN

 PUBLIC METHOD Pop() AS T
 _Size--
 IF _Size >= 0
 RETURN _Items[_Size]
 ELSE
 _Size := 0
 THROW Exception{"Cannot pop from an empty stack"}
 ENDIF
END CLASS

964X# Examples

© 2015- 2024 XSharp BV

2.11 Lamda Expressions

Lamda Expressions are very much like CodeBlocks, but the
difference is that it has optional typed parameters and return
values.
You can also specify the parameter type in the parameter list as
the 3rd example shows

DELEGATE Multiply(x AS REAL8) AS REAL8
FUNCTION Start AS VOID
 LOCAL del AS Multiply
 del := {e => e * e}
 ? del(1)
 ? del(2)
 ? del(3)
 ? del(4)
 Console.ReadLine()
LOCAL dfunc AS System.Func<Double,Double>
 dfunc := {x =>
 ? "square of", x
 RETURN x^2
 }
 ? dfunc(5)
LOCAL typed AS Multiply
 typed := {x AS REAL8 =>
 ? "square of", x
 RETURN x^2
 }
 ? typed(6)
RETURN

965 XSharp

© 2015- 2024 XSharp BV

2.12 LINQ Example

The following example shows a couple of LINQ Queries in X#

//references:
//System.dll
//System.Core.dll
//System.Linq.dll
USING System.Collections.Generic
USING System.Linq
USING STATIC System.Console

FUNCTION Start AS VOID
 VAR oDev := GetDevelopers()
 VAR oC := GetCountries()
 VAR oAll := FROM D IN oDev ;
 JOIN C IN oC ON D:Country EQUALS C:Name
;
 ORDERBY D:LastName ;
 SELECT CLASS {D:Name, D:Country,
C:Region} // Anonymous class !
 // The type of oAll is
IOrderedEnumerable<<>f__AnonymousType0<Developer,Country>>
 // We prefer the VAR keyword!

 VAR oGreek := FROM Developer IN oDev ;
 WHERE Developer:Country == "Greece" ;
 ORDERBY Developer:LastName DESCENDING ;
 SELECT Developer
 // The type of oGreek is IOrderedEnumerable<Developer>
 // We prefer the VAR keyword!

 VAR oCount := FROM Developer IN oDev ;
 GROUP Developer BY Developer:Country INTO NewGroup ;
 ORDERBY NewGroup:Key SELECT NewGroup
 // The type of oCount is
IOrderedEnumerable<<IGrouping<string,Developer>>
 // We prefer the VAR keyword!

 WriteLine(e"X# does LINQ!\n")
 WriteLine(e"All X# developers (country+lastname order)\n")
 FOREACH VAR oDeveloper IN oAll
 WriteLine("{0} in {1}, {2}",oDeveloper:Name,
oDeveloper:Country, oDeveloper:Region)
 NEXT

 WriteLine(e"\nGreek X# Developers (descending lastname)\n")
 FOREACH oDeveloper AS Developer IN oGreek
 WriteLine(oDeveloper:Name)

966X# Examples

© 2015- 2024 XSharp BV

 NEXT

 WriteLine(e"\nDevelopers grouped per country\n")

 FOREACH VAR country IN oCount
 WriteLine(i"{country.Key}, {country.Count()} developer(s)")
 FOREACH VAR oDeveloper IN country
 WriteLine(" " + oDeveloper:Name)
 NEXT
 NEXT
 WriteLine("Enter to continue")
 ReadLine()
 RETURN

FUNCTION GetDevelopers AS IList<Developer>
 // This function uses a collection initializer for the List of
Developers
 // and Object initializers for the Developer Objects
 VAR oList := List<Developer>{} { ;
 Developer{}{ FirstName := "Chris",
LastName := "Pyrgas", Country := "Greece"},;
 Developer{}{ FirstName := "Robert",
LastName := "van der Hulst", Country := "The Netherlands"},;
 Developer{}{ FirstName := "Fabrice",
LastName := "Foray", Country := "France"},;
 Developer{}{ FirstName := "Nikos",
LastName := "Kokkalis", Country := "Greece"} ;
 }
 RETURN oList

FUNCTION GetCountries AS IList<Country>
 // This function uses a collection initializer for the List of
Counties
 // and Object initializers for the Country Objects
 VAR oList := List<Country>{}{ ;
 Country{} {Name := "Greece", Region
:= "South East Europe"},;
 Country{} {Name := "France", Region
:= "West Europe"},;
 Country{} {Name := "The Netherlands",
Region := "North West Europe"} ;
 }
 RETURN oList

CLASS Developer
 PROPERTY Name AS STRING GET FirstName + " " + LastName
 PROPERTY FirstName AS STRING AUTO

967 XSharp

© 2015- 2024 XSharp BV

 PROPERTY LastName AS STRING AUTO
 PROPERTY Country AS STRING AUTO
END CLASS

CLASS Country
 PROPERTY Name AS STRING AUTO
 PROPERTY Region AS STRING AUTO
END CLASS

968X# Examples

© 2015- 2024 XSharp BV

2.13 NOP Example

// The NOP keyword is an empty statement.
// This tells the compiler that there is no code missing !
FUNCTION Start() AS VOID
LOCAL i as LONG
FOR i := 1 to 10
 IF I % 2 == 0
 Console.WriteLine(i)
 ELSE
 NOP // Nothing happens here. This tells the compiler
that there is no code missing !
 ENDIF
NEXT
RETURN

969 XSharp

© 2015- 2024 XSharp BV

2.14 SWITCH Example

//
// The SWITCH statement is a replacement for the DO CASE statement
// The biggest difference is that the expression (in this case
sDeveloper) is only evaluated once.
// which will have a performance benefit over the DO CASE
statement
// Empty statement lists for a CASE are allowed. In that case the
labels share the code (see CHRIS and NIKOS below)
//
// Please note that EXIT statements inside a switch are not
allowed, however RETURN, LOOP and THROW are allowed.
using System.Collections.Generic

Function Start() as void
 FOREACH VAR sDeveloper in GetDevelopers()
 SWITCH sDeveloper:ToUpper()
 CASE "FABRICE"
 ? sDeveloper, "France"
 CASE "CHRIS"
 CASE "NIKOS"
 ? sDeveloper, "Greece"
 CASE "ROBERT"
 ? sDeveloper, "The Netherlands"
 OTHERWISE
 ? sDeveloper, "Earth"
 END SWITCH
 NEXT
 Console.ReadKey()
 RETURN

FUNCTION GetDevelopers as List<String>
VAR aList := List<String>{}
aList:AddRange(<string>{ "Chris", "Fabrice", "Nikos", "Robert",
"YourName" })
RETURN aList

970X# Examples

© 2015- 2024 XSharp BV

2.15 Typed Enums

Enums may now be typed in X#. The type indicates the base class for the ENUM. By
specifying a AS clause you can determine the size in bytes that the ENUM uses.

ENUM Foo AS BYTE
 MEMBER One
 MEMBER Two
END ENUM

971 XSharp

© 2015- 2024 XSharp BV

2.16 USING Example

//
// XSharp allows you to not only use the using statement to link
to namespaces
// You can also link to a static class and call the methods in
this class as if they are functions.
// The functions WriteLine and ReadKey() in the following code are
actually resolved as System.Console.WriteLine()
// and System.Console.ReadKey()
// Finally there is also the BEGIN USING .. END USING construct
which controls the lifetime of a variable
// At the end of the block the Variable will be automatically
disposed.
USING System
USING STATIC System.Console

FUNCTION Start() AS VOID
 WriteLine("Before Using Block")
 WriteLine("------------------")
 BEGIN USING VAR oTest := Test{}
 oTest:DoSomething()
 END USING
 WriteLine("------------------")
 WriteLine("After Using Block")
 ReadKey()

CLASS Test IMPLEMENTS IDisposable
 CONSTRUCTOR()
 Console.WriteLine("Test:Constructor()")

 METHOD DoSomething() AS VOID
 Console.WriteLine("Test:DoSomething()")

 METHOD Dispose() AS VOID
 Console.WriteLine("Test:Dispose()")

END CLASS

972X# Examples

© 2015- 2024 XSharp BV

2.17 VAR Example

//
// The VAR keyword has been added to the language because in many
situations
// the result of an expression will be directly assigned to a
local, and the expression
// will already describe the type of the variable
// VAR is a synonym for LOCAL IMPLIED
using System.Collections.Generic

FUNCTION Start AS VOID
// In the next line the compiler "knows" that today is a DateTime
VAR today := System.DateTime.Now
? today

// In the next line the compiler "knows" that text is a String
VAR text := Convert.ToString(123)
? text

// In the next line the compiler "knows" that s is a string
FOREACH VAR s in GetList()
 ? s
NEXT

Console.ReadLine()

RETURN

FUNCTION GetList AS List<String>
VAR aList := List<String>{}
aList:Add("abc")
aList:Add("def")
aList:Add("ghi")
return aList

973 XSharp

© 2015- 2024 XSharp BV

2.18 Vulcan Runtime (BYOR)

This "Bring Your Own Runtime" (BYOR) example shows how you can use
Vulcan Datatypes
and functions in X#.

The example does NOT come with the Vulcan Runtime DLLs. You need
to have these installed
on your machine and you may need to update the references in the
example and point them
to the Vulcan Runtime DLLs on your machine.

// Please read the comments in Readme.txt !
using System
using System.Collections.Generic
using System.Linq
using System.Text

Function Start() as void

 LOCAL startingColor AS ConsoleColor
 startingColor := Console.ForegroundColor

 ConsoleHeading("Bring Your Own Runtime (BYOR)
Sample",ConsoleColor.Magenta)
 Console.ForegroundColor := ConsoleColor.Gray

 DateSamples()
 Conversion()
 Strings()
 Numeric()
 Wait()
 Arrays()
 Symbols()
 LateBinding()
 Wait()

 Workarea()
 Wait()
 Macros()
 Wait()
 CodeBlocks()
 Wait()

 Console.ForegroundColor := startingColor

FUNCTION ConsoleHeading(s AS STRING, c := ConsoleColor.Yellow AS
ConsoleColor) AS VOID

974X# Examples

© 2015- 2024 XSharp BV

 LOCAL originalColor AS ConsoleColor
 originalColor := Console.ForegroundColor

 Console.ForegroundColor := c
 Console.WriteLine(s)
 Console.ForegroundColor := originalColor

FUNCTION Wait() AS VOID
 ConsoleHeading("Press any key to
continue...",ConsoleColor.Green)
 Console.ReadKey()

FUNCTION DateSamples() AS VOID
 ConsoleHeading("Dates")
 LOCAL dToday := Today() AS DATE
 Console.WriteLine(i"Today is {dToday:d}") // Interpolated
string, short Date Format
 Console.WriteLine(i"Today is {dToday:G}") // Interpolated
string, General Date Format

 LOCAL dTomorrow AS __VODATE
 dTomorrow := dToday + 1 // can perform VO date arithmetic
 Console.WriteLine(i"Tomorrow is {dTomorrow:D}") // Long date
format

 LOCAL dNewYear AS DATE
 dNewYear := 2016.01.01

 Console.WriteLine("New year was " +AsString(dNewYear)+ " on a
"+CDOW(dNewyear))

FUNCTION Conversion() AS VOID
 ConsoleHeading("Conversion")
 LOCAL sToday AS STRING
 sToday := DTOS(Today()) // Convert date using VO function
 Console.WriteLine(i"Today is {sToday}")

FUNCTION Strings() AS VOID
 ConsoleHeading("Strings")
 LOCAL s AS STRING
 LOCAL sToday := DTOS(Today())
 s := SubStr(sToday,1,4) // string manipulation
 Console.WriteLine(String.Format("SubStr is {0}",s))

 LOCAL n AS DWORD
 n := At("0",s)
 Console.WriteLine(String.Format("At is {0}",n))

975 XSharp

© 2015- 2024 XSharp BV

 LOCAL c := "" AS STRING
 Console.WriteLine(String.Format("c is
{0}",IIF(Empty(c),"Empty","Not empty")))
 c := "x"
 Console.WriteLine(String.Format("c is
{0}",IIF(Empty(c),"Empty","Not empty")))
 RETURN

FUNCTION Numeric() as VOID
 ConsoleHeading("Numeric")
 LOCAL r AS REAL8
 r := Pow(2,3)
 Console.WriteLine(String.Format("Pow is {0}",r))
 LOCAL f AS FLOAT
 f := Sqrt(10)
 Console.WriteLine(String.Format("The root of 10 is {0}",f))
 RETURN

FUNCTION Arrays() AS VOID
 ConsoleHeading("Array")
 LOCAL a AS ARRAY
 a := {1,2,3}
 Console.WriteLine(String.Format("Original Array length is
{0}",ALen(a)))
 AAdd(a,4)
 AAdd(a,5)
 AAdd(a,6)
 Console.WriteLine(String.Format("Array length after adding 3
elements is {0}",ALen(a)))
 FOR VAR i := 1 TO ALen(a)
 Console.Writeline(String.Format("{0} {1}", i, a[i]))
 NEXT
 ADel(a, 1)
 Asize(a, Alen(a) -1)
 Console.WriteLine(String.Format("Array length after deleting 1
elements is {0}",ALen(a)))
 RETURN

FUNCTION Symbols() AS VOID
 LOCAL s as Symbol
 LOCAL c as STRING
 ConsoleHeading("Symbol")
 s := #LastName
 Console.WriteLine("Symbol s: "+s:ToString())
 c := Symbol2String(s)
 Console.WriteLine("Symbol converted to string : "+c)

976X# Examples

© 2015- 2024 XSharp BV

 RETURN

FUNCTION LateBinding() AS VOID
 LOCAL e as Object
 ConsoleHeading("Late binding")
 e := Error{0, "Message"}
 Console.WriteLine("Reading property from a untype variable")
 Console.WriteLine((String) e:Message)

 RETURN

Function Workarea() AS VOID
 LOCAL cWorkDir as STRING
 FIELD LASTNAME, FIRSTNAME in CUSTOMER
 ConsoleHeading("DBF Access")
 cWorkDir := "..\..\"
 SetPath(cWorkDir)
 DbUseArea(TRUE, "DBFNTX","Customer")
 DbSetIndex("CustNum.NTX")
 DbSetIndex("CustName.NTX")
 DbGoTop()
 DO WHILE ! EOF()
 ? Str(Recno(),3), LASTNAME, FIRSTNAME, _FIELD->CITY
 DbSkip(1)
 ENDDO
 DbCloseArea()

FUNCTION Macros() AS VOID
 LOCAL cMacro as STRING
 LOCAL cbMacro as CodeBlock
 ConsoleHeading("Macros")
 cMacro := "{||Today()}"
 cbMacro := &(cMacro)
 ? cMacro, Eval(cbMacro)
 cMacro := "1+2+3"
 ? cMacro, &cMacro
 cMacro := "System.Int32.MaxValue"
 cbMacro := MCompile(cMacro)
 ? cMacro, MExec(cbMacro)
 cMacro := "{|a,b,c| a*b*c}"
 cbMacro := &(cMacro)
 ? cMacro, Eval(cbMacro, 2,3,4)

 ?
 RETURN

FUNCTION CodeBlocks() AS VOID
 LOCAL oBlock as CodeBlock

977 XSharp

© 2015- 2024 XSharp BV

 ConsoleHeading("Codeblocks")
 oBlock := {||Today()}
 ? oBlock, eval(oBlock)
 oBlock := {||System.Math.Pow(2,3)}
 ? oBlock, eval(oBlock)
 oBlock := {|a,b,c|a*b*c}
 ? oBlock, eval(oBlock,2,3,4)
 ?
 RETURN

978X# Examples

© 2015- 2024 XSharp BV

2.19 YIELD Example

using System.Collections.Generic

// The Yield return statement allows you to create code that
returns a
// collection of values without having to create the collection in
memory first.
// The compiler will create code that "remembers" where you were
inside the
// loop and returns to that spot.
FUNCTION Start AS VOID
 FOREACH nYear AS INT IN GetAllLeapYears(1896, 2040)
 ? "Year", nYear, "is a leap year."
 NEXT
 Console.ReadLine()
RETURN

FUNCTION GetAllLeapYears(nMin AS INT, nMax AS INT) AS
IEnumerable<INT>
 FOR LOCAL nYear := nMin AS INT UPTO nMax
 IF nYear % 4 == 0 .and. (nYear % 100 != 0 .or. nYear % 400
== 0)
 YIELD RETURN nYear
 END IF
 IF nYear == 2012
 YIELD EXIT // Exit the loop
 ENDIF
 NEXT

XSharp979

© 2015- 2024 XSharp BV

Index

- - -
- 765, 770
-- 770

- ! -
! 767

- # -
#<idMarker> 799
#command 776
#define 778
#else 780
#else statement 684, 685
#endif 780
#endif statement 684, 685
#endregion 790
#ifdef 785, 790
#ifdef statement 684
#ifndef 786
#ifndef statement 685
#include 786
#line 787
#LOAD 306
#pragma 787
#pragma options 787
#pragma warning 789
#pragma warnings 789
#R 306
#region 790
#translate 795
#undef 797
#USING 463
#xcommand 776
#xtranslate 795
#ycommand 776
#ytranslate 795

- $ -
$AppExit 934
$AppExit() 937
$AppInit 934
$AppInit() 937
$Exit 857, 934, 937
$Init1 857, 934, 937
$Init2 857, 934, 937
$Init3 857, 934, 937
$PCall$<FunctionName>$<suffix> 937
$PCallNative$<FunctionName>$<suffix 937

- % -
% 765
%= 766

- & -
& 767
&& 21, 22, 767
&& characters 465
&= 766

- * -
* 765
* character 465
** 765
*= 766

- . -
.AND. 767
.editorconfig 348
.F. 442
.g.prg 923
.N. 442
.NOT. 767
.OR. 767
.PRGX 306
.rc 923
.sln 923
.T. 442
.XOR. 767
.xsproj 312, 923
.Y. 442

- / -
/ 765
/* characters 465
// characters 465
/= 766
/closeapplications 918
/components 918
/cs 392
/dir 918
/forcecloseapplications 918
/group 918
/help 918
/loadinf 918
/log 918, 922
/nocancel 918
/nocloseapplications 918
/noforcecloseapplications 918
/noicons 918
/norestart 918, 922
/norestartapplications 918
/nostddef 469

Index 980

© 2015- 2024 XSharp BV

/nouninstall 918
/restartapplications 918
/restartexitcode 918
/saveinf 918
/shared 77, 875
/silent 918, 922
/suppressmsgboxes 918, 922
/type 918
/verysilent 918, 922
/vo3 392

- : -
:= 766

- - -
-? 837

- ? -
?|?? statement 721

- @ -
'@' 21, 22, 23
@ compiler option 815

- \ -
\' 440, 441, 445
\" 440, 441, 445
\\ 22, 440, 441, 445
\|\\ statement 722
\0 440, 441, 445
\a 440, 441, 445
\b 440, 441, 445
\f 440, 441, 445
\n 440, 441, 445
\r 440, 441, 445
\t 440, 441, 445
\u 440, 441, 445
\v 440, 441, 445
\x 440, 441, 445

- ^ -
 ̂ 765

^= 766

- _ -
__ARRAYBASE__ 760
__CLR2__ 760
__CLR4__ 760
__CLRVERSION__ 760
__DATE__ 760

__DATETIME__ 760
__DEBUG__ 760
__DIALECT__ 760
__DIALECT_CORE__ 760
__DIALECT_FOXPRO__ 760
__DIALECT_HARBOUR__ 760
__DIALECT_VO__ 760
__DIALECT_VULCAN__ 760
__DIALECT_XBASEPP__ 760
__ENTITY__ 760
__FILE__ 760
__FOX1__ 760
__FOX2__ 760
__FUNCTION__ 760
__LINE__ 760
__MEMVAR__ 760
__MODULE__ 760
__SIG__ 760
__SRCLOC__ 760
__SYSDIR__ 760
__TIME__ 760
__UNDECLARED__ 760
__UNSAFE__ 760
__UTCTIME__ 760
__VERSION__ 760
__VO__ 21
__VO1__ 760
__VO10__ 760
__VO11__ 760
__VO12__ 760
__VO13__ 760
__VO14__ 760
__VO15__ 760
__VO16__ 760
__VO17__ 760
__VO2__ 760
__VO3__ 760
__VO4__ 760
__VO5__ 760
__VO6__ 760
__VO7__ 760
__VO8__ 760
__VO9__ 760
__VULCAN__ 21
__WINDIR__ 760
__WINDRIVE__ 760
__XPP__ 22, 760
__XPP1__ 760
__XSHARP__ 760
__XSHARP_RT__ 760
_ACCESS 22, 585
_AND 754
_ARGLIST 754
_ARGS 762
_ASSIGN 22, 585
_CAST 754, 937
_Chr 762
_DLL statement 547
_FIELD 771
_GETFPARAM 762
_GetInst 762
_GETMPARAM 762

XSharp981

© 2015- 2024 XSharp BV

_INIT1 612
_INIT2 612
_INIT3 612
_NOT 754
_OR 754
_sizeof 754
_typeof 754
_WINBOOL 21
_XOR 754

- | -
| 767
|| 767
|= 766

- ~ -
~ 767
~= 766

- + -
+ 765, 770
++ 770
+= 766

- < -
< 768
<!idmarker!> 799
<#idMarker> 797
<%idMarker%> 797
<(idMarker)> 797, 799
<*idMarker*> 797
<.idMarker.> 799
<{idMarker}> 799
<< 770
<<= 766
<= 768
<>ClassName 937
<AssemblyName>.Functions 937
<idMarker,...> 797
<idMarker:word list> 797
<idMarker> 797, 799

- = -
= 766

- - -
-= 766

- = -
=> 756, 776, 795, 964

- > -
> 768

- - -
-> 771

- > -
>= 768
>> 770
>>= 766

- 4 -
4 letter abbreviations 21, 22, 23

- A -
-a 819
ABSTRACT 390, 392
ACCEPT command 724
ACCESS 588, 590
ACCESS METHOD 588, 590
ACCESS statement 549
Access() Methods 549, 563, 574
ADD 47
ADD OBJECT 583
Adding

comments 465

records 471

values to variables 679
Additional Include paths 319
-additionalfile 817
-addmodule 817
ALIAS 771
alias operator 771
ALIGN 621
align_do_case 348
align_method 348
Aligning

structure members 621
Alignment of structures 621
Allow Late Binding 319
Allow Named Arguments 319
Allow Unsafe Code 319
-allowdot 818
ALTD 762
Alternate standard header file 319
-analyzer 819
ANSI format 628
app.config 329
-appconfig 819
APPEND BLANK command 471
APPEND FROM command 473, 476
Application Icon 317

Index 982

© 2015- 2024 XSharp BV

Applications

executing 711

setting international mode 664
ARGCOUNT 762
ARRAY 290, 433
ARRAY OF 289
Arrays

creating 669, 672, 742, 751

creating files from 501

declaring 605, 742, 748, 751
AS 758
ASCENDING 758
Assembly Name 317
ASSIGN METHOD 588, 590
ASSIGN statement 555
Assign() Methods 555
ASSIGNMENT 587
assignment operator 766
-ast 821
ASYNC 687
AVERAGE command 480
AWAIT 687
-az 319, 787, 821

- B -
-baseaddress 823
BEGIN 38, 39, 40, 449, 450, 451, 452, 454,
455, 457, 458
BEGIN CHECKED 449
BEGIN FIXED 450
BEGIN LOCK 451
BEGIN NAMESPACE 452
BEGIN SCOPE 454
BEGIN SEQUENCE 455
BEGIN SEQUENCE statement 688
BEGIN UNCHECKED 449
BEGIN UNSAFE 457
BEGIN USING 458
BINARY 293, 434, 446
Binary Literals 446
binary operators 765
Binding of instance variables 576, 581, 585,
607
bitwise operator 767
Blocks 341
Brace matching 345
Branching 688, 694, 695, 697, 700, 703, 704,
707, 712, 715
BREAK 692
BREAK statement 688
breakpoint 350
breakpoint conditions 350
Building

code 684, 685
BY 758
BYTE 429

- C -
Calculating

averages 480
CANCEL command 693
Case Sensitive 319
CASE statement 694, 712
CATCH statement 715
CCALL 762
CCallNative 762
Changes 77
CHAR 429, 440
Char Literals 440
charset 348
CHECKED 38, 449, 754
-checked 823, 835, 864
-checksumalgorithm 824
Chr 762
CLASS 439, 576, 581, 585, 754
CLASS (FoxPro syntax) 439
CLASS (Xbase++ syntax) 439
CLASS METHOD 588, 590
Class names

declaring 576, 581, 585, 607
CLASS statement 576, 581, 585
CLASS VAR 587
Classes 576, 581, 585, 607

declaring Class names 576, 581, 585, 607

declaring() Methods 565

inheritance 576, 581, 585, 607

object instantiation 576, 581, 585, 607
ClassLibrary 355
CLEAR ALL command 482
CLEAR MEMORY command 666
CLEAR SCREEN Command 725
Clearing

memory variables 675
Clearing filters 524
Clearing memory 666
Click here for the version history 13
Clipper calling convention 937
Clipper collation 768
CLOSE ALL command 482
CLOSE ALTERNATE command 482
CLOSE command 482
CLOSE DATABASES command 482
CLOSE FORMAT command 482
CLOSE INDEXES command 482
Close matches

finding 662
Closing

files 482, 693

routines 710
Closing files 706, 707
Code

building 684, 685
Code Completion 343
Code Signing KeyFile 324

XSharp983

© 2015- 2024 XSharp BV

CODEBLOCK 290, 434
-codepage 825
Collating strings 664
Colors

setting 727
Command 327
Command Arguments 327
Commands 465, 466, 467, 468, 471, 473, 476,
480, 482, 483, 485, 486, 488, 490, 494, 498, 500,
501, 504, 506, 508, 509, 511, 514, 515, 516, 519,
520, 522, 523, 524, 525, 526, 527, 529, 531, 533,
534, 537, 539, 542, 543, 544, 545, 619, 628, 629,
630, 631, 632, 633, 634, 635, 636, 637, 639, 640,
641, 642, 643, 644, 645, 646, 647, 652, 653, 655,
656, 658, 660, 661, 662, 663, 664, 666, 675, 676,
678, 679, 681, 682, 683, 693, 694, 706, 707, 711,
724, 725, 726, 727, 728, 729, 731, 739

Comments 465

Concurrency Control 466

Database 469

Date 543

Entity Declaration 546

Environment 628

File 637

Index 644

Index / Order 644

International 664

Locking 466

Memory Variable 665

Numeric 681

Order 644

Program Control 684

Terminal Window 720

Variable Declaration 740
Comments 465

adding 465
COMMIT ALL command 466
COMMIT command 466
'compatible string comparions 768
Compile 923
Compiledeclaration 565, 598, 605, 612, 619,
667, 699, 741, 748, 751
Compiler Macros 760
Compiler Options 802, 803, 805, 811
Compiletime declaration 621
Compile-time declaration 547, 549, 555, 561,
562, 563, 572, 574, 576, 581, 585, 592, 607
component 26
COMReference 923
Concurrency control 466, 467, 468, 539
Concurrency Control Commands 466
Conditional execution 694, 697, 700, 703, 704,
707, 712
Console Application 355
Constants

declaring 592
CONSTRUCTOR statement 561

CONTINUE command 483
Converting to OEM characters 628
COPY FILE command 637
COPY STRUCTURE command 485
COPY STRUCTURE EXTENDED command
486
COPY TO ARRAY command 488
COPY TO command 490, 494
Copying

arrays 501

files 637

memory variables 678

records 488, 490, 494

structures 485, 486
Core 19
COUNT command 498
Counting records 498
CREATE command 500
CREATE FROM command 501
CreateXSharpManifestResourceName 923
Creating 672

arrays 672, 742, 751

files 485, 500, 501, 509, 647

variables 668, 669, 672, 742, 751
-cs 319, 825
Currency 293, 444
Currency Literal 444
Custom Tool 328, 329

- D -
-d 324, 826
Data structures

alignment 621

declaring 621

specifying members 621
Data type/parameter checking 694
Database Commands 469
Databases 466, 467, 468, 471, 473, 476, 480,
482, 483, 485, 486, 488, 490, 494, 498, 500, 501,
508, 509, 511, 515, 516, 520, 522, 523, 524, 525,
527, 529, 531, 533, 534, 537, 539, 634, 646, 647,
652, 653, 655, 656, 658, 660, 661, 662, 663, 741

records 504, 514, 542
DATE 292, 436, 442
Date Commands 543
Date Literals 442
Dates 543, 629

setting 543, 545, 629, 634

setting date format 544, 629, 630

using century digits 543, 629
DATETIME 442
DateTime Literals 442
dbase 830
DBFVFP 22
DbgShowGlobals 278
DbgShowMemvars 278
DbgShowSettings 278

Index 984

© 2015- 2024 XSharp BV

DbgShowWorkareas 278
DbServer Editor 354
-debug 826
Debug Information 327
Debugger 350
debugger expression evaluator 350
Decimals

setting number of digits 633, 636, 682, 683

setting number of places 631, 681
Declaration statements 547, 549, 555, 561,
562, 563, 565, 572, 574, 576, 581, 585, 592, 598,
605, 607, 612, 621, 666, 667, 668, 669, 672, 699,
741, 742, 747, 748, 751
DECLARE 666
DECLARE METHOD statement 562
DECLARE statement 666
DEFAULT 46, 754
DEFAULT command 694
Default Namespace 317
DEFERRED 390, 392
Define 581, 592
-define 828
DEFINE CLASS 22
DEFINE statement 592
Defines 324
Defines for the preprocessor 324
Delayed sign only 324
-delaysign 324, 829
DELEGATE 439, 593
DELETE command 504
DELETE FILE command 639
DELETE TAG command 645
Deleting 504, 514, 522, 542, 645

files 639, 641

memory variables 666, 675
DESCENDING 758
DESTRUCTOR statement 562
Dialect 317
-dialect 830
Digits 543, 629

dates without century digits 545, 634

fixing the number of 632, 682

setting decimals 633, 682

setting number of decimal digits 636, 683
DIMENSION 22, 666
DIR command 640
Directories

setting default 632, 643
Displaying

file listing 640

numbers 631, 632, 633, 636, 681, 682, 683

output 721, 722
DLLs

declaring 547
DO CASE statement 694
DO statement 695
DO WHILE statement 697
-doc 831
Drivers

changing default RDD 523, 634
Drives

setting default 632, 643
dropdowns 344
DWORD 429
DYNAMIC 429
Dynamic linking 547
dynamic memory variable 771

- E -
Editor combo boxes 344
EditorSettings.json 334
ei"..." 53
ELSE statement 704
ELSEIF statement 704
Enable Implicit Namespace lookup 319
Enable Memvar support 319
Enable Undeclared variables support 319
Enable unmanaged debugging 327
END 449, 450, 451, 452, 454, 455, 457, 458
END CHECKED 449
END CLASS 576
END DEFINE 581
END FIXED 450
END FUNCTION 459, 608
END INTERFACE 607
END LOCK 451
END METHOD 588, 590
END NAMESPACE 452
END PROCEDURE 461, 610
END SCOPE 454
END SEQUENCE 455
END SEQUENCE statement 688
END statement 704
END STRUCTURE 616
END TRY statement 715
END UNCHECKED 449
END UNION 619
END UNSAFE 457
END USING 458
END VOSTRUCT 621
end_of_line 348
ENDCASE statement 694
ENDCLASS 585
ENDDEFINE 581
ENDDO statement 697
ENDFOR 22
ENDFUNC 585
ENDIF statement 704
ENDPROC 585
ENDTEXT 733
ENDTEXT command 792
-enforceoverride 832
-enforceself 832
Entities 417
Entity declaration 547, 549, 555, 561, 562, 563,
565, 572, 574, 576, 581, 585, 592, 598, 607, 612,
619, 621
Entity Declaration Commands 546
ENUM 439, 595, 970

XSharp985

© 2015- 2024 XSharp BV

enumeration 595
enumeration members 595
Environment 467, 523, 526, 628, 631, 632, 633,
634, 636, 643, 644, 681, 682, 683

using century digits 543, 629
Environment Commands 628
Epochs

epochs 545, 634

setting 545, 634
EQUALS 758
ERASE command 641
-errorendlocation 833
-errorreport 833
Escape codes 440, 441, 445
Evaluating records 533
EVENT 47
EVENT statement 563
Exact 635
EXCLUDE 583
Exclusive mode

setting 467
ExecScript 413
Executing

applications 711
EXIT 63, 612, 699
EXIT PROCEDURE 612, 857, 934
EXIT statement 697, 700, 703, 707
EXPORT 364, 390
EXPORT clause 576, 581, 585
EXPORT INSTANCE clause 576, 581, 585
Exporting

records 490, 494
Expression evaluator 350
EXTERN 400
EXTERNAL statement 699
Extra Command Line Options 324

- F -
FALSE 442
FIELD 754, 771
FIELD statement 741
Fields

assigning new values 506, 516

updating 519, 537
FieldSpec Editor 354
File Commands 637
-filealign 834
Files

closing 482, 693, 706, 707, 731

copying 637

creating 485, 500, 501, 509, 647

deleting 639, 641

displaying 640

opening 467, 539, 636, 644

rebuilding index files 652

renaming 642
Filters 524

clearing 524

optimizing 526

setting 524
FINAL 390, 392
FINALLY 455
FINALLY statement 715
FIND command 646
Finding 662

records 511, 653

specific records 508
FIXED 39, 450
FLOAT 294, 437
Floating point Literals 444
Flushing updates 466
folders 26
FOR EACH 22
FOR statement 700
FOREACH statement 703
Form Editor 354
Formatting 337
Formatting code 347
-fovf 835
-fox1 322, 835
-fox2 322, 836
foxpro 22, 830
FREEZE 390, 392
FROM 585, 758
-fullpaths 837
FUNCTION 585, 598
FUNCTION statement 598
Functions$<ModuleName>$ 937

- G -
GAC 286, 923
GATHER command 506
General Options 336
Generate Debug Information 327
Generate preprocessor output 324
Generate XML doc comments file 324
Generator 337
Generic 44
GLOBAL 605
GLOBAL statement 605
GO BOTTOM command 508
GO command 508
GO TOP command 508
GOTO command 508
Goto definition 344
GROUP 758

- H -
Harbour 23, 830
-help 837
HELPSTRING 585
HIDDEN 390
HIDDEN clause 576, 581, 585
HIDDEN INSTANCE clause 576, 581, 585
-highentropyva 837

Index 986

© 2015- 2024 XSharp BV

Highlight words 346
Highlighting Errors 340
HintPath 923

- I -
-i 319, 838
i"..." 53
identifier_case 348
ie"..." 53
IF 754
IF statement 704
IIF 23, 754
IMPLEMENTS 576, 583, 585
Implicit Namespace lookup 319
Importing

records 473, 476
IN 758
IN TypeLib 583
Inactive conditional regions 345
Include paths 319
Including unique keys 663
indent_size 348
indent_style 348
Indentation 338
INDEX command 647
Index Commands 644
Index files

creating 647

deleting 645

opening 656

rebuilding 652
Index/order 482, 526, 646, 647, 652, 653, 655,
656, 658, 660, 661, 662, 663

index files 645

orders 645
Index/Order Commands 644
INHERIT 576
INHERIT clause 576, 581, 585, 607
INIT PROCEDURE 612, 857, 934
Initialize Local variables 319
-initlocals 319
-ins 319, 840
insert_final_newline 348
Installation 26, 286
INSTANCE 390
INSTANCE clause 576, 581, 585
Instance variables 549, 574, 576, 579, 581, 585

accessing 549, 574

assigning values 555, 574

binding 576, 581, 585

declaring 576, 581, 585

exporting 576, 581, 585

hiding 576, 581, 585

non-exported 549, 574

virtual variables 549, 574
INT 430
INT64 430

Integer Literals 444
Intellisense 339
INTERFACE 439, 607
INTERFACE statement 607
Intermediate Output Path 324
intermediate window 350
INTERNAL 390
International Commands 664
International mode

setting 664
Interpolated 53
INTO 758
INTRODUCE 390, 392
IS 50
item templates 358
ItemGroup 316

- J -
JOIN 758
JOIN command 509

- K -
-keycontainer 841
-keyfile 324, 842, 877
Keyword Coloring 340
keyword_case 348
Keywords 417

- L -
Lamda 964
Lamda Expression 964
Lamda Expressions 756
-langversion 843
LastXSharpNativeResourceResponseFile.Rsp"
923
LastXSharpResponseFile.Rsp 923
late binding 350
-lb 319, 787, 843
LET 758
-lexonly 844
-lib 845
-link 846
-linkresource 848
LINQ 54
Literals 440, 441, 442, 443, 444, 445
LOCAL FUNCTION 459, 608
LOCAL PROCEDURE 461, 610
LOCAL statement 742, 747
Local variables 319
LOCATE command 511
LOCK 451
Locking Commands 466
Locking work areas 468
LOGIC 294, 430, 442
Logic Literals 442
logical operator 767
LONG 430

XSharp987

© 2015- 2024 XSharp BV

LONGINT 430
LOOP 705
LOOP statement 697, 700, 703, 707
Looping 697, 707
LPARAMETERS 22
LPARAMETERS statement 747

- M -
machine.config 923
Macros 665, 760
-main 317, 850, 931
MEMBER clause 621
Memo files 525
Memory 666

clearing 666

deleting variables 666
Memory variable 667, 668, 669, 672, 679
Memory Variable Commands 665
Memory variables 675, 678

clearing 675

copying to disk files 678

deleting 675

restoring 676

saving 678
-memvar 319
MEMVAR statement 667
Memvar support 319
-memvars 787
Menu Editor 354
METHOD 588, 590
METHOD statement 565
Methods

accessing instance variables 549, 574

assigning values to instance variables 555
Modes

setting 467, 664
-moduleassemblyname 852
-modulename 854
MsBuild 312

- N -
-namedargs 319
NAMEOF 754
NAMESPACE 319, 452
Namespace lookup 319
Native Resource compiler 923
NativeResourceCompiler 923
nativetype 754
NEW 390, 392
NEXT statement 700, 703
NILs

assigning default values 694
-noconfig 855
NODEFAULT 585
-noinit 857
-nologo 857
NOP 56

NOP Statement 706
-nostddef 319
-nostddefs 858
-nostdlib 858
NOTE command 465
-nowarn 324, 859
-nowin32manifest 317, 859
ns 319
-ns 860
-ns:<Namespace> 319
NULL 443
Null Literals 443
NULL_ARRAY 443
NULL_CODEBLOCK 443
NULL_DATE 443
NULL_OBJECT 443
NULL_PSZ 443
NULL_PTR 443
NULL_STRING 443
NULL_SYMBOL 443
Numeric Commands 681
Numeric Literals 443, 444
NUnit 355

- O -
OBJECT 430
Object instantiation 576, 581, 585
OEM format 628
OLEPUBLIC 581
ON 758
Opening

files 467, 539, 636, 644

index files 656
operator 765, 766, 767, 768, 770, 771
OPERATOR statement 572
Optimize 324
-optimize 862
Optimizing filters 526
options 336, 337, 338, 339, 340, 802, 803, 805,
811
-options 787
Order Commands 644
ORDERBY 758
Orders 663

adding to the order list 656

creating 647

deleting 645

rebuilding 652

setting controlling order 658
Ordinal collation 768
OTHERWISE statement 694, 712
-out 863
Output File 317
Output Path 324
Output Type 317
Overflow Exceptions 319
OVERRIDE 390, 392
-ovf 319, 864

Index 988

© 2015- 2024 XSharp BV

- P -
PACK command 514
-parallel 864
Parameter Tips 342
Parameters 417
PARAMETERS statement 668
-parseonly 864
PARTIAL 390, 400
-pathmap 865
Paths

for searching 636, 644
PCALL 762
PCallNative 762
PCOUNT 762
-pdb 865
Peek definition 345
pipename 875
-platform 866
Platform Target 324
-ppo 324, 867
pragma 789
-pragma 787
Prefer 32 Bit 324
Prefer native resource 317
Prefer native resource over managed resource
317
-preferreduilang 868
Prefix classes 319
Prefix classes with default Namespace 319
Preprocessor 324, 776, 778, 780, 785, 786,
787, 790, 795, 797
Preprocessor Macros 760
Preprocessor output 324
PRGX 306
PRIVATE 390
PRIVATE statement 669
PROCEDURE 585, 612
PROCEDURE statement 612
Program control 684, 685, 688, 693, 694, 695,
697, 699, 700, 703, 704, 706, 707, 710, 711, 712,
715
Project File 317
Project Folder 317
project templates 355
ProjectReference 923
ProjectSystemSettings.json 354
PROPERTY statement 574
PropertyGroup 316
PropRules.json 364
PROTECT 390
PROTECT clause 576, 581, 585
PROTECT INSTANCE clause 576, 581, 585
PROTECTED 390
PSZ 21, 294, 437, 937
PTR 431, 754
PUBLIC 390
PUBLIC statement 672

- Q -
Quick Info 342
QUIT command 693, 707

- R -
RDDs

changing default RDD 523, 634
REAL4 431
REAL8 431
RECALL command 515
Records 488, 490, 494, 522, 533

adding 471

calculating averages 480

copying 488, 490, 494

counting 498

deleting 504, 514, 522, 542

evaluating 533

exporting 490, 494

finding 511, 653

importing 473, 476

matching 483

moving pointer 529

pointing to 508

restoring 515

sorting 531

totaling 533, 534
RECOVER 455
RECOVER statement 688
RECOVER USING statement 688
-recurse 869
Reference 923
-reference 870
reference type 593
referenced assemblies 923
References to External .Net Assemblies 330
References to External COM components 330
References to other Visual Studio projects 330
References to unmanaged code 330
-refonly 872
-refout 873
Regions 341
Register for COM interop 324
REINDEX command 652
relational operator 768
RELEASE command 675
Releasing variables 482
REMOVE 47
RENAME command 642
Renaming

files 642
REPEAT Statement 707
REPLACE command 516
-resource 874
resource editor 328

XSharp989

© 2015- 2024 XSharp BV

RESTORE command 676
Restoring

memory variables 676
Restoring records 515
Resuming locate conditions 483
RETURN 63
RETURN statement 710
-rootnamespace 317
-ruleset 875
RUN command 711
RunInitProcs() 937
Runtime 286
Runtime chapter 77
Runtime declaration 562, 666, 668, 669, 672

- S -
SAVE command 678
SAVE TO command 678
Saving

memory variables 678
SCATTER command 519
SCOPE 454
Scoping key values 660, 661
scripting 306
Scroll Bars 336
SEALED 390, 392
SEEK command 653
SELECT 758
SELECT command 520
Selecting

work areas 520
SELF 754
SEQUENCE 455
SET ALTERNATE command 726
SET ANSI command 628
SET CENTURY command 543, 629
SET COLLATION command 664
SET COLOR command 727
SET COLOUR command 727
SET CONSOLE Command 728
SET DATE command 544, 629
SET DATE FORMAT command 544, 630
SET DATE TO command 544, 629
SET DECIMALS command 631, 681
SET DEFAULT command 632, 643
SET DELETED command 522
SET DESCENDING command 655
SET DIGITFIXED command 632, 682
SET DIGITS command 633, 682
SET DRIVER command 523, 634
SET EPOCH command 545, 634
SET EXACT command 635
SET EXCLUSIVE command 467
SET FILTER command 524
SET FIXED command 636, 683
SET INDEX command 656
SET INTERNATIONAL command 664
SET MEMOBLOCK command 525
SET OPTIMIZE command 526
SET ORDER command 658

SET PATH command 636, 644
SET RELATION command 527
SET SCOPE command 660
SET SCOPEBOTTOM command 661
SET SCOPETOP command 661
SET SOFTSEEK command 662
SET TEXTMERGE Command 729
SET UNIQUE command 663
SetCollation 768
Setting 632, 643

block size for memo files 525

colors 727

controlling order 658

date formats 544, 629, 630

dates 543, 545, 629, 634

decimal digits 636, 683

decimal places 631, 681

default drives 632, 643

directories 632, 643

filters 524

international mode 664

search path 636, 644

unique record keys 663

work area relations 527
settings 329, 334, 354
Settings Completion 340
settings editor 329
setup component 918
setup type 918
Shared Compiler 324
Shared mode

setting 467
SHARING 585
shift operator 770
SHORT 431
SHORTINT 431
-showdefs 876
-showincludes 876
-sign 324
Sign the output assembly 324
SIZEOF 754
SKIP command 529
Skipping records 529
SLen 762
Snippets 347
-snk 877
solution file 923
SORT command 531
Sorting records 531
STACKALLOC 77, 750
standard header file 319
Start 931
Startup Object 317
StartupCode 931
statementblock 755

Index 990

© 2015- 2024 XSharp BV

Statements 547, 549, 555, 561, 562, 563, 565,
572, 574, 576, 581, 585, 592, 598, 605, 612, 621,
666, 667, 668, 669, 672, 684, 685, 688, 694, 695,
697, 699, 700, 703, 704, 707, 710, 712, 715, 721,
722, 741, 742, 747, 748, 751
Statements.json 364
STATIC 390, 397, 463
STATIC CLASS clause 581, 585
STATIC CLASS statement 576
STATIC DEFINE statement 592
STATIC FUNCTION statement 598
STATIC GLOBAL statement 605
STATIC LOCAL statement 742, 748
STATIC PROCEDURE statement 612
STATIC statement 748
STATIC VOSTRUCT statement 621
-stddefs 319, 877
STORE command 679
STRING 53, 432, 441
String Literals 441
String2Psz 937
Strings

collation 664
Strong typing

defined 549, 555, 565, 574, 598
Structure 439, 616

Alignment 621
Structures

copying 485, 486
-subsystemversion 877
SUM command 533
SUPER 754
Suppress default Win32 317
Suppress default Win32 manifest 317
Suppress Specific Warnings 324
Suppress standard header file 319
SWITCH 58
SWITCH statement 712
SYMBOL 295, 432, 437, 445
Symbol Literals 445
SYNC 390, 392

- T -
tab_width 348
Tabs 337
-target 879
Target Framework Moniker 317
TargetFrameworkVersion 923
templates 355, 358
Terminal window 721, 722, 724, 725, 726, 727,
728, 729, 731, 739
Terminal Window Commands 720
Test Library 355
TEXT 22, 733
TEXT Statement 731
THIS 22
THIS_ACCESS 585
THROW 714
THROW statement 715

Tools Options 336, 337, 338, 339, 340
Tools/Options 334, 354
TOTAL command 534
Totaling records 533, 534
-touchedfiles 880
trim_trailing_whitespace 348
TRIMMED 733
TRUE 442
TRY CATCH statement 715
TUPLE 407, 754
Typed Enums 970
TYPEOF 754

- U -
UDC Tester 373
unary operator 770
UNCHECKED 40, 449, 754
-undeclared 319, 787
Undeclared variables support 319
UnhandledException 931
Unicode collation 768
UNION 21, 439, 619
Union entities 619

declaring 619

specifying members 619
UNION statement 619
UNIT64 432
UNLOCK ALL command 468
UNLOCK command 468
unmanaged debugging 327
UNSAFE 40, 400, 457
-unsafe 319, 881
Unsafe Code 319
UNTIL statement 707
UPDATE command 537
Updates

flushing 466
Updating fields 537
USE command 539
Use Shared Compiler 324
Use Zero Based Arrays 319
-usenativeversion 317, 805
USING 40, 59, 455, 458, 463
USUAL 295, 438
-utf8output 883

- V -
VAR 60, 587, 751
VAR statement 751
Variable declaration 667, 741, 742, 747, 748,
751
Variable Declaration Commands 740
Variables

creating 672, 742, 751

declaring 742, 747, 751

releasing 482
VFP 364
VFP2WinForms.json 364

XSharp991

© 2015- 2024 XSharp BV

VFPXporter 364
VIRTUAL 390, 392
Virtual variables 549, 574
Visibility Modifiers 390
Visual FoxPro 364
Visual Objects 21
vo 830
VO MDI Application 355
VO SDI Application 355
-vo1 322, 884
-vo10 322, 787, 884
-vo11 322, 787, 885
-vo12 322, 787, 887
-vo13 322, 768, 787, 887
-vo14 322, 787, 889
-vo15 322, 787, 890
-vo16 322, 787, 891
-vo17 892
-vo2 322, 787, 894
-vo3 322, 896
-vo4 322, 787, 898
-vo5 322, 787, 900
-vo6 322, 787, 901
-vo7 322, 787, 903
-vo8 322, 905
-vo9 322, 787, 908
VOID 432
VOSTRUCT 21, 439, 621
VOSTRUCT statement 621
VOXporter 362
vulcan 21, 830
Vulcan Compatible Managed Resources 317
Vulcan Console Application 355

- W -
-w 909
WAIT command 739
Wait states 724, 739
-warn 324, 909
-warnaserror 324, 910, 915
Warning Level 324
warnings 789
Warnings As Errors 324
watch window 350
WHERE 758
-win32icon 317, 911
-win32manifest 912
-win32res 914
Windows collation 768
Windows Forms Application 355
WORD 432
Work areas

changing 520

clearing 482

locate conditions 483

locking 468

relating 527
workarea 771
Working Directory 327
WPF Application 355

WRAP 733
-wx 915

- X -
Xbase++ 22, 830
XML doc comments file name 324
XPorter 363
-xpp1 322, 915
Xs$Args 937
Xs$PSZLiteralsTable 937
Xs$SymbolTable 937
XS9082 77
Xsc 923
xsc.rsp 855
XSharp project file 923
XSharp.__Array 290
XSharp.__ArrayBase 289
XSharp.__Binary 293
XSharp.__Currency 293
XSharp.__Date 292
XSharp.__Float 294
XSharp.__Psz 294
XSharp.__Symbol 295
XSharp.__Usual 295
XSharp.__WinBool 294
XSharp._CodeBlock 290
XSharp.CodeBlock 290
XSharp.Core 275
XSharp.Core.DLL 632, 636, 637, 639, 641, 643,
644
XSharp.Macrocompiler 283
XSharp.Macrocompiler.Full.DLL 284
XSharp.RDD 285
XSharp.RT 277
XSharp.RT.Debugger.DLL 278
XSharp.VFP 281
XSharp.VO 279
XSharp.XPP 280
XSHARPDEV 923
XSharpScript 306
xsi.exe 306
XUnit 355

- Y -
YIELD 63, 719

- Z -
ZAP command 542
Zero Based Arrays 319

Back Cover

	X# Documentation
	Getting Started with X#
	Dialects
	Core
	All Non Core dialects
	Visual Objects
	Vulcan
	Xbase++
	FoxPro
	Harbour

	Bring Your Own Runtime (BYOR)
	Known Issues
	Installation
	Redistributing X#
	New language features
	Anonymous Methods
	Anonymous Types
	ASTYPE
	ASYNC - AWAIT
	BEGIN CHECKED
	BEGIN FIXED
	BEGIN UNCHECKED
	BEGIN UNSAFE
	BEGIN USING
	Collection Initializers
	Conditional Access Expression
	Creating Generic Classes
	DEFAULT Expressions
	EVENT (Add and Remove)
	Expression IS Type
	Initializers
	Interpolated Strings
	LINQ Query Expressions
	NOP
	Object Initializers
	SWITCH
	USING
	VAR
	Xbase++ class declarations
	YIELD

	Licensing
	XSharp Open Software License
	Apache 2
	BSD

	Acknowledgements

	Version History
	Migrating apps from VO to X#
	Example 1: The VO Explorer Example
	Example 2: The VOPAD Example
	Example 3: The Pizza Example
	Example 4: Ole Automation - Excel
	Example 5: OCX - The Email Client Example

	The X# Runtime
	XSharp.Core
	XSharp.Data
	XSharp.RT
	XSharp.RT.Debugger.DLL
	XSharp.VO
	XSharp.XPP
	XSharp.VFP
	XSharp.VFP.UI
	XSharp.Macrocompiler
	XSharp.Macrocompiler.Full.DLL
	XSharp.RDD
	Installation in the GAC
	Who is who in the X# team
	XBase Types
	Array Of Type
	Array Type
	CodeBlock
	Date Type
	Binary Type
	Currency Type
	Float Type
	Logic Ttype
	PSZ Type
	Symbol Type
	Usual Type

	Workarea Events
	Dialect (in)compatibilities
	VO
	Vulcan.NET
	Xbase++
	FoxPro
	Harbour

	Subsystems of the X# Runtime
	Combining X# Runtime and Vulcan Runtime

	X# Scripting
	Using X# in Visual Studio
	Project System
	Solution
	Build Configurations
	Projects
	Project Properties
	Application
	Language
	Dialect
	Build
	Build Events
	Debug
	Resources
	Settings

	References
	.Net
	COM
	Project

	Project Items
	Source code Items
	Forms
	Other Item types
	Native Resources
	Managed Resources
	Settings

	Source Code Editor
	Text Editor Options
	General Options
	Scroll Bars
	Tabs
	Formatting
	Generator
	Indentation
	Intellisense
	Options
	Settings Completion

	Keyword Coloring
	Highlighting Errors
	Regions
	Blocks
	Parameter Tips
	Quick Info
	Code Completion
	Editor combo boxes
	Goto definition
	Peek definition
	Inactive conditional regions
	Brace matching
	Highlight Identifiers
	Highlight Keywords
	Indenting code
	Snippets
	.EditorConfig files

	Debugger
	Toolbar and Menu
	Globals Window
	Publics and Privates Window
	Workareas window
	Settings Window

	Other editors
	Templates
	Project Templates
	Item Templates

	VOXporter
	XPorter
	VFPXporter
	UDC Tester

	X# Programming guide
	Classes and Structures
	Codeblock, Lambda and Anonymous Method Expressions
	Exceptions and Exception Handling
	Memory Variables
	Modifiers
	Access/Visibility modifiers
	Class hierarchy modifiers
	STATIC modifier
	ASYNC/AWAIT
	Other modifiers

	Namespaces
	Types
	Tuples
	XML Documentation Comments
	Strong Typing
	Runtime Scripting
	Calling conventions

	X# Language Reference
	Keywords
	Types
	Simple (Native) Types
	BYTE
	CHAR
	DECIMAL
	DWORD
	DYNAMIC
	INT
	INT64
	LOGIC
	OBJECT
	PTR
	REAL4
	REAL8
	SBYTE
	SHORT
	STRING
	UINT64
	VOID
	WORD

	xBase Specific Types
	ARRAY
	ARRAY (FoxPro)
	BINARY
	CODEBLOCK
	CURRENCY
	DATE
	FLOAT
	PSZ
	SYMBOL
	USUAL

	User defined Types

	Literals
	Char Literals
	String Literals
	Date Literals
	Logic Literals
	Null Literals
	Numeric Literals
	Integer Literals
	Floating point Literals

	Symbol Literals
	Escape codes
	Binary Literals

	Commands and Statements
	Identifiers
	Blocks and Namespaces
	BEGIN (UN)CHECKED
	BEGIN FIXED
	BEGIN LOCK
	BEGIN NAMESPACE
	BEGIN SCOPE
	BEGIN SEQUENCE
	BEGIN UNSAFE
	BEGIN USING
	LOCAL FUNCTION
	LOCAL PROCEDURE
	USING

	Comment
	Comments

	Concurrency Control
	COMMIT Command
	SET EXCLUSIVE Command
	UNLOCK Command

	Database
	APPEND BLANK Command
	APPEND FROM ARRAY Command
	APPEND FROM Command
	APPEND FROM Command (FoxPro)
	AVERAGE Command
	CLEAR ALL Command
	CLOSE Command
	CONTINUE Command
	COPY STRUCTURE Command
	COPY STRUCTURE EXTENDED Command
	COPY TO ARRAY Command
	COPY TO Command
	COPY TO Command (FoxPro)
	COUNT Command
	CREATE Command
	CREATE FROM Command
	DELETE Command
	GATHER Command
	GO Command
	JOIN Command
	LOCATE Command
	PACK Command
	RECALL Command
	REPLACE Command
	SCATTER Command
	SELECT Command
	SET DELETED Command
	SET DRIVER Command
	SET FILTER Command
	SET MEMOBLOCK Command
	SET OPTIMIZE Command
	SET RELATION Command
	SKIP Command
	SORT Command
	SUM Command
	TOTAL Command
	UPDATE Command
	USE Command
	ZAP Command

	Date and Time
	SET CENTURY Command
	SET DATE Command
	SET DATE FORMAT Command
	SET EPOCH Command

	Entity Declaration
	_DLL Statement
	CLASS Members
	ACCESS Statement
	ASSIGN Statement
	CONSTRUCTOR Statement
	DECLARE METHOD Statement
	DESTRUCTOR Statement
	EVENT Statement
	METHOD Statement
	OPERATOR Statement
	PROPERTY Statement

	CLASS Statement (All dialects)
	Instance Variables
	Other Classmembers

	CLASS Statement (FoxPro dialect)
	Properties and Fields
	IMPLEMENTS clause
	ADD OBJECT Clause
	COMMAttrib Clause
	FUNCTION and PROCEDURE

	CLASS Statement (Xbase++ dialect)
	Fields
	METHOD Declarations
	METHOD Implementation

	DEFINE Statement
	DELEGATE Statement
	ENUM Statement
	FUNCTION Statement
	GLOBAL Statement
	INTERFACE Statement
	LOCAL FUNCTION Statement
	LOCAL PROCEDURE Statement
	PROCEDURE Statement
	STRUCTURE Statement
	UNION Statement
	VOSTRUCT Statement

	Environment
	SET ANSI Command
	SET CENTURY Command
	SET DATE Command
	SET DATE FORMAT Command
	SET DECIMALS Command
	SET DEFAULT Command
	SET DIGITFIXED Command
	SET DIGITS Command
	SET DRIVER Command
	SET EPOCH Command
	SET EXACT Command
	SET FIXED Command
	SET PATH Command

	File
	COPY FILE Command
	DELETE FILE Command
	DIR Command
	ERASE Command
	RENAME Command
	SET DEFAULT Command
	SET PATH Command

	Index/Order
	DELETE TAG Command
	FIND Command
	INDEX Command
	REINDEX Command
	SEEK Command
	SET DESCENDING Command
	SET INDEX Command
	SET ORDER Command
	SET SCOPE Command
	SET SCOPEBOTTOM Command
	SET SCOPETOP Command
	SET SOFTSEEK Command
	SET UNIQUE Command

	International
	SET COLLATION Command
	SET INTERNATIONAL Command

	Macros
	& Command

	Memory Variable
	CLEAR MEMORY Command
	DECLARE / DIMENSION Statement
	MEMVAR Statement
	PARAMETERS Statement
	PRIVATE statement
	PUBLIC Statement
	RELEASE Command
	RESTORE Command
	SAVE Command
	STORE Command

	Numeric
	SET DECIMALS Command
	SET DIGITFIXED Command
	SET DIGITS Command
	SET FIXED Command

	Program Control
	#ifdef Statement
	#ifndef Statement
	ASYNC .. AWAIT
	BEGIN SEQUENCE Statement
	BREAK statement
	CANCEL Command
	DEFAULT Command
	DO CASE Statement
	DO Statement
	DO WHILE Statement
	EXIT Statement
	EXTERNAL Command
	FOR Statement
	FOREACH Statement
	IF Statement
	LOOP Statement
	NOP Statement
	QUIT Command
	REPEAT UNTIL Statement
	RETURN Statement
	RUN Command
	SWITCH Statement
	THROW Statement
	TRY CATCH Statement
	WITH command
	YIELD Statement

	Terminal Window
	?|?? Statement
	\|\\ Statement
	ACCEPT Command
	CLEAR SCREEN Command
	SET ALTERNATE Command
	SET COLOR Command
	SET CONSOLE Command
	SET TEXTMERGE Command
	TEXT Command
	TEXT Command (Core)
	TEXT Command (Non-Core)
	TEXT Command (FoxPro)

	WAIT Command

	Variable Declaration
	FIELD Statement
	LOCAL Statement
	LPARAMETERS Statement
	STATIC Statement
	STACKALLOC
	VAR Statement

	Expressions
	Bound Expressions
	Primary Expressions
	Codeblocks
	Lamda Expressions
	LINQ Expressions
	Initializers
	Compiler Macros
	Pseudo Functions

	Operators
	Binary
	Assignment operators
	Logical
	Bitwise
	Relational
	Shift
	Unary
	Workarea
	IIF Operator
	SizeOf Operator
	TypeOf operator
	NameOf Operator

	X# Preprocessor Directives
	#command
	#define
	#else
	#endif
	#endtext
	#if
	#ifdef
	#ifndef
	#include
	#line
	#pragma options
	#pragma warning(s)
	#region - #endregion
	#stdout
	#text
	#translate
	#undef
	Match Markers
	Result Markers

	X# Compiler Options
	Command-line Building With xsc.exe
	X# Compiler Options By Category
	X# Compiler Options Listed Alphabetically
	@
	-additionalfile
	-addmodule
	-allowdot
	-allowoldstyleassignments
	-analyzer, -a
	-appconfig
	-ast
	-az
	-baseaddress
	-checked
	-checksumalgorithm
	-codepage
	-cs
	-debug
	-define
	-delaysign
	-dialect
	-doc
	-enforceoverride
	-enforceself
	-errorendlocation
	-errorreport
	-filealign
	-fovf
	-fox1
	-fox2
	-fullpaths
	-help, /?
	-highentropyva
	-i
	-initlocals
	-ins
	-keycontainer
	-keyfile
	-langversion
	-lb
	-lexonly
	-lib
	-link
	-linkresource
	-main
	-memvar
	-modernsyntax
	-moduleassemblyname
	-modulename:<string>
	-namedargs
	-noconfig
	-noinit
	-nologo
	-nostddefs
	-nostdlib
	-nowarn
	-nowin32manifest
	-ns
	-optimize
	-out
	-ovf
	-parallel
	-parseonly
	-pathmap
	-pdb
	-platform
	-ppo
	-preferreduilang
	-recurse
	-reference
	-refonly
	-refout
	-resource
	-ruleset
	-shared
	-showdefs
	-showincludes
	-snk
	-stddefs
	-subsystemversion
	-target
	-touchedfiles
	-undeclared
	-unsafe
	-usenativeversion
	-utf8output
	-vo1
	-vo10
	-vo11
	-vo12
	-vo13
	-vo14
	-vo15
	-vo16
	-vo17
	-vo2
	-vo3
	-vo4
	-vo5
	-vo6
	-vo7
	-vo8
	-vo9
	-w
	-warn
	-warnaserror
	-win32icon
	-win32manifest
	-win32res
	-wx
	-xpp1

	X# Compiler Errors and Warnings
	X# Tips and Tricks
	Installer Command Line options
	UnInstaller Command Line options
	Building XSharp apps with Visual Studio and/or MsBuild
	Catching runtime errors at startup
	Compiler magic in the startup code
	Special classes and code generated by the compiler

	X# Examples
	Anonymous Method Expressions
	Anonymous Types
	ASYNC Example
	BEGIN UNSAFE Example
	BEGIN USING Example
	CHECKED Example
	EVENT Example
	Expression Examples
	FIXED Example
	GENERICs Example
	Lamda Expressions
	LINQ Example
	NOP Example
	SWITCH Example
	Typed Enums
	USING Example
	VAR Example
	Vulcan Runtime (BYOR)
	YIELD Example

